# ©゙doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - RD SHARMA MATHS (ENGLISH) 

## THE CIRCLE

## Others

1. Find the equation of the circle whose centre is at the point $(4,5)$ and which passes through the centre of the circle $x^{2}+y^{2}-6 x+4 y-12=0$.

## (D) Watch Video Solution

2. Find the equation of the circle passing through $(1,0)$ and $(0,1)$ and having the smallest possible radius.

## D Watch Video Solution

3. If $(-3,2)$ lie on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ which is concentric with the circle $x^{2}+y^{2}+6 x+8 f y-5=0$, then $c=$ (a)11 (b) - $11(c) 24(d) 32$

## D Watch Video Solution

4. Find the equation of the circle drawn on the intercept made by the line $2 x+3 y=6$ between the coordinate axes as diameter.
5. The straight line $\frac{x}{a}+\frac{y}{b}=1$ cuts the coordinate axes at $A$ and $B$
. Find the equation of the circle passing through $O(0,0)$, $\operatorname{AandB}$.

## D Watch Video Solution

6. Find the equation of the circle that passes through the points $(1,0),(-1,0) \operatorname{and}(0,1)$.

## - Watch Video Solution

7. The circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ does not intersect x -axis , if (a) $g^{2}<c$ (b) $g^{2}>c$ (c) $g^{2}<2 c$ (d) none of these
8. If the lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.

## D Watch Video Solution

9. Show that the point $(x, y)$ given by $x=\frac{2 a t}{1+t^{2}}$ and $y=\left(\frac{1-t^{2}}{1+t^{2}}\right)$ lies on a circle for all real values of $t$ such that $-1 \leq t \leq 1$, where a is any given real number.

## D Watch Video Solution

10. If the line $l x+m y-1=0$ touches the circle $x^{2}+y^{2}=a^{2}$, then prove that $(l, m)$ lies on a circle.
11
Find
the
radius
of
the circle $(x \cos \alpha+y \sin \alpha-a)^{2}+(x \sin \alpha-y \cos \alpha-b)^{2}=k^{2}, \quad$ if $\alpha$ varies, the locus of its centre is again a circle. Also, find its centre and radius.

## - Watch Video Solution

12. Find the equation to the circle which passes through the origin and cut off equal chords of length ' $a$ ' from the straight lines $y=x a n d y=-x$.

## D Watch Video Solution

13. On the joining $(1,0) \operatorname{and}(3,0)$ be and equilateral triangle is drawn, having its vertex in the first quadrant. Find the equation to the circles described on its sides as diameter.
14. If the point $(k+1, k)$ lies inside the region bound by the curve $x=\sqrt{25-y^{2}}$ and the y -axis, then the integral value of k is/are

## D Watch Video Solution

15. If the point $(2, k)$ lies outside the circles $x^{2}+y^{2}+x-2 y-14=0 a n d x^{2}+y^{2}=13$ then k lies in the interval

$$
\begin{equation*}
(\mathrm{a})(-3,-2) \cup(3,4) \tag{c}
\end{equation*}
$$

(b) $\quad(-3,4)$
$(-\infty,-3) \cup(4, \infty)(\mathrm{d})(-\infty-2) \cup(3, \infty)$

## D Watch Video Solution

16. A circle has radius 3 units and its centre lies on the line $y=x-1$. Find the equation of the circle, if it passes through
17. Find the equation of the circle which touches both the axes and the line $3 x-4 y+8=0$ and lies in the third quadrant.

## D Watch Video Solution

18. A circle of radius 2 lies in the first quadrant and touches both the axes. Find the equation of the circle with centre at $(6,5)$ and touching the above circle externally.

## - Watch Video Solution

19. Find the equation of a circle of radius 5 which lies within the circle $x^{2}+y^{2}+14 x+10 y-26=0$ and which touches the given circle at the point $(-1,3)$.
20. Find the equation of the circle whose radius is 5 and which touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point $(5,5)$.

## D Watch Video Solution

21. The circle $(x-a)^{2}+(y-a)^{2}=a^{2}$ is rolled on the $y-a \xi s$ in the positive direction through one complete revolution. Find the equation of the circle in its new-position.

## D Watch Video Solution

22. Find the equation of the image of the circle $x^{2}+y^{2}+8 x-16 y+64=0$ in the line mirror $x=0$.
23. A circle of radius 5units touches the coordinate axes in the first quadrant. If the circle makes one complete roll on $x$-axis along the positive direction of $x$-axis, find its equation in new position.

## - Watch Video Solution

24. Find the equation of a circle which passes through the point
$(2,0)$ and whose centre is the limit of the point of intersection of the lines $3 x+5 y=1$ and $(2+c) x+5 c^{2} y=1$ as $c$ tends to 1 .

## - Watch Video Solution

25. Find the equation of a circle which touches $y$ - axis at a distance of 4units from the origin and cuts an intercept of 6units along the positive direction of $x$ - axis.
26. If the circle $x^{2}+y^{2}+2 a x+8 y+16=0$ touch x -axis , then, thevalueof 'a'is(a)+-16(b)+-4(c)+-8(d)+-1'

## D Watch Video Solution

27. If the abscissae and the ordinates of two point $\operatorname{AandB}$ be the roots of $a x^{2}+b x+c=0 a n d a^{\prime} y^{2}+b^{\prime} y=c^{\prime}=0$ respectively, show that the equation of the circle described on $A B$ as diameter is $a a^{\prime}\left(x^{2}+y^{2}\right)+a^{\prime} b x+a b^{\prime} y+\left(c a^{\prime}+c a\right)=0$.

## D Watch Video Solution

28. Find the equation of the circle which passes through the points
$(2,-2)$, and $(3,4)$ and whose centre lies on the line $x+y=2$.
29. If $2 x^{2}+\lambda x y^{+} 2 y^{2}+(\lambda-4) x+6 y-5=0$, is the equation of a circle, then its radius is :

## D Watch Video Solution

30. If the equation of a circle is $\lambda x^{2}+(2 \lambda-3) y^{2}-4 x+6 y-1=0$, then the coordinates of centre are

## D Watch Video Solution

31. If the line $l x+m y+n=0$ touches the circle $x^{2}+y^{2}=a^{2}$, then prove that $\left(l^{2}+m^{2}\right) a^{2}=n^{2}$.
32. Find the equation of the circle which passes through the origin and cut off equal chords of $\sqrt{2}$ units from the lines $y=x a n d y=-x$.

## D Watch Video Solution

33. Prove that the locus of a point which moves such that the sum of the square of its distances from the vertices of a triangle is constant is a circle having centre at the centroid of the triangle.

## D Watch Video Solution

34. 

Watch Video Solution
35. A dip circle is at right angles to the magnetic meridian. What will be the apparent dip ?

## - Watch Video Solution

36. Find the equation to the circle which passes through the points $(1,2)(2,2)$ and whose radius is 1 .

## - Watch Video Solution

37. Find the equation of the circle, the coordinates of the end points of whose diameter are $(-1,2) \operatorname{and}(4,-3)$.

## - Watch Video Solution

38. If the circles $x^{2}+y^{2}+2 a x+c=0 a n d x^{2}+y^{2}+2 b y+c=0$ touch each other, then $(a) \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}$
(b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
$a+b=2 c$ (d) $\frac{1}{a}+\frac{1}{b}=\frac{2}{c}$

## - Watch Video Solution

39. Find the equation of the circle which passes through the points $(1,-2),(4,-3)$ and whose center lies on the line $3 x+4 y=7$.

## - Watch Video Solution

40. The equation of the circle which touches the axes of coordinates and the line $\frac{x}{3}+\frac{y}{4}+=1$ and whose centres lie in the first quadrant is $x^{2}+y^{2}-2 c x-2 c y+c^{2}=0$, where $c$ is equal to 4 (b) 2 (c) 3 (d) 6

## - Watch Video Solution

41. Find the equation of the circle which passes through the points $(2,3)(4,2)$ and the centre lies on the straight line $y-4 x+3=0$.

## - Watch Video Solution

42. The number of integral values of $\lambda$ for which the equation $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0$ is the equation fo a circle whose radius cannot exceed 5 , is (a) 14 (b) 18 (c) 16 (d) none of these

## - Watch Video Solution

43. Find the equation of the circle which touches the lines $4 x-3 y+10=0 \operatorname{and} 4 x-3 y-30=0$ and whose centre lies on the line $2 x+y=0$.

## - Watch Video Solution

44. If the line $y=\sqrt{3} x+k$ touches the circle $x^{2}+y^{2}=16$, then find the value of $k$.

## - Watch Video Solution

45. Find the equation of the circle having $(1,-2)$ as its centre and passing through the intersection of the lines
$3 x+y=14$ and $2 x+5 y=18$.

## - Watch Video Solution

46. Find the locus of the centre of the circle touching the line $x+2 y=0 a n d x=2 y$

## - Watch Video Solution

47. Let $C$ be any circle with centre $(0, \sqrt{2})$. Prove that at most two rational points can be there on $C$. (A rational point is a point both of whose coordinates are rational numbers)

## - Watch Video Solution

48. Find the equation of the circle which touches $x$-axis and whose centre is (1,2).

## - Watch Video Solution

49. Find the equation of the circle which passes through the origin and cuts off intercepts $3 a n d 4$ from the positive parts of the axes respectively.

## - Watch Video Solution

50. Find the equation of the circle whose centre is at $(3,-1)$ and which cuts off a chord of length 6units on the line $2 x-5 y+18=0$.

## - Watch Video Solution

51. A rectangle $A B C D$ is inscribed in a circle with a diameter lying along the line $3 y=x+10$. If $A$ and $B$ are the points $(-6,7) \operatorname{and}(4,7)$ respectively, find the area of the rectangle and equation of the circle.

## - Watch Video Solution

52. Find the equation of a circle with origin as centre and which circumscribes an equilateral triangle whose median is of length $3 a$

## - Watch Video Solution

53. Find the equation of a circle whose diameters are $2 x-3 y+12 a n d x+4 y-5=0$ and area is 154 squareunits.

## - Watch Video Solution

54. Find the equation of a circle of radius 5 whose centre lies on $x$-axis and passes through the point $(2,3)$.

## - Watch Video Solution

55. If $y=2 x$ is a chord of the circle $x^{2}+y^{2}-10 x=0$, find the equation of a circle with this chord as diameter.

## - Watch Video Solution

56. Find the equation of the circle is $(2,-3)$ and radius is 8 .

## Watch Video Solution

57. Find the equation of the circle which passes through the point of intersection of the lines $3 x-2 y-1=0 \operatorname{and} 4 x+y-27=0$ and whose centre $(2,-3)$.

## - Watch Video Solution

58. Find the equation of the circle having centre at $(3,-4)$ and touching the line $5 x+12 y-12=0$.

## - Watch Video Solution

59. Find the center and radius of the circle given by the equation $2 x^{2}+2 y^{2}+3 x+4 y+\frac{9}{8}=0$.
60. If the line $2 x-y+1=0$ touches the circle at the point $(2,5)$ and the centre of the circle lies in the line $x+y-9=0$. Find the equation of the circle.

## - Watch Video Solution

61. Find the equation of the circle passing through $(1,2)$ and which is concentric with the circle $x^{2}+y^{2}+11 x-5 y+3=0$.

## - Watch Video Solution

62. Find the equation of a circle whose centre is $(2,-3)$ and radius 5 .

## - Watch Video Solution

63. If the equations of the two diameters of a circle are $x-y=5$ and $2 x+y=4$ and the radius of the circle is 5 , find the equation of the circle.

## - Watch Video Solution

64. Find the equation of the circle which passes through two points on the $x$-axis which are at distances 4 from the origin and whose radius is 5.

## - Watch Video Solution

65. A circle of radius 6 units touches the coordinates axes in the first quadrant. Find the equation of its image in the line mirror $y=0$.
66. Show that the equation of the circle which touches the coordinates axes whose centre lies on the line $l x+m y+n=0 i s(l+m)^{2}\left(x^{2}+y^{2}\right)+2 n(x+y)(l+m)+n^{2}=0$.

## - Watch Video Solution

67. Find the equation of the circle which touches the coordinate axes and whose centre lies on the line $x-2 y=3$.

## - Watch Video Solution

68. Find the equation of the circle with: centre $(-2,3)$ and radius 4.

## - Watch Video Solution

69. Find the equation of the circle with: centre $(a, b)$ and radius
$\sqrt{a^{2}+b^{2}}$.
70. Find the equation of the circle with: centre ( $0,-1$ ) and radius 1 .

## - Watch Video Solution

71. Find the equation of the circle with: Center $(a \cos \alpha, a \sin \alpha)$ and radius $a$.

## - Watch Video Solution

72. Find the equation of the circle with: Centre $(a, a)$ and radius $\sqrt{2} a$.

## - Watch Video Solution

73. Find the centre and radius of each of the following circle: $(x-1)^{2}+y^{2}=4$

## - Watch Video Solution

74. Find the centre and radius of each of the following circle: $(x+5)^{2}+(y+1)^{2}=9$

## - Watch Video Solution

75. Find the centre and radius of each of the following circle:
$x^{2}+y^{2}-4 x+6 y=5$

## (D) Watch Video Solution

76. Find the centre and radius of each of the following circle:
$x^{2}+y^{2}-x+2 y-3=0$

## - Watch Video Solution

77. Find the equation of the circle whose centre is $(1,2)$ and which passes through the point $(4,6)$.

## - Watch Video Solution

78. Find the equation of the circle passing through the point of intersection of the lines $x+3 y=0$ and $2 x-7 y=0$ and whose centre is the point of intersection of the lines $x+y+1=0$ and $x-2 y+4=0$.

## - Watch Video Solution

79. Find the equation of the circle whose centre lies on the positive direction of $y$-axis at as distance 6 from the origin and whose radius is 4.

## - Watch Video Solution

80. Find the equation of a circle: 1)Which touches both the axes at a distance of 6 units from the origin. 2)Which touches $x$-axis at a distance 5 from the origin and radius 6 units 3)Which touches both the origin, radius 17 and ordinate of the centre is -15 .

## - Watch Video Solution

81. If the equations of two diameters of a circles are $x+y=6$ and $x+2 y=4$ and the radius is 10 , find the equation of the circle.
82. Find the equation of the circle which has its centre at the point $(3,4)$ and touches the straight line $5 x+12 y-1=0$.

## - Watch Video Solution

83. Find the equation of the circle which touches the coordinate axes and whose centre lies on the line $x-2 y=3$.

## - Watch Video Solution

84. A circle whose centre is the point of intersection of the lines
$2 x-3 y+4=0$ and $3 x+4 y-5=0$ passes through the origin.
Find its equation.
85. A circle of radius 4 units touches the coordinate axes in the first quadrant. Find the equation of its images with respect to the line mirrors $x=0$ and $y=0$.

## - Watch Video Solution

86. Find the equations of the circles touching $y$-axis at $(0,3)$ and making an intercept of 8 units on the $x$-axis.

## D Watch Video Solution

87. Find the equations of the circles passing through two points on $y$ axis at distance 3 from the origin and having radius 5.
88. If the lines $3 x-4 y-7=0$ and $2 x-3 y-5=0$ are two diameters of a circle of area $49 \pi$ square units, the equation of the circle is:

## - Watch Video Solution

89. The circle $x^{2}+y^{2}-2 x-2 y+1=0$ is rolled along the positive direction of $x$-axis and makes one complete roll. Find its equation in new position.

## D Watch Video Solution

90. One of the diameters of the circle circumscribing the rectangle ABCD is $4 y=x+y$. If $A$ and $B$ are the points $(-3,4)$ and $(5,4)$ respectively, find the area of the rectangle and equation of the circle.
91. Find the centre of a circle passing through $(5,-8),(2,-9)$ and $(2,1)$

## - Watch Video Solution

92. Find the area of equilateral triangle inscribed in a circle $x^{2}+y^{2}+2 g x+2 f y+c=0$

## - Watch Video Solution

93. Find the coordinates of the centre and radius of each of the following circle: $x^{2}+y^{2}+6 x-8 y-24=0$

## - Watch Video Solution

94. Find the coordinates of the centre and radius of each of the following circle: $2 x^{2}+2 y^{2}-3 x+5 y=7$
95. Find the coordinates of the centre and radius of each of the following circle: $\frac{1}{2}\left(x^{2}+y^{2}\right)+x \cos \theta+y \sin \theta-4=0$

## - Watch Video Solution

96. Find the coordinates of the centre and radius of each of the following circle: $x^{2}+y^{2}-a x-b y=0$

## - Watch Video Solution

97. Find the equation of the circle passing through the point: $(5,1),(8,1)$ and (1,3)

## - Watch Video Solution

98. Find the equation of the circle passing through the point: $(1,2)$, $(3,-4)$ and $(5,-6)$.

## - Watch Video Solution

99. Find the equation of the circle passing through the point:
$(5,-8),(-2,9)$ and $(2,1)$

## - Watch Video Solution

100. about to only mathematics

## D Watch Video Solution

101. Find the equation of the circle which passes through the points (3,
$-2),(-2,0)$ and has its centre on the line $2 x-y=3$.
102. Find the equation of the circle which passes through the points
(3,7), (5,5) and has its centre on the line $x-4 y=1$.

## - Watch Video Solution

103. Show that the points (3,-2), (1,0), (-1, -2) and (1,-4) are con-cyclic.

## - Watch Video Solution

104. Show that the points $A(5,5), B(6,4), C(-2,4)$ and $D(7,1)$ all lies on the circle. Find the centre, radius and equation of circle.
105. Find the equation of the circle which circumscribes the triangle formed by the line: $x+y+3=0, x-y+1=0$ and $x=3$

## - Watch Video Solution

106. Find the equation of the circle which circumscribes the triangle formed by the
line:
$2 x+y-3=0, x+y-1=0$ and $3 x+2 y-5=0$

## - Watch Video Solution

107. Prove that the centres of the three circles $\left(x^{2}+y^{2}-4 x-6 y-12=0\right),\left(x^{2}+y^{2}+2 x+4 y-5=0\right)$ and $\left(x^{2}+y^{2}-10 x-16 y+7=0\right)$ are collinear.

## - Watch Video Solution

108. Find the equation of the circle which circumscribes the triangle formed by the line: $x+y=2,3 x-4 y=6$ and $x-y=0$.

## - Watch Video Solution

109. Find the equation of the circle which circumscribes the triangle formed by the line: $y=x+2,3 y=4 x$ and $2 y=3 x$

## - Watch Video Solution

110. Find the equation of the circle which passes through the origin and cuts off chords of lengths 4 and 6 on the positive side of the $x$-axis and $y$-axis respectively.

## D Watch Video Solution

111. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-4 x-6 y-3=0$ and which touches the y axis

## - Watch Video Solution

112. If a circle passes through the point $(0,0),(a, 0) \operatorname{and}(0, b)$, then find its center.

## - Watch Video Solution

113. Find the equations of the circles drawn on the diagonals of the rectangle as its diameter whose sides are $x=5, x=-2, y=3$ and $y=-1$.

## (D) Watch Video Solution

114. Find the equation of the circle, the end points of whose diameter are $(2,-3)$ and $(-2,4)$. Find the centre and radius.

## - Watch Video Solution

115. Find the equation of the circle the end points of whose diameters are the centres of the circles $x^{2}+y^{2}+16 x-14 y=1$ and $x^{2}+y^{2}-4 x+10 y=2$

## - Watch Video Solution

116. The sides of a square are $x=6, x=9, y=3$ and $y=6$. Find the equation of a circle drawn on the diagonal of the square as its diameter.
117. Find the equation of the circle circumscribing the rectangle whose sides are $x-3 y=4,3 x+y=32, x-3 y=14$ and $3 x+y=62$.

## D Watch Video Solution

118. Find the equation of the circle passing through the origin and the points where the line $3 x+4 y=12$ meets the axes of coordinates.

## - Watch Video Solution

119. Find the equation of the circle which passes through the origin and cuts off intercepts $a$ and $b$ respectively from $x$ and $y$ - axes.

## - Watch Video Solution

120. Find the equation of the circle whose diameter is the line segment joining $(-4,3)$ and $(12,-1)$. Find also the intercept made by it on y -axis.

## - Watch Video Solution

121. The abscissa of the two points $A$ and $B$ are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of the equation $x^{2}+2 p x-q^{2}=0$. Find the equation of the circle with AB as diameter. Also, find its radius.

## - Watch Video Solution

122. $A B C D$ is a square in first quadrant whose side is a, taking $A B$ and $A D$ as axes, prove that the equation to the circle circumscribing the square is $x^{2}+y^{2}=a(x+y)$.
123. The line $2 x-y+6=0$ meets the circle $x^{2}+y^{2}-2 y-9=0$ at $A$ and $B$. Find the equation of the circle on $A B$ as diameter.

## - Watch Video Solution

124. Find the equation of the circle which circumscribes the triangle formed by the lines $x=0, y=0$ and $l x+m y=1$.

## - Watch Video Solution

125. Write the length of the intercept made by the circle $x^{2}+y^{2}+2 x-4 y-5=0$ on $y$-axis.

## (D) Watch Video Solution

126. Write the coordinates of the centre of the circle passing through $(0,0),(4,0)$ and (0,-6).

## D Watch Video Solution

127. Write the area of the circle passing through $(-2,6)$ and having its centre at (1,2).

## - Watch Video Solution

128. If the abscissa and ordinates of two points $\operatorname{Pand} Q$ are the roots of the equations $x^{2}+2 a x-b^{2}=0 \quad$ and $\quad x^{2}+2 p x-q^{2}=0$ respectively, then find the equation of the circle with $P Q$ as diameter.

## - Watch Video Solution

129. Write the equation of the unit circle concentric with $x^{2}+y^{2}-8 x+4 y-8=0$.

## - Watch Video Solution

130. Find the number of integral values of $\lambda$ for which $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0$ is the equation of a circle whose radius does not exceed 5 .

## - Watch Video Solution

131. Write the equation of the circle passing through $(3,4)$ and touching $y$-axis at the origin.

## - Watch Video Solution

132. If the line $y=m x$ does not intersect the circle $(x+10)^{2}+(y+10)^{2}=180$ then write the set of values of taken by $m$

## - Watch Video Solution

133. Write the coordinates of the center of the circle inscribed in the square formed by the lines $x=2, x=6, y=5$ and $y=9$.

## - Watch Video Solution

134. The equation $x^{2}+y^{2}+2 x-4 y+5=0$ represents a. a point b. a pair of straight lines $c$. a circle of non zero radius $d$. none of these

## - Watch Video Solution

135. If the equation $(4 a-3) x^{2}+a y^{2}+6 x-2 y+2=0$ represents a circle, then its centre is a. $(3,-1)$ b. $(3,1)$ c. $(-3,1)$ d. none of these

## - Watch Video Solution

136. The equation of the circle passing through the point $(1,1)$ and having two diameters along the pair of lines $x^{2}-y^{2}-2 x+4 y-3=0 \quad$ is $\quad$ a. $x^{2}+y^{2}-2 x-4 y+4=0 \quad$ b. $x^{2}+y^{2}+2 x+4 y-4=0$ c. $x^{2}+y^{2}-2 x+4 y+4=0 \mathrm{~d}$. none of these

## D Watch Video Solution

137. If the centroid of an equilateral triangle is $(1,1)$ and its one vertex is $(-1,2)$, then the equation of its circumcircle is: is

$$
\begin{align*}
& x^{2}+y^{2}-2 x-2 y-3=0 \quad \text { b. } \quad x^{2}+y^{2}  \tag{c.}\\
& x^{2}+y^{2}+2 x+2 y-3=0 \text { d. none of these }
\end{align*}
$$

$$
\text { b. } \quad x^{2}+y^{2}+2 x-2 y-3=0
$$

## - Watch Video Solution

138. The equation of the incircle of the triangle formed by the axes and the line $4 x+3 y=6$ is

## - Watch Video Solution

139. The equation of a circle with radius 5 and touching both the coordinate axes is $\quad x^{2}+y^{2} \pm 10 x \pm 10 y+5=0$
$x^{2}+y^{2} \pm 10 x \pm 10 y=0$
$x^{2}+y^{2} \pm 10 x \pm 10 y+25=0$
$x^{2}+y^{2} \pm 10 x \pm 10 y+51=0$

## - Watch Video Solution

140. The equation of the circle passing through the origin which cuts of intercept of length 6 and 8 from the axes is a.
$x^{2}+y^{2}-12 x-16 y=0$
b. $\quad x^{2}+y^{2}+12 x+16 y=0$
$x^{2}+y^{2}+6 x+8 y=0$ d. $x^{2}+y^{2}-6 x-8 y=0$

## - Watch Video Solution

141. The area of an equilateral triangle inscribed in the circle $x^{2}+y^{2}-6 x-8 y-25=0$ is a. $\frac{225 \sqrt{3}}{6}$ b. $25 \pi$ c. $50 \pi-100$ d. none of these

## - Watch Video Solution

142. If the circles $x^{2}+y^{2}=a$ and $x^{2}+y^{2}-6 x-8 y+9=0$ touch externally then $a=\mathrm{a} .1 \mathrm{~b} .-1 \mathrm{c} .21 \mathrm{~d} .16$

## D Watch Video Solution

143. If $(x, 3)$ and $(3,5)$ are the extremities of a diameter of a circle with centre at $(2, y)$ then the values of $x$ and $y$ are a. (3,1) b. $x=4, y=1 \mathrm{c}$. $x=8, y=2 \mathrm{~d}$. none of these

## - Watch Video Solution

144. Equation of the diameter of the circle $x^{2}+y^{2}-2 x+4 y=0$ which passes through the origin is a. $\mathrm{x}+2 \mathrm{y}=0 \mathrm{~b} \cdot \mathrm{x}-2 \mathrm{y}=0 \mathrm{c} .2 x+y=0 d$. $2 x-y=0$.

## - Watch Video Solution

145. Equation of the circle through origin which cuts intercepts of length $\quad a$ and $b \quad$ on axes is a. $\quad x^{2}+y^{2}=a x+b y=0 \quad$ b. $x^{2}+y^{2}-a x-b y=0 \mathrm{c} . x^{2}+y^{2}+b x+a y=0 \mathrm{~d}$. none of these
