

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

TRIGONOMETRIC EQUATIONS

Others

1. Write the number of solutions of the equation

 $2\sin x - 3\cos x = 7.$

A. Two

B. Infinite

C. Three

D. No solution

Answer: D

4. Write the set of values of a for which the equation

 $\sqrt{3}\sin x - \cos x = a$ has no solution.

> Watch Video Solution

5. Solve that following equations : $\cot heta + tan heta = 2$

6. Solve that following equations : $\sec x \cos 5x + 1 = 0$,

$$0 < x \leq rac{\pi}{2}$$
 find the value of x

13. If $3 an(heta+15^\circ)= an(heta+15^\circ),\,$ then heta is equal to $n\in Z)$

A.
$$n\pi + \frac{\pi}{4}$$

B. $n\pi + \frac{\pi}{8}$
C. $n\pi + \frac{\pi}{3}$

D. none of these

Answer: A

14. Solve that equations :

$$an heta+ an\Bigl(heta+rac{\pi}{3}\Bigr)+ an\Bigl(heta+rac{2\pi}{3}\Bigr)=3$$

A.
$$heta=n\pi+rac{\pi}{2}$$

B. $heta=rac{n\pi}{6}+rac{\pi}{2}$
C. $heta=rac{n\pi}{6}+rac{\pi}{12}$
D. $heta=rac{n\pi}{3}+rac{\pi}{12}$

Answer: D

Watch Video Solution

15. If an p heta - an q heta = 0, then the series formed by values

of θ will be?

16. The equation $3\cos x + 4\sin x = 6$ has solution.

A. Finite

B. Infinite

C. Unique or one solution

D. No solution

Answer: null

Watch Video Solution

17. Solve that equation : $\sin m\theta + \sin n\theta = 0$.

18. Solve: $4\sin x \sin 2x \sin 4x = \sin 3x$

19.

Solve:

 $\sin 3lpha = 4\sinlpha\sin(x+lpha)\sin(x-lpha), wherelpha
eq n\pi, n\in Z$

Watch Video Solution

20. Solve: $2\sin^2 x + \sin^2 2x = 2$

Watch Video Solution

21. Solve: $7\cos^2 heta+3\sin^2 heta=4$

24. Solve the equation : $an^2 heta+ig(1-\sqrt{3}ig) an heta-\sqrt{3}=0$

25. Solve the given equation : $4\cos\theta - 3sec\theta = tan\theta$

35. Solve that equation : $\sin \theta + \sin 3\theta + \sin 5\theta = 0$.

39. Write the values of x in [0,pi] f or which $\sin 2x$, $\frac{1}{2}$ and $\cos 2x$ are in AP

Watch Video Solution

40. Prove that:
$$an^2 heta= an^2lpha, heta=n\pi\pmlpha, n\in Z$$

Watch Video Solution

41. Prove that: $\cos^2 heta=\cos^2lpha$ then $heta=n\pi\pmlpha, n\in Z$

42. Find the general solutions of the following equations:

$$\sin 2 heta = 0$$
 (ii) $\sin\!\left(rac{3 heta}{2}
ight) = 0$ (iii) $\sin^2 2 heta = 0$

Watch Video Solution

$$\cos 3 heta = 0$$
 (ii) $rac{\cos(3 heta)}{2} = 0$ (iii) $\cos^2 3 heta = 0$

Watch Video Solution

44. Find the general solutions of the following equations:

$$an 2 heta = 0$$
 (ii) $an igg(rac{ heta}{2} igg) = 0$ (iii) $rac{ an (3 heta)}{4} = 0$

45. Prove that the general solution of $\sin heta = \sin lpha,$ is given by : $heta = n \pi + (-1)^n lpha, n \in Z$.

48. Solve the following trigonometric equations:

$$\sin\left(\frac{\theta}{2}\right) = -1 \text{ (ii) } \frac{\cos(3\theta)}{2} = \frac{1}{2} \text{ (iii) } \tan\left(\frac{2}{3}\theta\right) = \sqrt{3}$$

Watch Video Solution

49. Solve that following equation: $\cot heta + tan heta = 2$

50. Write the number of solutions of the equation $tanx + secx = 2\cos x$ in the interval $[0, 2\pi]$.

51. The number of values of x in the interval $0, 5\pi$ satisfying the equation $3\sin^2 x - 7\sin x + 2 = 0$ is 0 (b) 5 (c) 6 (d) 10

Watch Video Solution

52. If a is any real number, the number of roots of $\cot x - tanx = a$ in the first quadrant is (are). 2 (b) 0 (c) 1 (d) none of these

(d) none of these

Watch Video Solution

53. Solve:
$$\sqrt{3}\cos heta+\sin heta=\sqrt{2}$$

54. If $\cos x = k$ has exactly one solutions in $[0, 2\pi]$, then

write the values (s) of k.

Watch Video Solution

55. Write the number of points in intersection of the curves

2y = -1and $y = \cos ecx$.

Watch Video Solution

56. Find the general solutions of the following equation:

$$\sin heta=rac{\sqrt{3}}{2}$$

57. Find the general solutions of the following equation:

 $2\sin heta+1=0$

Watch Video Solution

58. Find the general solutions of the following equation:

 $\cos ec\,\theta=2$

Watch Video Solution

59. Find the general solutions of the following equation: $\cos \theta = \frac{1}{2}$

60. Find the general solutions of the following equation:

$$\cos 3 heta = -rac{1}{2}$$

Watch Video Solution

61. Find the general solutions of the following equation:

$$\sqrt{3}\sec 2 heta=2$$

65. Solve the following equation: $\sin 2 heta + \cos heta = 0$

66. Solve the following equation: $\sin 3 heta + \cos 2 heta = 0$

Watch Video Solution	
67. Solve the following equation: `sin2theta + sin4theta +	

sin6theta = 0

Watch Video Solution

68. Find the general solutions of the following equation: $\sin \theta = \frac{1}{2}$

69. Find the general solutions of the following equation:

70. Find the general solutions of the following equation:

 $\cos e c heta = -\sqrt{2}$

Watch Video Solution

71. Find the general solutions of the following equation: $sec heta=\sqrt{2}$

74. Find the general solutions of the following equation: $\sin 2\theta = \frac{\sqrt{3}}{2}$

75. Find the general solutions of the following equation: $\sin 2\theta = \cos 3\theta$

 $tan2\theta tan\theta = 1$

Watch Video Solution

77. Find the general solutions of the following equation:

 $\sin 2 heta + \cos heta = 0$

78. Find the general solutions of the following equation: $\cos 3\theta = \frac{1}{2}$

Watch Video Solution

79. Find the general solutions of the following equation:

 $tan heta+\cot 2 ext{theta}=0$

Watch Video Solution

80. Find the general solutions of the following equation:

 $tanm heta+\cot n heta=0$

81. Find the general solutions of the following equation:

 $\sin heta = an heta$

82. Find the general solutions of the following equation: $\sin 9\theta = \sin \theta$

Watch Video Solution

83. Find the general solutions of the following equation:

 $tan3\theta = \cot \theta$

84. Find the general solutions of the following equation:

 $tanp\theta = \cot q\theta$

85. Find the general solutions of the following equation:

 $\sin 3 heta + \cos 2 heta = 0$

Watch Video Solution

86. Solve the following equation: $\sin^2 \theta - \cos \theta = \frac{1}{4}$

105. Writhe the number of values of $heta~\in~[0,2\pi]$ thast satisfy the equation $\sin^2 heta-\cos heta=rac{1}{4}.$

106. If $2\sin^2\theta = 3\cos\theta, where \ 0 \le \theta \le 2\pi$, then find the

value of θ .

Watch Video Solution

107. The smallest value of heta satisfying the equation $\sqrt{3}(\cot heta+tan heta)=4$ is

A. $2\pi/3$

B. $\pi/3$

C. $\pi/6$

D. $\pi/12$

Answer: C

Watch Video Solution

108. If
$$\cos heta + \sqrt{3} \sin heta = 2$$
, then $heta =$

a. $\pi \, / \, 3\,$ b. $2\pi \, / \, 3$ c. $4\pi \, / \, 3$ d. $5\pi \, / \, 3$

Watch Video Solution

110. A solution of the equation $\cos^2 \theta + \sin \theta + 1 = 0$ lies in the interval

a.
$$(-\pi/4,\pi/4)$$
 b. $(\pi/4,3\pi/4)$ c. $(3\pi/4,5\pi/4)$ d. $(5\pi/4,7\pi/4)$

111. The number of solution in $[0, \pi/2]$ of the equation $\cos 3x \tan 5x = \sin 7x$ is 5 b. 7 c. 6 d. none of these

112. The general value of x satisfying the equation satisfying the equation $\sqrt{3}\sin x + \cos x = \sqrt{3}$ is given by

$$egin{aligned} &x=n\pi+(\,-1)^nrac{\pi}{4}+rac{\pi}{3},\ nZ & ext{b.}\ &x=n\pi+(\,-1)^nrac{\pi}{3}+rac{\pi}{6},\ nZ & ext{c.}\ x=n\pi\pmrac{\pi}{6},nZ & ext{d.}\ &x=n\pi\pmrac{\pi}{3},nZ \end{aligned}$$

113. The smallest positive angle (in degree) which satisfies the equation $2\sin^2 heta+\sqrt{3}\cos heta+1=0$ is

Watch Video Solution
114. If
$$4\sin^2\theta = 1$$
, then the values of θ are
 $2n\pi \pm \frac{\pi}{3}$, $n \in Z$ b. $n\pi \pm \frac{\pi}{3}$, $n \in Z$ c. $n\pi \pm \frac{\pi}{6}$, $n \in Z$ d.
 $2n\pi \pm \frac{\pi}{6}$, $n \in Z$

Watch Video Solution

115. If $\cot heta - an heta = \sec heta$, then heta is equal to

A.
$$2n\pi+rac{3\pi}{2}, n\in Z$$

B.
$$n\pi+(\,-1)^nrac{\pi}{6}, n\in Z$$

$$\mathsf{C}.\,n\pi+\frac{\pi}{2},n\in Z$$

D. none of these

Answer: B

Watch Video Solution

116. A value of θ satisfying $\cos \theta + \sqrt{3} \sin \theta = 2$ is a. $\frac{5\pi}{3}$ b. $\frac{4\pi}{3}$ c. $\frac{2\pi}{3}$ d. $\frac{\pi}{3}$

Watch Video Solution

117. If $\sqrt{3}\cos heta+\sin heta=2$, then general value of heta is:

$$egin{aligned} \mathsf{A}.\,(a)\;n\pi+(\,-\,1)^nrac{\pi}{2},\;n\in Z\ &\mathsf{B}.\,(b).\,(\,-\,1)^nrac{\pi}{2}-rac{\pi}{3},\;n\in Z\ &\mathsf{C}.\,(c).\,n\pi\pmrac{\pi}{2}-rac{\pi}{3},\,n\in Z\ &\mathsf{D}.\,(d).\,n\pi+(\,-\,1)^nrac{\pi}{2}-rac{\pi}{3},\,n\in Z \end{aligned}$$

Answer: B

118. General solution of
$$\tan 5\theta = \cot 2\theta$$
 is $a \cdot \frac{n\pi}{7} + \frac{\pi}{2}$ b.
 $\theta = \frac{n\pi}{7} + \frac{\pi}{3}$ c. $\theta = \frac{n\pi}{7} + \frac{\pi}{14}$ d. $\theta = \frac{n\pi}{7} - \frac{\pi}{14}$

119. The solution of the equation $\cos^2 \theta + \sin \theta + 1 = 0$ lies in the interval:

A.
$$\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$

B. $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$
C. $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$
D. $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$

Watch Video Solution

Answer: D

120. If
$$\cos heta=-rac{1}{2}$$
 and $0^\circ< heta<360^\circ$ then the solutions are

A. $60^{\,\circ}$, $240^{\,\circ}$

B. 120° , 240°

C. $120^{\,\circ}\,,\,210^{\,\circ}$

D. $120^\circ,\,300^\circ$

Answer: B