©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

ALGEBRA OF VECTORS

Others

1. Prove that a necessary and sufficient condition for three vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l \vec{a}+m \vec{b}+n \vec{c}=\overrightarrow{0}$.

- Watch Video Solution

2. Prove that the following vectors are non-coplanar:
$3 \hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+7 \hat{k}$ and $7 \hat{i}-\hat{j}+23 \hat{k} \hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}+3$
and $\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

3. Using vectors show that the points $A(-2,3,5), B(7,0,-1), C(-3,-2,-5)$ and $D(3,4,7)$ are such that $A B$ and $C D$ intersect at the point $P(1,2,3)$.

- Watch Video Solution

4. Prove that $1,1,1$ cannot be direction cosines of a straight line.

- Watch Video Solution

5. A vector \vec{r} is inclined at equal acute angles of $x-a \xi s, y-a \xi s$ and $z-a \xi s$. if $|\vec{r}|=6$ units, find \vec{r}.
6. Find the angles at which the following vectors are inclined to each of the coordinate axes: $\hat{i}-\hat{j}+\hat{k} \hat{j}-\hat{k} 4 \hat{i}+8 \hat{j}+\hat{k}$

- Watch Video Solution

7. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$

- Watch Video Solution

8. Prove that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

9. If P is a point and $A B C D$ is a quadrilateral and $\vec{A} P+\vec{P} B+\vec{P} D=\vec{P} C$, show that $A B C D$ is a parallelogram.
10. If \vec{a} is a vector and m is a scalar such that $m \vec{a}=\overrightarrow{0}$, then what are the alternatives for m and \vec{a} ?

- Watch Video Solution

11. If \vec{a}, \vec{b} are two vectors, then write the truth value of the following statements: $\quad \vec{a}=-\vec{b}|\vec{a}|=|\vec{b}| \quad|\vec{a}|=|\vec{b}| \vec{a}= \pm \vec{b}$ $|\vec{a}|=|\vec{b}| \vec{a}=\vec{b}$

(D) Watch Video Solution

12. $A B C D$ is a quadrilateral. Find the sum the vectors $\vec{B} A, \vec{B} C$, and $\vec{D} A$.
13. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+\vec{D} E+\vec{E} A$ $=\overrightarrow{0} \vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C=3 \vec{A} C$

- Watch Video Solution

14. If P, Q and R are three collinear points such that $\vec{P} Q=\vec{a}$ and $\vec{Q} R=\vec{b}$. Find the vector $\vec{P} R$.

- Watch Video Solution

15. Give a condition that three vectors \vec{a}, \vec{b} and \vec{c} from the three sides of a triangle. What are the other possibilities?

- Watch Video Solution

16. If \vec{a} and \vec{b} are two non-collinear vectors having the same initial point. What are the vectors represented by $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

- Watch Video Solution

17. Find the unit vector in the direction of $3 \hat{i}+4 \hat{j}-12 \hat{k}$.

- Watch Video Solution

18. The vertices A, B, C of triangle $A B C$ have respectively position vectors $\vec{a}, \vec{b}, \vec{c}$ with respect to a given origin O. Show that the point D where the bisector of $\angle A$ meets $B C$ has position vector $\vec{d}=\frac{\beta \vec{b}+\gamma \vec{c}}{\beta+\gamma}$, where $\beta=|\vec{c}-\vec{a}|$ and, $\gamma=|\vec{a}-\vec{b}|$. Hence, deduce that incentre I has position vector $\frac{\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}}{\alpha+\beta+\gamma}$ where $\alpha=|\vec{b}-\vec{c}|$
19. Find a unit vector parallel to the vector $\hat{i}+\sqrt{3} \hat{j}$

- Watch Video Solution

20. Show that the four points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$, are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

- Watch Video Solution

21. If \vec{a}, \vec{b} are the position vectors of A, B respectively, find the position vector of a point C in $A B$ produced such that $A C=3 A B$ and that a point D in $B A$ produced such that $B D=2 B A$.

- Watch Video Solution

22. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D. If $\vec{b}-\vec{a}=\vec{a}-\vec{d}$, then show that $A B C D$ is parallelogram.

(D) Watch Video Solution

23. 6). If $\vec{P} Q=3 \hat{i}+2 \hat{j}-\hat{k}$ and the coordinates of P are $(1,-1,2)$, find the coordinates of Q. (7). prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}, 2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

- Watch Video Solution

24. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

- Watch Video Solution

25. If $\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, find $|3 \vec{a}-2 \hat{b}+4 \hat{c}|$.

- Watch Video Solution

26. Can a vector have direction angles $45^{\circ}, 60^{\circ}, 120^{\circ}$

- Watch Video Solution

27. A vector makes an angle of $\frac{\pi}{4}$ with each of x-axis and y-axis Find the angle made by it with the z-axis.

- Watch Video Solution

28. Show that the point A, B, C with position vectors $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear.
29. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, prove that A, B, C are collinear points.

- Watch Video Solution

30. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.

- Watch Video Solution

31. Show that the four points $A, B, C a n d D$ with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively are coplanar if and only if $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$.
32. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally (ii) externally

D Watch Video Solution

33. Five forces $\vec{A} B, \vec{A} C, \vec{A} D, \vec{A} E$ and $\vec{A} F$ act at the vertex of a regular hexagon $A B C D E F$. Prove that the resultant is $6 \vec{A} O$, where O is the centre of hexagon.

- Watch Video Solution

34. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \overrightarrow{ }$
35. Answer the following as true or flase: \vec{a} and \vec{b} are collinear. Two collinear vectors are always equal in magnitude. Zero vector is unique. Two vectors having same magnitude are collinear. Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

36. Find the coordinates of the tip of the position vector which is equivalent to $\vec{A} B$, where the coordinates of A and B are $(-1,3)$ and ($-2,1$) respectively.

- Watch Video Solution

37. Express $\vec{A} B$ in terms of unit vectors \hat{i} and \hat{j}, when the points are: i) $A(4,-1), B(1,3)$ ii) $A(-6,3), B(-2,-5)$ Find $|\vec{A} B|$ in each case.
38. If the position vectors of the points $A(3,4), B(5,-6)$ and $(4,-1)$ are $\vec{a}, \vec{b}, \vec{c}$ respectively compute $\vec{a}+2 \vec{b}-3 \vec{c}$

- Watch Video Solution

39. $A B C D$ is parallelogram. If the coordinates of A, B, C are
$(-2,-1),(3,0)$ and $(1,-2)$ respectively, find the coordinates of D.

- Watch Video Solution

40. If the position vector of a point $(-4,-3)$ be \vec{a}, find $|a|$.

Watch Video Solution

41. Find a vector of magnitude 4 units which is parallel to the vector $\sqrt{3} \hat{i}+\hat{j}$.

- Watch Video Solution

42. If the position vector \vec{a} of a point $(12, n)$ is such that $|\vec{a}|=13$, find the value (s) of n.

- Watch Video Solution

43. Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

44. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\overrightarrow{O B}+\vec{O} C+\overrightarrow{O D}=4 \overrightarrow{O P}$.

(D) Watch Video Solution

45. If O is a point in space, $A B C$ is a triangle and D, E, F are the mid-points of the sides $B C, C A$ and $A B$ respectively of the triangle, prove that $\vec{O} A+\vec{O} B+\vec{O} C=\vec{O} D+\vec{O} E+\vec{O} F$.

- Watch Video Solution

46. Show that the point $2 \hat{i},-\hat{i}-4 \hat{j}$ and $-\hat{i}+4 \hat{j}$ from an isosceles triangle.

- Watch Video Solution

47. If \vec{a} be the position vector whose tip is $(5,-3)$, find the coordinates of a point B such that $\vec{A} B=\vec{a}$, the coordinates of A being $(4,-1)$.

- Watch Video Solution

48. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.

- Watch Video Solution

49. $A B C D$ are four points in a plane and Q is the point of intersection of the lines joining the mid-points of $A B$ and $C D ; B C$ and $A D$. Show that $\vec{P} A+\vec{P} B+\vec{P} C+\vec{P} D=4 \vec{P} Q$, where P is any point.

- Watch Video Solution

50. If \vec{a} and \vec{b} are non-collinear vectors, find the value of x for which the vectors $\vec{\alpha}=(2 x+1) \vec{a}-\vec{b}$ and $\vec{\beta}=(x-2) \vec{a}+\vec{b} \quad$ are collinear.

- Watch Video Solution

51. The projection of a vector on the coordinate axes are $(6,-3,2)$

Find its length and direction cosines.

- Watch Video Solution

52. If $\vec{a}, \vec{b}, \vec{c}$ are three non- null vectors such that any two of them are non-collinear. If $\vec{a}+\vec{b}$ is collinear with \vec{c} and $\vec{b}+\vec{c}$ is collinear with \vec{a}, then find $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

53.

$2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c}$ and $\vec{a}+\vec{b}-3 \vec{c}$ are non-coplanar vectors (where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors)

(D) Watch Video Solution

54. Show that the points A, B, C with position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c} \quad$ respectively, are collinear.

- Watch Video Solution

55. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of trapezium and is half of their difference.
56. Prove that the segment joining the middle points of two nonparallel sides of a trapezium is parallel to the parallel sides and half of their sum.

(D) Watch Video Solution

57. Using vector method, prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral taken in order form a parallelogram.

- Watch Video Solution

58. If the points with position vectors $60 \hat{i}+2 \hat{j}, 40 \hat{i}-8 \hat{j}$ and $a \hat{i}-52 \hat{j}$ are collinear, find the value of a.

- Watch Video Solution

59. If $A B C D$ is quadrilateral and EandF are the mid-points of $A C a n d B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$.

- Watch Video Solution

60. If D and E are the mid-points of sides AB and AC of a triangle $A B C$ respectively, show that $\vec{B} E+\vec{D} C=\frac{3}{2} \vec{B} C$.

- Watch Video Solution

61. If G is the centroid of a triangle $A B C$, prove that $\vec{G} A+\vec{G} B+\vec{G} C=\overrightarrow{0}$.

- Watch Video Solution

62. Prove using vectors: Medians of a triangle are concurrent.
63. Points L, M, N divide the sides $B C, C A, A B$ of $A B C$ in the ratio $1: 4,3: 2$, 3:7 respectively. Prove thatAL + BM + CN is a vector parallel to $C K$ where K divides $A B$ in the ratio 1: 3 .

- Watch Video Solution

64. Prove using vectors: The diagonals of a quadrilateral bisect each other iff it is a parallelogram.

- Watch Video Solution

65. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.

- Watch Video Solution

66. Prove that the line segment joining the mid points of two side of a triangle is parallel to the third side and equal to half of it.

- Watch Video Solution

67. A vector \vec{r} is inclined at equal to $O X, O Y a n d O Z$. If the magnitude of \vec{r} is 6 units, find \vec{r}.

- Watch Video Solution

68. A vector \vec{r} has length 21 and its direction ratios are proportional to $2,-3,6$. Find the direction cosines and components of \vec{r}, is given that \vec{r} Makes an acute angle with $x-$ axis.

- Watch Video Solution

69. If \vec{a} and \vec{b} are non-collinear vectors and vectors
$\vec{\alpha}=(x+4 y) \vec{a}+(2 x+y+1) \vec{b}$
and
$\vec{\beta}=(-2 x+y+2) \vec{a}+(2 x-3 y-1) \vec{b}$ are connected by the relation $3 \vec{\alpha}=2 \vec{\beta}$,find the value of x and y ?

(D) Watch Video Solution

70. $A B C D$ is a parallelogram. E, F are mid-points of $B C, C D$ respectively. $A E, A F$ meet the diagonal $B D$ at points Q and P respectively. Show that points P and Q trisect $D B$ '.

- Watch Video Solution

71. If a and b ar non collinear vector such that $x_{1} \vec{a}+y_{1} \vec{b}=x_{2} \vec{a}+y_{2} \vec{b}$, then prove that $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
72. Show that the vectors a, b, c given by $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$ are noncoplanar. Express vector $\vec{d}=2 \hat{i}-3 \hat{k}$ as a liner combination of the vectors \vec{a}, \vec{b}, and \vec{c}.

D Watch Video Solution

73. A vector $\vec{O} P$ is inclined to $O X$ at 50° and $O Y$ at 60°. Find the angle at which $\overrightarrow{O P}$ is inclined to $O Z$.

- Watch Video Solution

74. If a vector makes angles α, β, γ. with. $O X, O Y a n d O Z$ respectively, prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.

- Watch Video Solution

75. $A B C D$ is a parallelogram. If L and M are the mid-points of $B C$ and $D C$ respectively, then express $\vec{A} L$ and $\vec{A} M$ in terms of $\vec{A} B$ and $\vec{A} D$. Also, prove that $\vec{A} L+\vec{A} M=\frac{3}{2} \vec{A} C$.

- Watch Video Solution

76. Find a unit vector in the direction of the resultant of the vectors $\hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

77. Find the position vector of the mid-point of the vector joining the points $P(2 \hat{i}-3 \hat{j}+4 \hat{k})$ and $\mathrm{Q}(4 \hat{i}+\hat{j}-2 \hat{k})$.

- Watch Video Solution

78. Show that the line joining one vertex of a parallelogram to the mid-point of an opposite side trisects the diagonal and is trisected thereat.

D Watch Video Solution

79. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that any two of them are non-collinear. If $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a} then prove that $\vec{a}+2 \vec{b}+6 \vec{c}=\overrightarrow{0}$

- Watch Video Solution

80. If \vec{a}, \vec{b} are the position vectors of the points $(1,-1),(-2, m)$, find the value of m for which \vec{a} and \vec{b} are collinear.
81. Find the position vector of a point A in space such that $\vec{O} A$ is inclined at $60^{\circ} \rightarrow O X$ and at $45^{\circ} \rightarrow$ OYand $|\vec{O} A|=10$ units.

- Watch Video Solution

> 82. Show $A(6,-7,0), B(16,-19,-4), C(0,3,-6)$ and $D(2,-5,10)$
such that $A B$ and $C D$ intersect at the point $P(1,-1,2)$.

- Watch Video Solution

83. Prove that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

- Watch Video Solution

84. Find a vector \vec{r} of magnitude $3 \sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis respectively.

- Watch Video Solution

85. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j} i s|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

- Watch Video Solution

86. Three vectors of magnitude $a, 2 a, 3 a$ meet in a point and their directions are along the diagonals of the adjacent faces of a cube. Determine their resultant.

- Watch Video Solution

87.

$\vec{a}-2 \vec{b}+3 \vec{c}, \vec{a}-3 \vec{b}+5 \vec{c}$ and $-2 \vec{a}+3 \vec{b}-4 \vec{c}$ are coplanar, where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar.

(D) Watch Video Solution

88. Find the angles at which the vector $2 \hat{i}-\hat{j}+2 \hat{k}$ is inclined to each of the coordinate axes.

- Watch Video Solution

$$
\begin{aligned}
& \text { 89. } \begin{array}{l}
\text { 8rove that } \\
2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c} \text { and } \vec{a}-6 \vec{b}+6 \vec{c} \\
2
\end{array}
\end{aligned}
$$ are coplanar.

D Watch Video Solution

90. Find the direction cosines of the vector joining the points $A(1,2,-3) \operatorname{and} B(-1,-2,1)$, directed from $A a n d B$.

- Watch Video Solution

91. If \vec{a} and \vec{b} are two non-collinear vectors, show that points $l_{1} \vec{a}+m_{1} \vec{b}, l_{2} \vec{a}+m_{2} \vec{b}$ and $l_{3} \vec{a}+m_{3} \vec{b}$ are collinear if $\left|l_{1} l_{2} l_{3} m_{1} m_{2} m_{3} 111\right|=0$.

Watch Video Solution

92. If the position vector \vec{a} of a point $(12, n)$ is such that $|\vec{a}|=13$, find the value of n.

- Watch Video Solution

93. If $A=(0,1) B=(1,0), C=(1,2), D=(2,1)$, prove that $\vec{A} B=\vec{C} D$.

- Watch Video Solution

94. Show that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}+2 \vec{c}$ and $-8 \vec{a}+13 \vec{b}$ are collinear whatever be $\vec{a}, \vec{b}, \overrightarrow{ }$

- Watch Video Solution

95. Find the position vector of a point R which divides the line joining the two points P and Q with position vectors $\overrightarrow{O P}=2 \vec{a}+\vec{b}$ and $\overrightarrow{O Q}=\vec{a}-2 \vec{b}$, respectively in the ratio $1: 2$ internally and externally.
96. If D is the mid-point of the side $B C$ of a triangle $A B C$, prove that $\vec{A} B+\vec{A} C=2 \vec{A} D$.

- Watch Video Solution

97. Show that the found points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$, are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

- Watch Video Solution

98. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of three distinct points A, B, C. If there exist scalars x, y, z (not all zero) such that $x \vec{a}+y \vec{b}+z \vec{c}=0 a n d x+y+z=0$, then show that $A, B a n d C$ lie on a line.
99. If \vec{a} and \vec{b} are position vectors of points $A a n d B$ respectively, then find the position vector of points of trisection of $A B$.

- Watch Video Solution

100. If \vec{a} and \vec{b} are position vectors of AandB respectively, find the position vector of a point $C o n B A$ produced such that $B C=1.5 B A$.

(D) Watch Video Solution

101. If $\vec{c}=3 \vec{a}+4 \vec{b}$ and $2 \vec{c}=\vec{a}-3 \vec{b}$, show that (i) \vec{c} and \vec{a} have the same direction and $|\vec{c}|>|\vec{a}|$ (ii) \vec{b} and \vec{c} have opposite direction and $|\vec{c}|>|\vec{b}|$

- Watch Video Solution

102. Find the position vectors of the points which divide the join of the points $2 \vec{a}-3 \vec{b}$ and $3 \vec{a}-2 \vec{b}$ internally and externally in the ratio 2: 3 .

- Watch Video Solution

103. Let O be the centre of a regular hexagon $A B C D E F$. Find the sum of the vectors $\vec{O} A, \vec{O} B, \overrightarrow{O C}, \overrightarrow{O D}, \vec{O}$ Eand $\vec{O} F$.

(Watch Video Solution

104. For any two vectors \vec{a} and \vec{b}, prove that

$$
\begin{align*}
& |\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| \quad \text { (ii) } \quad|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}| \tag{iii}\\
& |\vec{a}-\vec{b}| \geq|\vec{a}|-|\vec{b}|
\end{align*}
$$

105. IF $P_{1}, P_{2}, P_{3}, P_{4}$ are points in a plane or space and O is the origin of vectors, show that P_{4} coincides with
$O \Leftrightarrow(\overrightarrow{O P})_{1}+\vec{P}_{1} P_{2}+\vec{P}_{2} P_{3}+\vec{P}_{3} P_{4}=\overrightarrow{0}$.

- Watch Video Solution

106. Using vectors, find the value of λ such that the points $(\lambda,-10,3),(1,-1,3) \operatorname{and}(3,5,3)$ are collinear.

- Watch Video Solution

107. If \vec{a}, \vec{b} are any two vectors, then give the geometrical interpretation of relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
108. If $\vec{P} O+\vec{O} Q=\vec{Q} O+\vec{O} R$, show that the point, P, Q, R are collinear.

- Watch Video Solution

109. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.

- Watch Video Solution

110. If \vec{a} and \vec{b} are the vectors determined by two adjacent sides of a regular hexagon, what are the vectors determined by the other sides taken in order?

- Watch Video Solution

111. Vectors drawn the origin O to the points $A, B a n d C$ are respectively \vec{a}, \vec{b} and $\overrightarrow{4} a-\overrightarrow{3} b$. find $\vec{A} \operatorname{Cand} \vec{B} C$.

- Watch Video Solution

112. If \vec{a} and \vec{b} represent two adjacent sides $\vec{A} \operatorname{Band} \vec{B} C$ respectively of a parallelogram $A B C D$, then show that its diagonals $\vec{A} \operatorname{Cand} \vec{D} B$ are equal to $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ respectively.

- Watch Video Solution

113. $A, B, A \hat{A}, \hat{A} Q A \hat{A}$ and $\hat{A} R$ are five points in a plane. Show that the sum

- Watch Video Solution

114. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D. If $\vec{b}-\vec{a}=\vec{c}-\vec{d}$, then show that $A B C D$ is parallelogram.

(D) Watch Video Solution

115. Find a vector of magnitude 11 in the direction opposite to that of $\vec{P} Q$, where P and Q are the points $(1,3,2)$ and $(1,0,8)$ respectively.

- Watch Video Solution

116. Find the unit vector in the direction of $3 \hat{i}-6 \hat{j}+2 \hat{k}$.

- Watch Video Solution

117. If \vec{a} is a position vector whose tip is $(1,-3)$. Find the coordinates of the point B such that $\vec{A} B=\vec{a}$, if A has coordinates
$(-1,5)$.

(D) Watch Video Solution

118. Find the coordinates of the tip of the position vector which is equivalent to $\vec{A} B$, where the coordinates of AandBare $(3,1) \operatorname{and}(5,0)$ respectively.

- Watch Video Solution

119. Write all the unit vectors in $X Y$ - plane.

- Watch Video Solution

120. Find a unit vector parallel to the vector $3 \hat{i}+4 \hat{j}$.
121. If A, B, C have position vectors $(2,0,0),(0,1,0),(0,0,2)$, show that $A B C$ is isosceles.

- Watch Video Solution

122. If the points $(-1,1,2),(2, m, 5) \operatorname{and}(3,11,6)$ are collinear, find the value of m.

- Watch Video Solution

123. If $\vec{a}=3 \hat{i}-2 \hat{j}+k a n d \vec{b}=2 \hat{i}-4 \hat{j}-3 k$, find $|\vec{a}-2 \vec{b}|$.

- Watch Video Solution

124. If the position vectors of the points $A, B, C, \operatorname{Dare} 2 \hat{i}+4 \hat{k}, 5 \hat{i}+3 \sqrt{3} \hat{j}+4 \hat{k},-2 \sqrt{3} \hat{j}+\hat{k} a n d 2 \hat{i}+\hat{k}$ respectively, prove that $C D$ is parallel to $A B a n d C D=\frac{2}{3} A B$.
125. Represent graphically
i. a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south ii $60 \mathrm{~km}, 40^{\circ}$ east of north iii. 50 km south east.

- Watch Video Solution

126. Classify the following measures as scalars and vectors
a. 10 kg b. 10 meters north -west c. 10 Newton

- Watch Video Solution

127. Classify the following measures as scalars and vectors a. $30 \mathrm{~km} / \mathrm{hr} \mathrm{b} .50 \mathrm{~m} / \mathrm{sec}$ towards north c. 10^{-19} coloumb
128. In a fig 23.4 (a square), identify the following vectors: i.Coinitial ii.Equal iii.Collinear but not equal

- Watch Video Solution

129. In fig 23.3, which of the vectors are: i.Collinear
ii. Equal
iii. Co-initial

- Watch Video Solution

130. Represent the following graphically:
i.A displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north ii.A displacement of 50 km south east iii.A displacement of $70 \mathrm{~km}, 40^{0}$ north of west

- Watch Video Solution

131. Classify the following measures as scalars and vectors: $a .15 \mathrm{~kg} \mathrm{~b}$. 520 kg weight c. 45^{0} d. 10 meters south east e. $50 \mathrm{~m} / \mathrm{sec}^{2}$

- Watch Video Solution

132. Classify the following as scalars and vector quantities: a.Time period b. Distance
c. Displacement d.Force
e. Work
f. Velocity g.Acceleration

- Watch Video Solution

133. In Fig. $A B C D$ is a regular hexagon, which vectors are: (i) Collinear
(ii) Equal (iii) Coinitial (iv) Collinear but not equal

- Watch Video Solution

134. Answer the following as true or flase: (a) \vec{a} and \vec{a} are collinear. (b) Two collinear vectors are always equal in magnitude. (c) Zero vector is unique. (d)Two vectors having same magnitude are collinear.
(e) Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

135. If $\vec{a}, \vec{b}, \vec{c}$ be the vectors represented by the sides of a triangle, taken in order, then prove that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.

(D) Watch Video Solution

136. If P, Q and R are three collinear points such that $\vec{P} Q=\vec{a}$ and $\vec{Q} R=\vec{b}$. Find the vector $\vec{P} R$.

- Watch Video Solution

137. Give a condition that three vectors \vec{a}, \vec{b} and \vec{c} from the three sides of a triangle. What are the other possibilities?

- Watch Video Solution

138. If \vec{a} and \vec{b} are two non-collinear vectors having the same initial point. What are the vectors represented by $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

- Watch Video Solution

139. If \vec{a} is a vector and m is a scalar such that $m \vec{a}=\overrightarrow{0}$, then what are the alternatives for m and \vec{a} ?

- Watch Video Solution

140. If \vec{a}, \vec{b} are two vectors, then which of the following statements is/ are correct : $\vec{a}=-\vec{b} \Rightarrow|\vec{a}|=|\vec{b}|$
141. If \vec{a}, \vec{b} are two vectors, then which of the following statements is/ are correct : $|\vec{a}|=|\vec{b}| \Rightarrow \vec{a}= \pm \vec{b}$

- Watch Video Solution

142. If \vec{a}, \vec{b} are two vectors, then which of the following statements is/ are correct :: $|\vec{a}|=|\vec{b}| \Rightarrow \vec{a}=\vec{b}$

- Watch Video Solution

143. $A B C D$ is a quadrilateral. Find the sum the vectors $\vec{B} A, \vec{B} C$, and $\vec{D} A$.
144. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+$ $\vec{D} E+\vec{E} A=\overrightarrow{0}$

- Watch Video Solution

145. $A B C D E \quad$ is pentagon, prove that
$\vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C=3 \vec{A} C$

- Watch Video Solution

146. Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.

- Watch Video Solution

147. If P is a point and $A B C D$ is a quadrilateral and $\vec{A} P+\vec{P} B+\vec{P} D=\vec{P} C$, show that $A B C D$ is a parallelogram.

- Watch Video Solution

148. Five forces $\vec{A} B, \vec{A} C, \vec{A} D, \vec{A} E$ and $\vec{A} F$ act at the vertex of a regular hexagon $A B C D E F$. Prove that the resultant is $6 \vec{A} O$, where O is the centre of hexagon.

- Watch Video Solution

149. The position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\vec{a}, \vec{b}, \overrightarrow{2} a+\overrightarrow{3} b$ and $\vec{a}-\overrightarrow{2} b$ respectively show that $\vec{D} B=3 \vec{b}-\vec{a} \quad$ and $\vec{A} C=\vec{a}+\overrightarrow{3} b$

- Watch Video Solution

150. Let $A B C D$ be as parallelogram. If $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of A, B, C respectively with reference to the origin 0 , find the position vector of D reference to 0 .

(D) Watch Video Solution

151. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and ($\vec{a}-3 \vec{b}$) respectively, externally in the ratio 1:2.Also, show that P is the mid-point of the line segment $R Q$.

- Watch Video Solution

152. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D. If $\vec{b}-\vec{a}=\vec{c}-\vec{a}$, then show that $A B C D$ is parallelogram.
153. If \vec{a}, \vec{b} are the position vectors of A, B respectively, find the position vector of a point C in $A B$ produced such that $A C=3 A B$ and that a point D in $B A$ produced such that $B D=2 B A$.

D Watch Video Solution

154. Show that the found points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$, are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

- Watch Video Solution

155. Show that the four points P, Q, R, S with position vectors $\vec{p}, \vec{q}, \vec{r}, \vec{s}$ respectively such that $5 \vec{p}-2 \vec{q}+6 \vec{r}-9 \vec{s}=\overrightarrow{0}$,
are coplanar. Also find the position vector of the point of intersection of the line segments PR and QS.

- Watch Video Solution

156. The vertices A, B, C of triangle $A B C$ have respectively position vectors $\vec{a}, \vec{b}, \vec{c}$ with respect to a given origin O. Show that the point D where the bisector of $\angle A$ meets $B C$ has position vector $\vec{d}=\frac{\beta \vec{b}+\gamma \vec{c}}{\beta+\gamma}$, where $\beta=|\vec{c}-\vec{a}|$ and, $\gamma=|\vec{a}-\vec{b}|$.

- Watch Video Solution

157. Evaluate $\int e^{5 x} d x$

- Watch Video Solution

158. If O is a point in space, $A B C$ is a triangle and D, E, F are the mid-points of the sides $B C, C A$ and $A B$ respectively of the triangle, prove that $\vec{O} A+\vec{O} B+\vec{O} C=\vec{O} D+\vec{O} E+\vec{O} F$.

(D) Watch Video Solution

159. Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

160. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\overrightarrow{O B} B+\vec{O} C+\overrightarrow{O D}=4 \vec{O} P$.

- Watch Video Solution

161. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.

- Watch Video Solution

162. $A B C D$ are four points in a plane and Q is the point of intersection of the lines joining the mid-points of $A B$ and $C D ; B C$ and $A D$. Show that $\vec{P} A+\vec{P} B+\vec{P} C+\vec{P} D=4 \vec{P} Q$, where P is any point.

- Watch Video Solution

163. Evaluate $\int x^{7}+\sin 2 x d x$

- Watch Video Solution

164. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

165. $A B C D$ is a parallelogram. If the coordinates of A, B, C are $(2,3),(1,4)$ and $(0,-2)$ respectively, find the coordinates of D.

- Watch Video Solution

166. Find the vector of magnitude 5 units which is parallel to the vector $2 \hat{i}-4 \hat{j}$.

- Watch Video Solution

167. Find the components along the coordinates axes of the position vector of each of the following points: $P(5,4)$

- Watch Video Solution

168. Find the components along the coordinates axes of the position vector of each of the following points: $Q(-4,3)$

- Watch Video Solution

169. Find the components along the coordinates axes of the position vector of each of the following points: $R(5,-7)$

- Watch Video Solution

170. Find the components along the coordinates axes of the position vector of each of the following points: $S(-4,-5)$

- Watch Video Solution

171. Find the scalar and vector components of the vector with initial point $A(2,1)$ and terminal point $B(-5,7)$.

- Watch Video Solution

172. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

- Watch Video Solution

173. A girl walks 4 km towards west, then she walks 3 km in a direction 30 oeast of north and stops. Determine the girls displacement from her initial point of departure.

- Watch Video Solution

174. If the position vector of a point $(-4,-3) b e \vec{a}$, find $|\vec{a}|$.

- Watch Video Solution

175. If the position vector \vec{a} of a point $(12, n)$ is such that $|\vec{a}|=13$, find the value of n.

- Watch Video Solution

176. Find a vector of magnitude 4 units which is parallel to the vector $\sqrt{3} \hat{i}+\hat{j}$.

- Watch Video Solution

177. Express $\vec{A} B$ in terms of unit vectors \hat{i} and \hat{j}, when the points are: i) $A(4,-1), B(1,3)$ ii) $A(-6,3), B(-2,-5)$ Find $|\vec{A} B|$ in each case.

- Watch Video Solution

178. Find the coordinates of the tip of the position vector which is equivalent to $\vec{A} B$, where the coordinates of A and B are $(-1,3)$ and ($-2,1$) respectively.

- Watch Video Solution

179. $A B C D$ is parallelogram. If the coordinates of A, B, C are $(-2,-1),(3,0)$ and $(1,-2)$ respectively, find the coordinates of D.

- Watch Video Solution

180. If the position vectors of the points $A(3,4), B(5,-6)$ and C $(4,-1)$ are $\vec{a}, \vec{b}, \vec{c}$ respectively compute $\vec{a}+2 \vec{b}-3 \vec{c}$

(D) Watch Video Solution

181. If \vec{a} be the position vector whose tip is $(5,-3)$, find the coordinates of a point B such that $\vec{A} B=\vec{a}$, the coordinates of A being $(4,-1)$.

- Watch Video Solution

182. Show that the point $2 \hat{i},-\hat{i}-4 \hat{j}$ and $-\hat{i}+4 \hat{j}$ from an isosceles triangle.

D Watch Video Solution

183. Find a unit vector parallel to the vector $\hat{i}+\sqrt{3} \hat{j}$

- Watch Video Solution

184. Find the components along the coordinate axes of the position vector of each of the following points: $P(3,2)$

- Watch Video Solution

185. Find the components along the coordinate axes of the position vector of each of the following points: $(-5,1)$
186. Find the components along the coordinate axes of the position vector of each of the following points: $R(-11,-9)$

- Watch Video Solution

187. Find the components along the coordinate axes of the position vector of each of the following points: $S(4,-3)$

- Watch Video Solution

188. Find the value of x, y and z so that the vectors
$\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

189. Find the sum of vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.

- Watch Video Solution

190. Find the distance between the points $A(2,3,1)$ and $B(-1,2,-3)$, using vector method.

- Watch Video Solution

191. Show that the points A, B and C with position vectos $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ represent, form the vertices of a right angled triangle.

- Watch Video Solution

192. Find the unit vector in the direction of $\vec{a}+\vec{b}, \quad$ if $\quad \vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

193. Find the unit vector in the direction of vector $\vec{P} Q$, where P and
Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

- Watch Video Solution

194. Find the magnitude of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}$.

- Watch Video Solution

195. Find the unit vector in the direction of $3 \hat{i}+4 \hat{j}-12 \hat{k}$.
196. The adjacent sides of a parallelogram are represented by the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$. Find unit vectors parallel to the diagonals of the parallelogram.

- Watch Video Solution

197.

$\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, find $|3 \vec{a}-2 \vec{b}+4 \vec{c}|$.

- Watch Video Solution

198. If $\vec{P} Q=3 \hat{i}+2 \hat{j}-\hat{k}$ and the coordinates of P are $(1,-1,2)$, find the coordinates of Q.
199. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

(D) Watch Video Solution

200. If the vertices A, B, C of a triangle ABC are the point with position vectors $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ respectively, what are the vectors determined by its sides? Find the length of these vectors.

- Watch Video Solution

201. Find the position vector from the origin O to the centroid of the triangle whose vertices are $(1,-1,2),(2,1,3)$ and $(-1,2,-1)$.

- Watch Video Solution

202. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and
$-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally (ii) externally

(D) Watch Video Solution

203. Find the unit vector in the direction of vector $\vec{P} Q$, where P and Q are the points ($1,2,3$) and ($4,5,6$), respectively.

- Watch Video Solution

204.

Show
that
the
points
$A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ are the vertices of a right angled triangle.

D Watch Video Solution

205. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.

(D) Watch Video Solution

206. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

207. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$

- Watch Video Solution

208. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to $2 \vec{a}-\vec{b}+3 \vec{c}$
209. Two vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represents the two side vectors $\vec{A} B$ and $\vec{A} C$ respectively of $\triangle A B C$ Find the length of median from A .

- Watch Video Solution

210. Find a vector magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

211. If a and b ar non collinear vector such that $x_{1} \vec{a}+y_{1} \vec{b}=x_{2} \vec{a}+y_{2} \vec{b}$, then prove that $x_{1}=x_{2} a n d y_{1}=y_{2}$.
212. Show that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-\vec{c}$ and $4 \vec{a}-7 \vec{b}+7 \vec{c} \quad$ are collinear.

(D) Watch Video Solution

213. Show that the three points $A(-2,3,5) ; B(1,2,3)$ and $C(7,0,-1)$ are collinear.

- Watch Video Solution

214. The position vectors of the points P, Q, R are $\hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $7 \hat{i}-\hat{k}$ respectively. Prove that P, Q and R are collinear points.

D Watch Video Solution

215. Show that the point A, B, C with position vectors $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear.

- Watch Video Solution

216. If a, b, c are non coplanar vectors prove that the points having the following position vectors are collinear: $\vec{a}, \vec{b}, 3 \vec{a}-2 \vec{b}$

- Watch Video Solution

217. If a, b, c are non coplanar vectors prove that the points having the following position vectors are collinear:
$\vec{a}+\vec{b}+\vec{c}, 4 \vec{a}+3 \vec{b}, 10 \vec{a}+7 \vec{b}-2 \vec{c}$

- Watch Video Solution

218. Prove that the points having position vectors $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}+7 \hat{k},-3 \hat{i}-2 \hat{j}-5 \hat{k}$ are collinear.

- Watch Video Solution

219. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.

- Watch Video Solution

220. If \vec{a}, \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a}+\lambda \vec{b}$ are collinear for all real values of λ.

- Watch Video Solution

221. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, prove that A, B, C are collinear points.

- Watch Video Solution

222. If the points $A(m,-1), B(2,1)$ and $C(4,5)$ are collinear find the value of m.

- Watch Video Solution

223. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

D Watch Video Solution

224. Show that the points $(3,4),(-5,16),(5,1)$ are collinear.
225. If the vectors $\vec{a}=2 \hat{i}-3 \hat{j}$ and $\vec{b}=-6 \hat{i}+m \hat{j}$ are collinear, find the value of m

- Watch Video Solution

226.

Show
that
the
points
$A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

227. Using vectors show that the points $A(-2,3,5), B(7,0,-1), C(-3,-2,-5)$ and $D(3,4,7)$ are such that $A B$ and $C D$ intersect at the point $P(1,2,3)$.
228. Show that the points whose position vectors are as given below are collinear: $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ $3 \hat{i}-2 \hat{j}+4 \hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+4 \hat{j}-2 \hat{k}$

(Watch Video Solution

229. Using vector method, prove that the following points are collinear:
$A(6,-7,-1) B(2,-3,1) C(4,-5,0)$

- Watch Video Solution

230. Using vector method, prove that the following points are collinear:
$A(2,-1,3) B(4,3,1) C(3,1,2)$
231. Using vector method, prove that the following points are collinear:
$A(1,2,7) B(2,6,3) C(3,10,-1)$

D Watch Video Solution

232. Using vector method, prove that the following points are collinear: $A(-3,-2-5), B(1,2,3)$ and $C(3,4,7)$

- Watch Video Solution

233. If a, b, c are non zero non coplanar vectors, prove that the following vectors are coplanar.
$5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c}$ and $3 \vec{a}+20 \vec{b}+5 \vec{c}$

D Watch Video Solution

234. Let \vec{a}, \vec{b} and \vec{c}, be non-zero non-coplanar vectors. Prove that:
$\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $\vec{c}-3 \vec{b}+5 \vec{c} \quad$ are coplanar vectors. $2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c}$ and $\vec{a}+\vec{b}-3 \vec{c}$ are non-coplanar vectors.

- Watch Video Solution

235. Show that the four points having position vectors $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}, 2 \hat{i}-5 \hat{j}+10 \hat{k}$ are coplanar.

(D) Watch Video Solution

236. Prove that the following vectors are coplanar:
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$

D Watch Video Solution

237. Prove that the following vectors are coplanar: $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+3 \hat{j}-\hat{k}$ and $-\hat{i}-2 \hat{j}+2 \hat{k}$

- Watch Video Solution

238. Prove that the following vectors are non coplanar: $3 \hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+7 \hat{k}$ and $7 \hat{i}-\hat{j}+23 \hat{k}$

- Watch Video Solution

239. Prove that the following vectors are non-coplanar: $\hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$

(D) Watch Video Solution

240. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following vectors are non coplanar:
$2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c}$ and $\vec{a}+\vec{b}-3 \vec{c}$

(D) Watch Video Solution

241. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following vectors are non
$\vec{a}+2 \vec{b}+3 \vec{c}, 2 \vec{a}+\vec{b}+3 \vec{c}$ and $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

242. Prove that a necessary and sufficient condition for three vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l \vec{a}+m \vec{b}+n \vec{c}=\overrightarrow{0}$.
243. Show that the four points $A, B, \operatorname{CandD}$ with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively are coplanar if and only if $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$.

- Watch Video Solution

244. The direction cosines of a vector \vec{r}, which is equally inclined to $O X, O Y$ and $O Z$ If $|\vec{r}|$ is given, the total number of such vectors is given by

- Watch Video Solution

245. Can a vector have direction angles $45^{\circ}, 60^{\circ}, 120^{\circ}$

- Watch Video Solution

246. Prove that $1,1,1$ cannot be direction cosines of a straight line.

- Watch Video Solution

247. A vector makes an angle of $\frac{\pi}{4}$ with each of $x-a \xi s$ and $y-a \xi s$.

Find the angle made by it with the z-axis.

- Watch Video Solution

248. A vector \vec{r} is inclined at equal acute angles of $x-a \xi s, y-a \xi s$ and $z-a \xi s$. if $|\vec{r}|=6$ units, find \vec{r}.

- Watch Video Solution

249. A vector \vec{r} is inclined to x -axis at 45^{0} and y -axis at 60°. If $|\vec{r}|=8$ units, find \vec{r}.
250. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$

- Watch Video Solution

251. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$

- Watch Video Solution

252. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$

- Watch Video Solution

253. Find the angles at which the following vectors are inclined to each of the coordinate axes: $\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

254. Find the angles at which the following vectors are inclined to each of the coordinate axes: $\hat{j}-\hat{k}$

- Watch Video Solution

255. Find the angles at which the following vectors are inclined to each of the coordinate axes: $4 \hat{i}+8 \hat{j}+\hat{k}$

- Watch Video Solution

256. Show that the vector $i+j+k$ is equally inclined with the axes $O X, O Y$ and $O Z$.

- Watch Video Solution

257. Show that the direction cosines of a vector equally inclined to the axes $O X, O Y$ and $O Z$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

- Watch Video Solution

258. If a unit vector \vec{a} makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence, the components of \vec{a}.

- Watch Video Solution

259. Find a vector \vec{r} of magnitude $3 \sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis respectively.

- Watch Video Solution

260. A vector \vec{r} is inclined at equal angle to the three axes. If the magnitude of \vec{r} is $2 \sqrt{3}$ find \vec{r}

- Watch Video Solution

261. Define zero vector.

- Watch Video Solution

262. Define unit vector.
263. Define position vector of point.

- Watch Video Solution

264. Write $\vec{P} Q+\vec{R} P+\vec{Q} R$ in the simplified form.

- Watch Video Solution

265. If \vec{a} and \vec{b} represent two adjacent sides of a parallel then write vectors representing its diagonals.

- Watch Video Solution

266. If $\vec{a}, \vec{b}, \vec{c}$ represent the sides of a triangle taken in order, then write the value of $\vec{a}+\vec{b}+\vec{c}$
267. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices A, B and C respectively, of a triangle $A B C$, write the value of $\vec{A} B+\vec{B} C+\vec{C} A$.

- Watch Video Solution

268. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices of a triangle, then write the position vector of its centroid.

- Watch Video Solution

269. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors o the point A, B, and C respectively, write the value of $\vec{A} B+\vec{B} C+\vec{A} C$.
270. If G denotes the centroid of $\Delta A B C$, then write the value of $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$.

- Watch Video Solution

271. If D is the mid point of side $B C$ of a triangle $A B C$ such that $\vec{A} B+\vec{A} C=\lambda \vec{A} D$, write the value of λ.

- Watch Video Solution

272. If D, E, F are the mid points of the side $B C, C A$ and $A B$ respectively of a triangle $A B C$, write the value of $\vec{A} D+\vec{B} E+\vec{C} F$.

- Watch Video Solution

273. If \vec{a} is a non zero vecrtor iof modulus a and m is a non zero scalar such that $m a$ is a unit vector, write the value of m.
274. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocentre is the origin, then write the value of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

275. Write a unit vector making equal acute angle with the coordinates axes.

- Watch Video Solution

276. If a vector makes angle α, β, γ with OX , OY and OZ respectively, then write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.
277. Write a vector of magnitude 12 units which makes 45^{0} angle with X-axis 60° angle with Y-axis and an obtuse angle with Z-axis.

- Watch Video Solution

278. Write the length (magnitude) of a vector whose project on the coordinate axes are 12,3 and 4 units.

- Watch Video Solution

279. Write the position vector of a point dividing the line segment joining points A and B with position vectors \vec{a} and \vec{b} externally in the ration $1: 4$ where $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

280. Write the direction cosines of the vector $\vec{r}=6 \hat{i}-2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

281. If $\vec{a}=i+j, \vec{b}=j+k$ and $\vec{c}=k+i$, write unit vectors parallel to $\vec{a}+\vec{b}-2 \vec{c}$

(D) Watch Video Solution

282. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}$ and $\vec{c}=\hat{k}+\hat{i}$, write unit vectors parallel to $\vec{a}+\vec{b}-2 \vec{c}$

D Watch Video Solution

283. If $\vec{a}=\hat{i}+2 \hat{j}, \vec{b}=\hat{j}+2 \hat{k}$, write a unitvector along the vector $3 \vec{a}-2 \vec{b}$.
284. Write the position vector of a point dividing the line segment joining points having position vectors $\hat{i}+\hat{j}-2 \hat{k}$ and $2 \hat{i}-\hat{j}+3 \hat{k}$ externally in the ratio 2:3.

- Watch Video Solution

285. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ find the unit vector in the direction of $\vec{a}+\vec{b}+\vec{\cdot}$

- Watch Video Solution

286.

$\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$,
find $|3 \vec{a}-2 \vec{b}+4 \vec{c}|$.
287. A unit vector \vec{r} makes angle $\frac{\pi}{3}$ and $\frac{\pi}{2}$ with \hat{j} and \hat{k} respectively and an acute angle θ with i, Find θ.

- Watch Video Solution

288. Find a unit vector in the direction of $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$

- Watch Video Solution

289. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}+9 \hat{k}$ find a unit vector parallel to $\vec{a}+\vec{b}$.

Watch Video Solution

290. Write a unit vector in the direction of $\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}$.
291. Find the position vector of the mid point of the line segment $A B$, where A is the point ($3,4,-2$) and B is the point (1,24).

- Watch Video Solution

292. Find a vector in the direction of $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude of 6 units.

- Watch Video Solution

293. What is the cosine of the angle which the vector $\sqrt{2} \hat{i}+\hat{j}+\hat{k}$ makes with y-axis ?

- Watch Video Solution

294. Write two different vectors having same magnitude.

- Watch Video Solution

295. Write two different vectors having same direction.

- Watch Video Solution

296. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

297. Writhe the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

298. Find a unit vector in the direction of $\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$

(D) Watch Video Solution

299. For what value of a the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear?

- Watch Video Solution

300. Writhe the direction cosines of the vectors $-2 \hat{i}+\hat{j}-5 \hat{k}$.

- Watch Video Solution

301. Find the sum of the following vectors $\vec{a}=\hat{i}-2 \hat{j}, \quad \vec{b}=2 \hat{i}-3 \hat{j}, \quad \vec{c}=2 \hat{i}+3 \hat{k}$.
302. Find a unit vector in the direction of the vector $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.

- Watch Video Solution

303. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors, then write the value of $x+y+z$.

- Watch Video Solution

304. Write a unit vector in the direction of the sum of the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-7 \hat{k}$.

(D) Watch Video Solution

305. Find the value of ' p ' for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 p \hat{j}+3 \hat{k}$ are parallel.

- Watch Video Solution

306. Find a vector \vec{a} of magnitude $5 \sqrt{2}$ making an angle of $\frac{\pi}{4}$ with x axis, $\frac{\pi}{2}$ with y-axis and an acute angle θ with z-axis.

- Watch Video Solution

307. Write a unit vector in the direction of $\vec{P} Q$, where P and Q are the points $(1,3,0)$ and $(4,5,6)$ respectively.

(D) Watch Video Solution

308. Find a vector in the direction of vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$ which has magnitude 21 units.

- Watch Video Solution

309. It $|\vec{a}|=4$ and $-3 \leq \lambda \leq 2$, then write the range fo $\lambda|\vec{a}|$.

- Watch Video Solution

310. In a triangle OAC, if B is the mid point of side $A C$ and $\vec{O} A=\vec{a}, \vec{O} B=\vec{b}$, then what is $\overrightarrow{O C}$?

(D) Watch Video Solution

311. If in a Delta $A B C, A=(0,0), B=(3,3 \sqrt{3}), C \equiv(-3 \sqrt{3}, 3)$ then the vector of magnitude $2 \sqrt{2}$ units directed along
$A O$, where O is the circumcentre of $A B C$ is
a. $(1-\sqrt{3}) \hat{i}+(1+\sqrt{3}) \hat{j}$
b.
$(1+\sqrt{3}) \hat{i}+(1-\sqrt{3}) \hat{j}$
$(1+\sqrt{3}) \hat{i}+(\sqrt{3}-1) \hat{j}$ d. none of these
C.

- Watch Video Solution

312. If \vec{a}, \vec{b} are the vectors forming consecutive sides of a regular of a regular hexagon $A B C D E F$, then the vecrtor representing side $C D$ is
a. $\vec{a}+\vec{b}$ b. $\vec{a}-\vec{b}$ c. $\vec{b}-\vec{a}$ d. $-(\vec{a}+\vec{b})$

- Watch Video Solution

313. Evaluate $\int \tan ^{2} x d x$

- Watch Video Solution

314. If points $A(60 \hat{i}+3 \hat{j}), B(40 \hat{i}-8 \hat{j})$ and $C(a \hat{i}-52 \hat{j})$ are collinear, then a is equal to
a. 40 b. -40 c. 20 d. -20

(D) Watch Video Solution

315. If G is the intersection of diagonals of a parallelogram $A B C D$ and O is any point then $O \vec{A}+O \vec{B}+O \vec{C}+O \vec{D}=$
a. $2 \vec{O} G$
b. $4 \vec{O} G$
c. $5 \vec{O} G$
d. $3 \vec{O} G$

Watch Video Solution

316. The vector $\cos \alpha \cos \beta \hat{i}+\cos \alpha \sin \beta \hat{j}+\sin \alpha \hat{k}$ is a a.null vector
b. unit vector c . constant vector d . none of these

- Watch Video Solution

317. In a regular
hexagon
$A B C D E F, A \vec{B}=a, B \vec{C}=\vec{b}$ and $\vec{C} D=c$ Then $\backslash \vec{A} E=$
a. $\vec{a}+\vec{b}+\vec{c}$ b. $2 \vec{a}+\vec{b}+\vec{c}$ c. $\vec{b}+\vec{c}$ d. $\vec{a}+2 \vec{b}+2 \vec{c}$

- Watch Video Solution

318. The vector equation of the plane passing through $\vec{a}, \vec{b}, \vec{c}$ is $\vec{r}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$ provided that
a. $\alpha+\beta+\gamma=0$
b. $\alpha+\beta+\gamma=1$
c. $\quad \alpha+\beta=\gamma$ $\alpha^{2}+\beta^{2}+\gamma^{2}=1$
d.

- Watch Video Solution

319. If O and O^{\prime} are circumcentre and orthocentre of $A B C$, then $\vec{O} A+\vec{O} B+\vec{O} C$ equals
a. $2 \overrightarrow{O O} O^{\prime}$ b. $\vec{O} O^{\prime}$ с. $\overrightarrow{O^{\prime}} O$ d. $2 \vec{O}^{\prime} O$

- Watch Video Solution

320. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then $A B C D$ is a a. rhombus b. rectangle c. square d. parallelogram

- Watch Video Solution

321. Let G be the centroid of triangle $A B C$. If $\vec{A} B=\vec{a}, \vec{A} C=\vec{b}$, then the bisector $\vec{A} G$, in terms of \vec{a} and \vec{b} is $\frac{2}{3}(\vec{a}+\vec{b})$ b. $\frac{1}{6}(\vec{a}+\vec{b})$ c. $\frac{1}{3}(\vec{a}+\vec{b})$ d. $\frac{1}{2}(\vec{a}+\vec{b}) 1$
322. If $A B C D E F$ is a regular hexagon, them $\vec{A} D+\vec{E} B+\vec{F} C$ equals $2 \vec{A} B$ b. $\overrightarrow{0}$ c. $3 \vec{A} B$ d. $4 \vec{A} B$

- Watch Video Solution

323. The position vectors of the points A, B, C are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-\hat{k}$ respectively. These points a.Form an isosceles triangle b.Form a right triangle c.Are collinear d.Form a scalene triangle

D Watch Video Solution

324. If three points A, B, and C have position vectors $\hat{i}+x \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}+7 \hat{k}$ and $y \hat{i}-2 \hat{j}-5 \hat{k} \quad$ respectively are collinear, them $(x, y)=$ a. $(2,-3)$ b. $(-2,3)$ c. $(-2,-3) \mathrm{d}$. $(2,3)$
325. $A B C D$ isa parallelogram with $A C$ and $B D$ as diagonals. Then, $\vec{A} C-\vec{B} D=4 \vec{A} B$ b. $3 \vec{A} B$ c. $2 \vec{A} B$ d. $\vec{A} B$
