©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

APPLICATION OF INTEGRALS

Others

1. Find the area enclosed by the curve $y=-x^{2}$
and straight line $x+y+2=0$.

D Watch Video Solution
2. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.

- Watch Video Solution

3. Find the area bounded by the curve
$y^{2}=4 a^{2}(x-1)$ and the lines $x=1 a n d y=4 a$.

- Watch Video Solution

4. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$
5. Find the area bounded by $x=a t^{2}$ and $y=2 a t$ between the ordinates corresponding to $t=1$ and $t=2$.

- Watch Video Solution

6. Find the area enclosed by the curve $x=3 \cos t, y=2 \sin t$

-
 Watch Video Solution

7. Sketch the region lying in the first quadrant and bounded by $y=9 x^{2}, x=0, y=1 a n d y=4$. Find the area of the region using integration.

- Watch Video Solution

8. Find the area of the region bounded by
$y=-1, y=2, x=y^{3}$ and $x=0$.

D Watch Video Solution

9. Find the area of region bounded by $x^{2}+16 y=0$ and its latusrectum.

- Watch Video Solution

10. Find the area of region bounded by the curve
$a y^{2}=x^{3}, \quad$ the y-axis and the lines
$y=a$ and $y=2 a$.

- Watch Video Solution

11. Find the area of the region included between the parabolas $y^{2}=4$ axand $x^{2}=4 a y$, wherea >0.

- Watch Video Solution

12. Find the area of the region bounded by the curve
$y=x^{3}$ and the lines $\mathrm{y}=\mathrm{x}+6$ and $\mathrm{y}=0$.

- Watch Video Solution

13. Find the area bounded by the curves

$$
y=x a n d y=x^{3}
$$

14. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.

- Watch Video Solution

15. Find the area of the region between the parabola
$x=y^{2}-6 y$ and the line $x=-y$

- Watch Video Solution

16. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

- Watch Video Solution

17. Determine the area under the curve
$y=\sqrt{a^{2}-x^{2}}$ included between the lines
$x=0 a n d x=a$.

- Watch Video Solution

18. Find the area of the region bounded by the parabola $y^{2}=2 x$ and straight line $x-y=4$.

- Watch Video Solution

19. Find the area of the region bounded by the curves $y=x^{3}$ and the lines $y=x+6$ and $y=0$.

- Watch Video Solution

20. Using integration, find the area of the region bounded by the line $2 y=-x+8, \mathrm{x}$-axis is and the
lines $x=2$ and $x=4$.

- Watch Video Solution

21. If the area above x-axis bounded by the curves
$y=2^{k x} a n d x=0$ and $x=2 i s \frac{3}{(\log)_{e} 2}$, then find the value of k.

- Watch Video Solution

22. Sketch the region bounded by $y=2 x-x^{2}$ and x-axis and find its area using integration.
23. Using integration, find the area of the region bounded by the line $y-1=x$, thex-a xi s and the ordinates $x=-2$ and $x=3$.'

- Watch Video Solution

24. Find the area bounded by the curve $y=(x-1)(x-2)(x-3)$ lying between the ordinates $x=0$ andx $=3$.
25. Find the area bounded by the curve $y=\sin x$ between $x=0$ andx $=2 \pi$.

- Watch Video Solution

26. Sketh the graph $y=|x+1|$. Evaluate
$\int_{-3}^{1}|x+1| d x$. What does this value represent on the graph?
27. Compute the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$.

- Watch Video Solution

> 28. Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$

- Watch Video Solution

29. Using integration, find the area of the region bounded by the following curves after making a
rough

$$
y=1+|x+1|, x=-2, x=3, y=0
$$

- Watch Video Solution

30. Draw a rough sketch of the curves $y=\sin x$ varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed by them and x-axis

- Watch Video Solution

31. Sketch the curves and identify the region
the
curves
$x=\frac{1}{2}, x=2, y=\log x a n y=2^{x}$. Find the area of this region.

D Watch Video Solution

32. Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curves $y=2^{x}, y=2 x-x^{2}$.

- Watch Video Solution

33. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit, then
find the value of a.

- Watch Video Solution

34. Find the area bounded by the curves
$y=6 x-x^{2} a n d y=x^{2}-2 x$.

- Watch Video Solution

35. Find the area of the region bounded by

$$
y=\sqrt{x} a n d y=x
$$

36. Calculate the area of the region bounded by the parabolas $y^{2}=6 x a n d x^{2}=6 y$.

- Watch Video Solution

37. Find the area enclosed by the curves
$3 x^{2}+5 y=32 a n d y=|x-2|$.

- Watch Video Solution

38. If the area bounded by the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$ is $\frac{a^{2}}{12}$ sq. units, by using integration find the value of m.
39. If the area enclosed by the parabolas $y^{2}=16 a x a n d x^{2}=16 a y, a>0 i s \frac{1024}{3} s q$. units, find the value of a.

- Watch Video Solution

40. Find the area bounded by the lines $y=4 x+5, y=5-x a n d 4 y=x+5$.

- Watch Video Solution

41. Find the area enclosed by the curves

$$
y=|x-1| \text { and } y=-|x-1|+1 .
$$

- Watch Video Solution

42. Find the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum.

- Watch Video Solution

43. Find the area of the region bounded by the parabola $y^{2}=2 x$ and straight line $x-y=4$.
44. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

45. Draw a rough sketch of the curve $y=\cos ^{2} x$ in
$[0,1]$ and find the area enclosed by the curve,the lines $x=0, x=\pi$ and the x-axis.

- Watch Video Solution

46. A point chanrge of magnitude $q=4.5 n C$ is moving with speed $v=3.6 \times 10^{7} \mathrm{~ms}^{-1}$ parallel to the x -axis along the line $y=3 m$. Find the magnetic field at the origin produced by this charge when the charge is at the point $x=-4 m, y=3 m$, as shown in Fig.

47. Using the integration, find the area of he region bounded by the following curves, after making a rough sketch:
$y=1+|x+1|, x=-3, x=3, y=0$.

- Watch Video Solution

48. Using integration, find the area of the triangle formed by positive x-axis and tangent and normal to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$.
49. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.

- Watch Video Solution

50. Find the integration, find the area of the region
bounded between the line $x=2$ and the parabola

$$
y^{2}=8 x
$$

- Watch Video Solution

51. Find the area of the region bounded parabola $y^{2}=4 a x$ and the line $x=a$.

- Watch Video Solution

52. Find the area lying above the x-axis and under the parabola $y=4 x-x^{2}$

- Watch Video Solution

53. Draw a rough sketch to indicate the region
bounded between the curve $y^{2}=4 a x$ and the line
$x=3$. also, find the area of this region.

- Watch Video Solution

54. Make a rough sketch of the graph of the
function $y=4-x^{2}, 0 \leq x \leq 2$ and determine the area enclosed by the curve, the x-axis and the lines $x=0$ and $x=2$.

- Watch Video Solution

55. Using integration, find the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$
56. Find the area under the curve $y=\sqrt{6 x+4}$ (above the x-axis) from $x=0$ to $x=2$

- Watch Video Solution

57. Draw the rough sketch of $y^{2}+1=x, x \leq 2$.

Find the area enclosed by the curve and the line $x=2$.
58. Draw a rough sketch of the graph of the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and evaluate the area of the region under the curve and above the x-axis.

- Watch Video Solution

59. Sketch the region $\left|(x, y): 9 x^{2}+4 y^{2}=36\right|$ and find the area of the region enclosed by it using integration.
60. Draw rough sketch of the graph of the function $y=2 \sqrt{1-} x^{2}, x \in[0,1]$ and evaluate the area enclosed between the curve and the x-axis.

- Watch Video Solution

61. Using integration, find the area of the region bounded by the line $2 y=5 x+7$, x-axis and the lines $\mathrm{x}=2$ and $\mathrm{x}=8$.
62. Sketch the graph of $y=|x-5|$. Evaluate $\int_{0}^{1}|x-5| d x$. What does this value of the integral represent on the graph.

- Watch Video Solution

63. Sketch the graph of $y=|x+3|$. Evaluate $\int_{-6}^{0}|x+3| d x$. What does the value of this integral represent?
64. Sketch the graph $y=|x+1|$. Evaluate $\int_{-4}^{2}|x+1| d x$. What does the value of this integral represent on the graph?

- Watch Video Solution

65. The area of the region bounded by the curve $y=$
$\mathrm{x}+1$ and the lines $x=2, x=3$, is

D
 Watch Video Solution

66. Draw a rough sketch of the curve $y=\frac{x}{\pi}+2 \sin ^{2} x$ and find the area between the x axis, the curve and the ordinates $x=0$ and $x=\pi$.

- Watch Video Solution

67. Draw a rough sketch of the curve $y=\frac{x}{\pi}+2 \sin ^{2} x$, and find the area between the x axis, the curve and the ordinates $x=0$ and,$x=\pi$.
68. Find the area bounded by the curve $y=\cos x$, x-axis and the ordinates $x=0$ and $x=2 \pi$.

- Watch Video Solution

69. Show that the areas under the curves
$y=\sin x$ and $y=\sin 2 x$ between
$x=0$ and $x=\frac{\pi}{3}$ are in the ratio $2: 3$.

D Watch Video Solution

70. Compare the areas under the curves

$$
y=\cos ^{2} x \text { and } y=\sin ^{2} x
$$

$x=0$ and $x=\pi$.

- Watch Video Solution

71. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ordinates $x=0$ and $x=a e$, where, $b^{2}=a^{2}\left(1-e^{2}\right)$ ande <1.

- Watch Video Solution

72. Examples: Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.
73. Find the area bounded by the curve $y^{2}=4 a x$ and the lines $y=2$ and y-axis.

D Watch Video Solution

74. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}$,
$x=0, y=1 a n d y=4$.

- Watch Video Solution

75. Find the area of the region bounded by $x^{2}=16 y, y=1, y=4$ and the y-axis in the first quadrant.

- Watch Video Solution

76. Find the area of the region bounded by $x^{2}=4 a y$ and its latus rectum.
77. Find the area enclosed between the parabola $4 y=3 x^{2}$ and the straight line $3 x-2 y+12=0$

- Watch Video Solution

78. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

- Watch Video Solution

79. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.
80. Find the area of the region bounded by the
curves $y=x^{2}+2, y=x, x=0, a n d x=3$.

- Watch Video Solution

81. Find the area of the region bounded by

$$
y=\sqrt{x} a n d y=x
$$

- Watch Video Solution

82. Find the area of the region
$\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.

- Watch Video Solution

83. Evaluate $\int \cos 2 x+e^{x} d x$

D Watch Video Solution

84. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
85. Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$.

- Watch Video Solution

86. Find $\frac{d y}{d x}$ if $y=\sin ^{2} x$

- Watch Video Solution

87. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$
88. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of square bounded by $x=0, x=4, y=4$ and $y=0$ into three equal parts.

- Watch Video Solution

89. Find the area bounded by the curve
$4 y^{2}=9 x$ and $3 x^{2}=16 y$

- Watch Video Solution

90. Find the area of the region bounded by $y=\sqrt{x} a n d y=x$.

- Watch Video Solution

91. Find the area bounded by the curves $y=4-x^{2}$ and the lines $y=0$ and $y=3$

- Watch Video Solution

92. Find the area of the region
$\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1 \leq \frac{x}{a}+\frac{y}{b}\right\}$
93. Using integration, find the area of the region bounded by the triangle whose vertices are (2,1), (3,
4) and (5,2).

- Watch Video Solution

94. Using integration, find the area of the triangle

ABC whose vertices are $A(-1,1), B(0,5)$ and $C(3,2)$.
95. Using integration find the area of the triangular

$$
\begin{aligned}
& \text { region whose sides have equations } \\
& y=2 x+1, y=3 x+1 \text { and } x=4
\end{aligned}
$$

- Watch Video Solution

96. A point chanrge of magnitude $q=4.5 n C$ is moving with speed $v=3.6 \times 10^{7} \mathrm{~ms}^{-1}$ parallel to the x -axis along the line $y=3 m$. Find the magnetic
field at the origin produced by this charge when the
charge is at the point $x=-4 m, y=3 m$, as
shown in Fig.

- Watch Video Solution

97. Find $\frac{d y}{d x}$ if $y=\log x+\sin x$

- Watch Video Solution

98. Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=16$

- Watch Video Solution

99. Find the area of the region included between the parabola $y^{2}=x$ and the line $x+y=2$.

- Watch Video Solution

100. Draw a rough sketch of the region $\left\{(x, y): y^{2} \leq 3 x, 3 x^{2}+3 y^{2} \leq 16\right\}$ and find the
area enclosed by the region using the method of integration

- Watch Video Solution

101. Draw a rough sketch of the region $\left\{(x, y): y^{2} \leq 5 x, 5 x^{2}+5 y^{2} \leq 36\right\}$ and find the area enclosed by the region using method of integration
102. Draw a rough sketch and find the area of the region bounded by the parabolas
$y^{2}=4 x$ and $x^{2}=4 y, \quad$ using the method of integration.

- Watch Video Solution

103. Find the area included between the parabolas
$y^{2}=4 a x$ and $x^{2}=4 b y$.

104. Find the area of the region in the first quadrant

 enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.
- Watch Video Solution

105. Find the area of the region bounded by $y=\sqrt{x}, x=2 y+3$ in the first quadrant and x axis.
106. Find the area common to the circle $x^{2}+y^{2}=16 a^{2} \quad$ and the parabola
$y^{2}=6 a x, a>0$.

- Watch Video Solution

107. Find the area, lying above the $x=a x i s$ and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.
108. Find the area enclosed by the parabolas $y=5 x^{2}$ and $y=2 x^{2}+9$.

D Watch Video Solution

109. The area common to the parabolas $y=2 x^{2}$ and $y=x^{2}+4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$ (D) $\frac{3}{32}$

- Watch Video Solution

110. Using integration, find the area of the region bounded by the triangle whose vertices are ($-1,2$),
$(1,5)$ and $(3,4)$.

D Watch Video Solution

111. Find the area of the region in the first quadrant enclosed by x-axis, the line $y=\sqrt{3} x$ and the circle $x^{2}+y^{2}=16$
112. Find the area of the region bounded by parabola $y^{2}=2 x+1$ and the line $x-y-1=0$.

- Watch Video Solution

113. Find the area of the region bounded by the
curves $y=x-1 \&(y-1)^{2}=4(x+1)$.

- Watch Video Solution

114. Find the area bounded by the parabola $y=2-x^{2}$ and the straight line $y+x=0$.
115. Using the method of integration, find the area of the region bounded by the following lines $3 x-y-3=0,2 x+y-12=0, x-2 y-1=0$.

- Watch Video Solution

116. Sketch the region bounded by the curves
$y=x^{2}+2, y=x, x=0$ and $x=1 . \quad$ also, find the area of this region.
117. Find the area bounded by the curves $x=y^{2}$ and $x=3-2 y^{2}$.

- Watch Video Solution

118. Using integration, find the area of the triangle $A B C$, coordinates of whose vertices are $A(4,1), B(6,6)$ and $C(8,4)$

- Watch Video Solution

119. Find the area of the region in the first quadrant enclosed by the y-axis, the line $y=x$ and the circle
$x^{2}+y^{2}=32$, using integration.

- Watch Video Solution

120. Find the area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$.

- Watch Video Solution

121. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the X -axis.

- Watch Video Solution

122. Make a rough sketch of the region given below and find its area using integration $\left\{(x, y): 0 \leq y \leq x^{2}+3,0 \leq y \leq 2 x+3,0 \leq x \leq 3\right\}$

- Watch Video Solution

123. Find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$

- Watch Video Solution

124. Using integration, find the area of the following
region: $\left\{(x, y): \frac{x^{2}}{9}+\frac{y^{2}}{4} \leq 1 \leq \frac{x}{3}+\frac{y}{2}\right\}$.

- Watch Video Solution

125. In what ratio does the x-axis divide the area of the region bounded by the parabolas

$$
y=4 x-x^{2} a n d y=x^{2}-x ?
$$

D
 Watch Video Solution

126. In what ratio does the x-axis divide the area of the region bounded by the parabolas $y=4 x-x^{2} a n d y=x^{2}-x ?$

- Watch Video Solution

127. Using integration, find the area bounded by the
curves $y=|x-1|$ and $y=3-|x|$.

- Watch Video Solution

128. Sketch the region common to the circle $x^{2}+y^{2}=16$ and the parabols $x^{2}=6 y$. Also find the area of the region using integration.

- Watch Video Solution

129. Find the area of the region between the parabola $x=4 y-y^{2}$ and the line $x=2 y-3$.

- Watch Video Solution

130. Find the area bounded by the parabola $x=8+2 y-y^{2} ;$ the y-axis and the lines $y=-1$ and $y=3$.

- Watch Video Solution

131. The area bounded by the parabolay $y^{2}=4 x$ and the line $y=2 x-4$ on the Y-axis.

- Watch Video Solution

132. If the area above x-axis bounded by the curves
$y=2^{k x} a n d x=0$ and $x=2 i s \frac{3}{(\log)_{e} 2}$, then find the value of k.

- Watch Video Solution

133. Find the area included between the curves
$x^{2}=4 y$ and $y^{2}=4 x$.

- Watch Video Solution

134. The area bounded by the curve $y=\log _{e} x$, the x -axis and the line $x=e$ is (A) e sq. units (B) 1 sq.
unit (C) $\left(1-\frac{1}{e}\right)$ sq. units (D) $\left(1+\frac{1}{e}\right)$ sq. units

- Watch Video Solution

135. The area bounded by the
$y=2-x^{2}$ and $x+y=0 \quad$ is \quad (a) $\frac{7}{2}$ squinits \quad b. $\frac{9}{2}$ squinits c. 9 squinits d . none of these
136. The area bounded by the parabola $x=4-y^{2}$ and y-axis, in square units, is $\frac{3}{32}$ b. $\frac{32}{3}$ c. $\frac{33}{2}$ d. $\frac{16}{3}$

- Watch Video Solution

137. If A_{n} be the area bounded by the curve
$y=(\tan x)^{n}$ and the lines $x=0, y=0, x=\pi / 4$
, then for $n>2$.

- Watch Video Solution

138. The area enclosed between the curves
$y=(\log)_{e}(x+e), x=(\log)_{e}\left(\frac{1}{y}\right)$, and the x-axis is 2squinits (b) 1squinits 4squinits (d) none of these

- Watch Video Solution

139. The area of the figure bounded by the parabola $(y-2)^{2}=x-1$, the tangent to it at the point with the ordinate $x=3$, and the $x-a \xi s$ is 7sqünites (b) 6squinites 9squinites (d) None of these
140. The area bounded by the curves $y=\sin x$ between the ordinates $x=0, x=\pi$ and the x -axis is 2 squinits b. 4 sqünits c. 3 sqünits d. 1 sqünits

- Watch Video Solution

141. The area bounded by parabola $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{8 a^{3}}{3}$ b. $\frac{16 a^{2}}{3}$ c. $\frac{32 a^{2}}{3}$ d. $64 a^{2}$
3

- Watch Video Solution

142. The area bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3$ with x-axis and ordinates corresponding to the minima of y , is

- Watch Video Solution

143. The area bounded by the parabola $y^{2}=4 a x$,
the latusrectum and x-axis is 0 b. $\frac{4}{3} a^{2}$ c. $\frac{2}{3} a^{2}$ d. $\frac{a^{2}}{3}$

- Watch Video Solution

144. Find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$.

D Watch Video Solution

145. The area common to the parabola $y=2 x^{2}$ and
$y=x^{2}+4$ is:
A. (a) $\frac{2}{3} u^{2}$
B. (b) $\frac{3}{2} u^{2}$
C. (c) $\frac{32}{3} u^{2}$
D. (d) $\frac{3}{32} u^{2}$

Answer: null

- Watch Video Solution

146. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.

- Watch Video Solution

147. Find the angle between the curves $2 y^{2}=x^{3}$ and $y^{2}=32 x$.
A. (A) $1: 3$
B. (B) $2: 1$
C. (C) $\sqrt{3}: 1$
D. (D) none of these

Answer: null

- Watch Video Solution

148. Area between the x-axis and the curve $y=\cos x$, when $0 \leq x \leq 2 \pi$ is:
A. (A) 0
B. (B) 2
C. (C) 3
D. (D) 4

Answer: null

- Watch Video Solution

149. Area bounded by the parabola $y^{2}=x$ and the line $2 y=x$ is:
A. (A) $\frac{4}{3}$
B. (B) 1
C. (C) $\frac{2}{3}$
D. (D) $\frac{1}{3}$

Answer: null

- Watch Video Solution

150. The area bounded by the curve $y=4 x-x^{2}$
and the x-axis is:
A. (a) $\frac{30}{7} u^{2}$
B. (b) $\frac{31}{7} u^{2}$
C. (c) $\frac{32}{3} u^{2}$
D. (d) $\frac{34}{3} u^{2}$

Answer: null

- Watch Video Solution

151. The area enclosed between the curve
$y^{2}(2 a-x)=x^{3}$ and the line $\mathrm{x}=2 \mathrm{a}$ above the x -axis
is
A. (a) $\pi a^{2} u^{2}$
B. (b) $\frac{3 \pi a^{2}}{2} u^{2}$
C. (c) $2 \pi a^{2} u^{2}$
D. (d) $3 \pi a^{2} u^{2}$

Answer: null

- Watch Video Solution

152. The area of the region (in square units)
bounded by the curve $x^{2}=4 y$ and the line $x=2$ and x-axis is:
A. (a) 1
B. (b) $\frac{2}{3}$
C. (c) $\frac{4}{3}$
D. (d) $\frac{8}{3}$

Answer: null

- Watch Video Solution

153. If the area bounded by the curve $y=f(x), x$-axis
and the ordinates $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{b}$ is $(\mathrm{b}-1) \sin (3 \mathrm{~b}+4)$, then find $f(x)$.
A. (a) $(x-1) \cos (3 x+4)$
B. (b) $\sin (3 x+4)$
C. (c) $\sin (3 x+4)+3(x-1) \cos (3 x+4)$
D. (d) None of these

Answer: null

D Watch Video Solution

154. The area bounded by the curve
$y^{2}=8 x$ and $x^{2}=8 y$ is $\frac{16}{3}$ squinits b. $\frac{3}{16}$ squinits
c. $\frac{14}{3}$ sqünits d. $\frac{3}{14}$ sqünits

- Watch Video Solution

155. The area bounded by the parabola $y^{2}=8 x$,
the x-axis and the latus rectum is a. $\frac{16}{3}$ b. $\frac{23}{3}$ c. $\frac{32}{3}$
d. $\frac{16 \sqrt{2}}{3}$
156. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is:
A. (a) -9
B. (b) $\frac{-15}{4}$
C. (c) $\frac{15}{4}$
D. (d) $\frac{17}{4}$

Answer: null
157. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1 \& x=1$ is:

$$
\begin{aligned}
& \text { A. (A) } \frac{5}{3} \\
& \text { B. (B) } \frac{4}{3} \\
& \text { C. (C) } \frac{2}{3} \\
& \text { D. (D) } \frac{1}{3}
\end{aligned}
$$

Answer: null

- Watch Video Solution

158. Find the area bounded by the y-axis, $y=\cos x$,and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$.
A. (A) $2(\sqrt{2-1})$
B. (B) $\sqrt{2}-1$
C. (C) $\sqrt{2}+1$
D. (D) $\sqrt{2}$

Answer: null
159. The area of the circle $x^{2}+y^{2}=16$ exterior to
the parabola $y^{2}=6 x$ is:

$$
\begin{aligned}
& \text { A. (A) } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. (B) } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. (C) } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. (D) } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer: null

- Watch Video Solution

160. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:

$$
\begin{aligned}
& \text { A. (A) } 2(\pi-2) \\
& \text { B. (B) } \pi-2 \\
& \text { C. (C) } 2 \pi-1 \\
& \text { D. (D) } 2(\pi+2)
\end{aligned}
$$

Answer: null
161. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is:

$$
\begin{aligned}
& \text { A. (A) } \frac{2}{3} \\
& \text { B. (B) } \frac{1}{3} \\
& \text { C. (C) } \frac{1}{4} \\
& \text { D. (D) } \frac{3}{4}
\end{aligned}
$$

Answer: null

- Watch Video Solution

162. Area lying in the first quadrant and bounded by
the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is:
A. (A) π
B. (B) $\frac{\pi}{2}$
C. (C) $\frac{\pi}{3}$
D. (D) $\frac{\pi}{4}$

Answer: null

- Watch Video Solution

163. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is (A) 2
(B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$

- Watch Video Solution

