

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

CONTINUITY

1. Discuss the continuity of the function $f(x) = \{2x - 1, \mathsf{ifx} < \mathsf{2}, \frac{3x}{2}, \mathsf{ifx} \geq 2\}$

at x=2

2. If $f(x)=rac{2x+3\sin x}{3x+2\sin x}, x
eq 0$ is continuous at x=0 , then find f(0) .

3. For what value of k is the function $f(x) = \left\{ \frac{x^2 - 1}{x - 1}, x \neq 1, k, x = 1 \text{ continuous at} x = 1
ight\}$

Watch Video Solution

4. Find the values of a and b so that the function f given by $f(x) = \{ax + b, if 3 < x < 5, 1 if x <= 3, 7 if x > = 5 is continuous at <math>x = 3$ and x = 5.

Watch Video Solution

5. Let
$$f(x)=rac{\logig(1+rac{x}{a}ig)-\logig(1-rac{x}{b}ig)}{x}, \ x
eq 0$$
 . Find the value of f

at x=0 so that f becomes continuous at x=0 .

6. If
$$f(x) = \begin{cases} \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0, \text{ and } f(x) = k \end{cases}$$

x, x = 0 is continuous at x = 0, find k

7. Extend the definition of the following by continuity
$$f(x) = rac{1-\cos7(x-\pi)}{5(x-\pi)^2}$$
 at the point $x=\pi$

Watch Video Solution

8. Find the value of a for which the function f defined by $f(x)=\left\{arac{\sin\pi}{2}(x+1),\,,x\leq0rac{\tan x-\sin x}{x^3},\,x>0 ext{ is continuous at x=0}
ight.$

9. Show that $f(x)=ig\{1+x^2, ext{ if } 0\leq x\leq 1 ext{ and } 2 ext{-x if } x>1 ext{ is }$

discontinuous at x=1

Watch Video Solution

10. Discuss continuity of f(x)=
$$\begin{cases} \frac{x^2}{2} & \text{if } 0 \le x \le 1\\ 2x^2 - 3x + \frac{3}{2} & \text{if } 1 < x \le 2 \end{cases}$$
 at $x = 1$
Watch Video Solution

11. Examine the continuity of the function $f(x)=3x-2, x\leq 0$,

$$f(x)=x+1, x>0$$
 at $x=0$ Also sketch the graph of this function.

12. Discuss the continuity of the function
$$f(x)=x, ext{ if } x>0, f(x)=1, ext{ if } x=0, f(x)=-x, ext{ } x<0$$
 at the point $x=0$

13. Discuss the continuity of the function $f(x) = \left\{ rac{x}{|x|}, x
eq 00, x = 0
ight.$

14. If
$$f(x) = \frac{\tan(\frac{\pi}{4} - x)}{\cot 2x}$$
 for $x \neq \frac{\pi}{4}$, find the value which can be assigned to $f(x)$ at $x = \frac{\pi}{4}$ so that the function $f(x)$ becomes continuous every where in $\left[0, \frac{\pi}{2}\right]$.

Watch Video Solution

15. Determine the value of
$$a, b, c$$
 for which the function
$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} c \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{\frac{3}{2}}} \\ fx < 0f \text{ or } x = 0 iscont \in uousatx = 0f \text{ or } x > 0 \end{cases}$$

16. Show that
$$f(x) = rac{x-|x|}{2}, when x
eq 0$$

f(x) = 2 when x = 0 is discontinuous at x = 0

17. Find the relationship between a and b so that the function 'f' defined by $f(x) = \{ax + 1, if x \le 3bx + 3, if x < 3 is$ continuous at x = 3.

Watch Video Solution

18. If $f(x) = \frac{\sin 3x}{x}$, when $x \neq 0$, f(x) = 1, when x = 0 Find whether f(x) is continuous at x = 0Watch Video Solution 19. Prove that the function $f(x) = \left\{ rac{\sin x}{x}, x < 0x+1, x \geq 0
ight.$ is

everywhere continuous.

Watch Video Solution

20. Let
$$f(x) = \frac{1 - \cos x}{x^2}$$
, when $x \neq 0$, $f(x) = 1$, when $x = 0$.
Show that $f(x)$ is discontinuous at $x = 0$.

Watch Video Solution

21. If
$$f(x)=\left\{e^{rac{1}{x}},1 ext{ if } x
eq 0 ext{ if } x=0$$
 Find whether f is continuous at $x=0.$

Watch Video Solution

22. Test the continuity of the following function at the origin; $f(x)=iggl\{rac{x}{|x|},x
eq 0 ext{ and } 1,x=0$

23. The function
$$f(x)= egin{cases} rac{x^2}{a} & ext{if} \quad 0\leq x<1 \ a & ext{if} \quad 1\leq x<\sqrt{2} \ a & ext{is continuous on} \ rac{2b^2-4b}{x^2} & ext{if} \quad \sqrt{2}\leq x<\infty \end{array}$$

 $[0,\infty)$. Find the most suitable values of a and b.

Watch Video Solution

24. A function
$$f(x)$$
 is defined as $f(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3}; & \text{if } x \neq 3 \text{ and } 5 & \text{if } x = 3 \text{ Show that } f(x) \text{ is continuous at } x = 3. \end{cases}$

Watch Video Solution

25. Find the domain of $f(x) = \sin^{-1} x + \cos x$

26. If
$$y = (x-1)\log(x-1) - (x+1)\log(x+1)$$
, prove that :
$$\frac{dy}{dx} = \log\left(\frac{x-1}{1+x}\right)$$

Watch Video Solution

27. The value of
$$f(0)$$
 , so that the function
$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
becomes continuous for all x , given by $a^{3/2}$ (b) $a^{1/2}$ (c) $-a^{1/2}$ (d) $-a^{3/2}$

Watch Video Solution

28. The value of a for which the function
$$f(x) = \left\{ egin{array}{cccc} 5x-4 & ext{if} & 0 < x \leq 1 \\ 4x^2+3ax & ext{if} & 1 < x < 2 \end{array}
ight\}$$
 is continous at every point of

its domain is

A.
$$\frac{13}{3}$$

B.1

C. 0

 $\mathsf{D.}-1$

Answer: null

29. Evaluate :
$$tan\left(cos^{-1}\left(-\frac{7}{25}\right)\right)$$

Watch Video Solution

30. The function f(x)= an x is discontinuous on the set $\{n\pi;n\in Z\}$

(b)
$$\{2n\pi n\in Z\}\left\{(2n+1)rac{\pi}{2}\colon n\in Z
ight\}$$
 (d) $\left\{rac{n\pi}{2}\colon n\in Z
ight\}$

Watch Video Solution

31. If $f(x)=|(\log)_{10}x|$, then at x=1 f(x) is continuous and $f'(1^+)=(\log)_{10}e$ (b) f(x) is continuous and $f'(1^+)=-(\log)_{10}e$ (c)

f(x) is continuous and $f'ig(1^-ig) = (\log)_{10} e$ (d) f(x) is continuous and $f'ig(1^+ig) = -(\log)_{10} e$

Watch Video Solution

32. If the function $f(x) = \left\{ (\cos x)^{rac{1}{x}}, x
eq 0k, x = 0 ext{ is continuous at }
ight\}$

x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

Watch Video Solution

33. If $f(x) = (x+1)^{\cot x}$ be continuous at x = 0, the f(0) is equal to (a) 0 (b) $\frac{1}{e}$ (c) e (d) none of these

Watch Video Solution

34. If
$$f(x)=\left\{mx+1,x\leq rac{\pi}{2}{
m sin}\,x+n,x>rac{\pi}{2}$$
 is continuous at $x=rac{\pi}{2},$ then

35. If
$$f(x)= egin{cases} rac{36^x-9^x-4^x+1}{\sqrt{2}-\sqrt{1+\cos x}} & x
eq 0 \ k & x=0 \end{pmatrix}$$
 is continuous at $x=0,$ then k

equal (A) $16\sqrt{2}\log 2\log 3$ (B) $16\sqrt{2}\ln 6$ (C) $16\sqrt{2\ln 2In3}$ (D) none of these

Watch Video Solution

36. If
$$f(x) = \left\{ \frac{1 - \cos 10x}{x^2 a}, x < 0 \frac{\sqrt{x}}{\sqrt{625} + \sqrt{x} - 25}, x > 0, x = 0 \right.$$

then the value of a so that f(x) may be continuous at x = 0, is 25 (b)

-1 (c) 1 (d) indeterminate

Watch Video Solution

37. If
$$f(x) = \begin{cases} rac{\sin(\cos x) - \cos x}{(\pi - 2x)^2} & x
eq rac{\pi}{2} \\ k & x = rac{\pi}{2} \end{cases}$$
 is continuous at $x = rac{\pi}{2}$, then

k is equal to

A. (a) 0

B. (b)
$$\frac{1}{2}$$

C. (c) 1
D. (d) - 1

Answer: null

Watch Video Solution

38. Discuss the continuity of the function
$$f(x)$$
 given by $f(x) = \{2x - 1, ext{ if } x < 0 ext{ and } 2x + 1, ext{ if } x \geq 0$

Watch Video Solution

39. The value of a for which the function
$$f(x) = \begin{cases} \frac{(4^x - 1)^3}{\sin\left(\frac{x}{a}\right)\log\left(1 + \frac{x^2}{3}\right)} & x \neq 0\\ 12(\log 4)^3 & x = 0 \end{cases}$$
may be continuous at $x = 0$ is :

A. (a) 1

B. (b) 2

C. (c) 3

D. (d) none of these

Answer: null

Watch Video Solution

$$\begin{array}{l} \textbf{40. If } f(x) = \begin{cases} ax^2 + b & 0 \leq x < 1 \\ 4 & x = 1 \\ x + 3 & 1 < x \geq 2 \end{cases} \text{ then the value of}(a,b) \text{ for which} \\ f(x) \text{ cannot be continuous at } x = 1, \text{ is } (a)(2,2) \text{ (b) } (3,1)(c)(4,0) \text{ (d)} \\ (5,2) \end{array}$$

Watch Video Solution

41. If
$$f(x)=iggl\{rac{2^{x+2}-16}{4^x-16}, ext{ if } x
eq 2, ext{ k if } x=2 ext{ is continuous at } x=2 ext{ ,}$$

find k

44.

$$f(x) = egin{cases} rac{1-\cos 4x}{x^2 a,}, & ext{if} \;\; x < 0 rac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & ext{if} \;\; x > 0, \;\; ext{if} \;\; x = 0 \end{cases}$$

Determine the value of a so that f(x) is continuous at x = 0.

Watch Video Solution

43. if the function
$$f(x)$$
 defined by f(x)= $rac{\log(1+ax)-\log(1-bx)}{x}$, if

x
eq 0 and k if x=0 is continuous at x=0 , find k.

$$f(x)=\{2x-a,\,,x\leq 2,x+1,x>2 ext{ if function continuous at }x=2$$

Find the value of a if the function f(x) defined by

Watch Video Solution

Let

45. Find the value of the constant k so that the function given below is

continuous at
$$x=0$$
 $f(x)=igg\{rac{1-\cos 2x}{2x^2},\ x
eq 0$ $k,$ $x=0$

Watch Video Solution

46. Discuss the continuity of the f(x) at the indicated point: f(x) = |x| + |x-1| at $x = 0, \ 1$.

Watch Video Solution

 $f(x)iscont \in uousatx = 0, show that f(x)$ is continuous at all x_{\cdot}

48. If $f(x)=rac{\sqrt{2}\cos x-1}{\cot x-1}, x
eq rac{\pi}{4}$. Find the value of $f\Big(rac{\pi}{4}\Big)$ so that f(x) becomes continuous at $x=rac{\pi}{4}$.

Watch Video Solution

49. Determine
$$f(0)$$
 so that the function $f(x)$ defined by
$$f(x) = \frac{\left(4^x - 1\right)^3}{\frac{\sin x}{4} \log\left(1 + \frac{x^2}{3}\right)}$$
 becomes continuous at $x = 0$

Watch Video Solution

50. The function `f(x)={x^2a a,if1lt=x

51. Iff(x)={(x-4)/(|x-4|)+a,ifx<4 a+b,if x = 4 (x-4)/(|x-4|)+b,if x > 4 is continuous

at x=4find a,b`

52. Prove that the function $f(x) = \left\{ \frac{x}{|x|+2x^2}, x \neq 0 \text{ and } k, x = 0
ight.$

remains discontinuous at x=0, regardless the choice of k

54. Find all point of discountinuity of the function
$$f(t) = \frac{1}{t^2 + t - 2}$$
, where $t = \frac{1}{x - 1}$.

55. Given the function $f(x) = rac{1}{x+2}.$ Find the points of discontinuity of

the function f(f(x))

56. If $f(x) = |x - a| arphi(x), ext{ where } arphi(x) ext{ is continuous function, then (a)}$

$$f'ig(a^+ig)=arphi(a)$$
 (b) $f'ig(a^-ig)=\,-arphi(a)$ (c) $f'ig(a^+ig)=f'ig(a^-ig)$ (d) none

of these

Watch Video Solution

57. Let
$$f(x) = rac{\log \left(1 + rac{x}{a}\right) - \log \left(1 - rac{x}{b}\right)}{x}, x
eq 0$$
. Find the value of f

at x=0 so that f becomes continuous at x=0

58. Let $f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}, x \neq \frac{\pi}{4}$. The value which should be assigned to f(x) at $x = \frac{\pi}{4}$, so that it is continuous everywhere is (a) 1 (b) $\frac{1}{2}$ (c) 2 (d) none of these

Watch Video Solution

59. The function
$$f(x) = \frac{x^3 + x^2 - 16x + 20}{x - 2}$$
 is not defined for $x = 2$.
In order to make $f(x)$ continuous at $x = 2, f(2)$ should be defined as 0 (b) 1 (c) 2 (d) 3

Watch Video Solution

60. The value of
$$b$$
 for which the function $f(x)=ig\{5x-4,0x\leq 1,4x^2+3bx,1< x<2$ and continuous at $x=1$

61. If $f(x) = \frac{1}{1-x}$, then the set of points discontinuity of the function f(f(f(x)))is {1} (b) {0,1} (c) {-1,1} (d) none of these Watch Video Solution 62. If the function f(x) defined by $f(x) = \frac{\log(1+3x) - \log(1-2x)}{x}$,

x
eq 0 and k , x=0. Find k.

Watch Video Solution

63. Show that f(x) = 5x - 4 , 0 < x < 1 $f(x) = 4x^3 - 3x$, 1 < x < 2 continuous at x = 1

64. If
$$f(x) = \begin{cases} a \frac{\sin \pi}{2} (x+1), \, , x \leq 0 \frac{\tan x - \sin x}{x^3}, \, x > 0 \end{cases}$$
 is continuous at $x = 0$, then a equal (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

65. If
$$f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$$
, when $x \neq \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right) = \lambda$, the $f(x)$ will be continuous function at $x = \frac{\pi}{2}$, where $\lambda = ?$ (a) $\frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) none

of these

Watch Video Solution

66. The value of k which makes $f(x) = \left\{ \frac{\sin x}{x}, x
eq 0, ext{ and } k, x = 0
ight.$

continuous at x=0,is (a) 8 (b) 1 (c) -1 (d) none of these

Watch Video Solution

67. Show that the function f(x) = 2x - |x| is continuous at x = 0.

68. If the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ is continuous at each point of its domain, then the value of f(0) (A) $\frac{4}{3}$ (B) $\frac{1}{3}$ (C) $-\frac{1}{3}$ (D) $\frac{2}{3}$

Watch Video Solution

69. Let
$$f(x) = \left\{ \frac{x-4}{|x-4|a+b} + a, x < 0 \frac{x-4}{|x-4|} + b, x > 0 \quad \text{Then,} \right.$$

 $f(x) \text{ is continuous at } x = 4 \text{ when (a)} a = 0, b = 0 \text{ (b) } a = 1, b = 1 \text{ (c)}$
 $a = -1, b = 1 \text{ (d) } a = 1, b = -1$

Watch Video Solution

70.
$$Letf(x) = iggl\{ rac{x^4-5x^2+4}{|(x-1)(x-2)|} ext{, x!=1,2 \& 6, x=1 \& 12 \ , x=2 \ then \ f(x) \ is}$$

continuous on the set` (a) R (b) R-{1} (c) R-{2} (d) R-{1,2}

71. Let
$$f(x)= egin{cases} (1+ax)^{1/x} & x<0\ rac{(x+c)^{1/3}-1}{(x+1)^{1/2}-1} & x>0 \end{pmatrix},$$
 is continous at $x=0,$ then

 $3(e^a + b + c)$ is equal to:

Watch Video Solution

72. Determine the value of the constant m so that the function $f(x)=ig\{mig(x^2-2xig), ext{ if } x<0\cos x, ext{ if } x\geq 0 ext{ is continuous.}ig\}$

Watch Video Solution

73. The value of
$$f(0)$$
, so that the function
 $f(x) = \frac{(27-2x)^{\frac{1}{3}}-3}{9-3(243+5x)^{1/5}} (x \neq 0)$ is continuous, is given by (a) $\frac{2}{3}$ (b)
6 (c) 2 (d) 4

74. The function $f(x)=iggl\{rac{e^{rac{1}{x}}-1}{e^{rac{1}{x}}+1},x
eq 00,x=0$ (a)is continuous at

x=0 (b)is not continuous at x=0 (c)is not continuous at $x=0,\,$ but

can be made continuous at x=0 (d) none of these

Watch Video Solution

75. The points of discontinuity of the function `f(x)={2sqrt(x),0<=x<=1. 4-2x,1

< x

Watch Video Solution

76. If
$$f(x) = \frac{\tan(\frac{\pi}{4} - x)}{\cot 2x}$$
 for $x \neq \frac{\pi}{4}$, find the value of which can be assigned to $f(x)$ at $x = \frac{\pi}{4}$ so that the function $f(x)$ becomes continuous every where in $\left[0, \frac{\pi}{2}\right]$

77. Find the values of a and b so that the function f(x) defined by $f(x)=\{(x^2 +ax+b),(0<=x<2),(3x+2), (2<=x<=4), (2a x+5b), (4 < x <= 8)\}$ becomes continuous on [0,pi].

Watch Video Solution

78.
$$f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x}, \ -1 \le x < 0 \frac{2x+1}{x-2}, 0 \ge x \ge 1 \text{ is continuous in the interval } [-1,1], \text{ then } p \text{ is equal to } -1 \text{ (b) } -\frac{1}{2} \text{ (c) } \frac{1}{2} \text{ (d) } 1 \end{cases}$$

Watch Video Solution

79. The value of
$$f(0)$$
 so that the function $f(x)=rac{2-(256-7x)^{rac{1}{8}}}{(5x+32)^{1/5}-2}, x
eq 0$ is continuous everywhere, is given by

A. (a) - 1

B. (b) 1

C. (c) 26

D. (d) none of these

Answer: null

Watch Video Solution

80. Find k if the function
$$f(x) = \left\{ \frac{\sin 3x}{x}, x \neq 0; \frac{k}{2}, x = 0
ight.$$
 is

continuous at `x=0 . (a)3 (b) 6 (d) 9 (d) 12

81. Discuss the continuity of the function
$$f(x) = \left\{ \frac{\sin 2x}{x}, \text{ if } x < 0, x + 2, \text{ if } x \ge 0
ight.$$
 Watch Video Solution

82. Test the continuity of the following function at the origin: $f(x) = \left\{ \frac{|x|}{x}; x \neq 0, 1; x = 0
ight.$ Watch Video Solution

83. Show that the function f(x) given by $f(x) = \begin{cases} x \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is continuous at x = 0

Watch Video Solution

84. Show that the function f(x) given by $f(x) = \left\{ \frac{\sin x}{x} + \cos x, x \neq 0 \text{ and } 2, x = 0 \text{ is continuous at } x = 0. \right.$

85. Examination the function f(x) given by $f(x) = \begin{cases} rac{\cos x}{rac{\pi}{2} - x} & x
eq rac{\pi}{2} \\ 1 & x = rac{\pi}{2} \end{cases}$;

for continuity at $x=rac{\pi}{2}$

Watch Video Solution

86. Discuss the continuity of the function
$$f(x)$$
 given by
$$f(x) = \begin{cases} 2-x & x < 0\\ 2+x & x \ge 0 \end{cases} at x = 0$$
Watch Video Solution

87. Determine the values of a, b, c for which the function

$$f(x)=egin{cases} rac{\sin{(a+1)\,x}+\sin{x}}{x}&x<0\ c&x=0\ rac{\sqrt{x+bx^2}-\sqrt{x}}{bx^{rac{3}{2}}}&x>0 \end{cases}$$

Watch Video Solution

89. Discuss the continuity of the function of given by f(x) = |x-1| + |x-2| at x = 1 and x = 2

Watch Video Solution

90. Determine the value of k for which the following function is continuous at x=3. $f(x)=\left\{rac{x^2-9}{x-3} ext{ ,} x
eq 3 ext{ and } ext{k when } x=3
ight.$

Watch Video Solution

91. Let
$$f(x) = |x| + |x - 1|$$
, then

A. (a) f(x) is continuous at x = 0, as well at x = 1

B. (b)f(x) is continuous at x = 0, but not at x = 1

C. (c)f(x) is continuous at $x=1,\,$ but not at x=0

D. (d)none of these

Answer: null

Watch Video Solution

92. The function $f(x) = \frac{4-x^2}{4x-x^3}$ a)discontinuous at only one point b) discontinuous exactly at two points c)discontinuous exactly at three points d) none of these

Watch Video Solution

93. If f(x) defined by $f(x) = \begin{cases} \frac{|x^2 - x|}{x^2 - |x|}, x \neq 0, 1 - 1. \text{ Then (A)} f(x) \text{ is continuous for all } x$ (B) for all x except x = 0 (C) for all x except x = 1

(D) for all x except x = 0 and x = 1

94. Discuss the continuity of the f(x) at the indicated points: $f(x)=|x|\mid |x-1|$ at x=0,1 f(x)=|x-1|+|x+1| at x=-1,1

Watch Video Solution

95. Prove that
$$f(x) = \sqrt{|x| - x}$$
 is continuous for all $x \ge 0$.

Watch Video Solution

96. Given $f(x) = \frac{1}{x-1}$. Find the points of discontinuity of the composite function f(f(x)).

97. Test the continuity of the following function at the origin: $f(x) = \left\{ rac{|x|}{x}; x
eq 01; x = 0
ight.$

Watch Video Solution

98. Show that the function
$$f(x)$$
 given by $f(x) = \left\{ x \frac{\sin 1}{x}, x \neq 00, x = 0 \right\}$ Vatch Video Solution

99. Show that the function
$$f(x)$$
 given by $f(x) = \left\{ \frac{\sin x}{x} + \cos x, \ x \neq 02, \qquad x = 0 \ ext{,mmm m m is}
ight.$

continuous at x = 0 .

100. Examine the function
$$f(t)$$
 given by $f(t) = \left\{ \frac{\cos t}{\pi/2 - t}; \ t \neq \pi/2; \ 1 \ at \ t = \pi/2 \ ext{for continuity} \ ext{at} \ t = \pi/2 \ .$

Watch Video Solution

101. Show that the function f(x) given by $f(x) = \begin{cases} rac{e^{rac{1}{x}}-1}{e^{rac{1}{x}}+1} & when x
eq 0 \\ 0 & when x = 0 \end{cases}$

is discontinuous at x=0 .

Watch Video Solution

102. Discuss the continuity of the function f(x) at x=1/2 , where

$$f(x) = \left\{ egin{array}{ccc} rac{1}{2-x} & 0 \leq x < rac{1}{2} \ 1 & x = rac{1}{2} \ rac{3}{2-x} & rac{1}{2} < x \leq 1 \end{array}
ight\}$$

103. Discuss the continuity of the function f(x) given by $f(x)=\{2-x;\ x<22+x;\ x\geq 2 ext{ at } x=2 ext{ .}$

Watch Video Solution

104. Show that $f(x) = \{5x-4, ext{ when } 0 < x \leq 1, 4x^3 - 3x$, when

1 < x < 2 is continuous at x = 1.

Watch Video Solution

105. Show that the function f(x) = 2x - |x| is continuous at x = 0 .

Watch Video Solution

107. Determine the value of k for which the following function is continuous at x=3. $f(x)=\left\{rac{x^2-9}{x-3},\ x
eq 3,\ f(x)=k,x=3
ight.$

108. Find the value of the constant λ so that the function given below is

continuous at
$$x=-1$$
 $f(x)=igg\{rac{x^2-2x-3}{x+1},\ x
eq-1$ $\lambda, \qquad x=-1$

Vatch Video Solution

109. Find the value of f(0) so that the function given below is continuous

at
$$x=0$$
 $f(x)=rac{1-\cos 2x}{2x^2}$
110. Find the value of 'a' if the function f(x) defined by $f(x)=\{2x-1,\ x<2$ and $a,\ x=2x+1,\ x>2$ is continuous at x=2

Watch Video Solution

111. If the function
$$f(x)$$
 defined by $f(x) = \left\{ rac{\log(1+ax) - \log(1-bx)}{x}, \quad ext{if} \quad x
eq 0 \quad k,
ight.$

is continuous at x=0 , find k .

Watch Video Solution

112. Find the values of 'a' so that the function f(x) defined by $f(x) = \left\{ \frac{\sin^2 ax}{x^2}, x \neq 0 \ 1, x = 0 \text{ may be continuous at } x = 0 \, .
ight.$

113. If the function f(x) given by $f(x) = \{3ax + b, \text{ if } x > 1 \ 11, \text{ if } x = 1 \ 5ax - 2b, \text{ if } x < 1 \$ is continuous at x = 1, find the values of a and b.

Watch Video Solution

$$f(x)=egin{cases} rac{1-\cos4x}{x^2}, & ext{ if } x<0a, & ext{ if } x=0rac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & ext{ if } \end{cases}$$

Let

Determine the value of a so that f(x) is continuous at x = 0.

Watch Video Solution

115. Determine
$$f(0)$$
 so that the function $f(x)$ defined by
 $f(x) = rac{\left(4^x - 1
ight)^3}{rac{\sin x}{4} \log\left(1 + rac{x^2}{3}
ight)}$ becomes continuous at $x = 0$

116. If
$$f(x)=rac{\sqrt{2}\cos x-1}{\cot x-1}$$
 , $x
eq rac{\pi}{4}$. Find the value of $figg(rac{\pi}{4}igg)$ so that $f(x)$ becomes continuous at $x=\pi/4$.

Watch Video Solution

117. Prove that the greatest integer function [x] is continuous at all points except at integer points.

119. Show that the function $f(x) = |\sin x + \cos x|$ is continuous at $x = \pi.$

120. Does there exists value of f(0) such that the following function becomes continuous at the origin $f(x)=iggl\{rac{x}{|x|},x
eq 0$

Watch Video Solution

121. A function
$$f(x)$$
 is defined as $f(x) = \left\{ \frac{x^2 - x - 6}{x - 3}; \quad ext{if } x \neq 3 \quad 5; \quad ext{if } x = 3 ext{ Show that } f(x) ext{ is continuous at } x = 3 ext{.}
ight.$

122. A function
$$f(x)$$
 is defined as $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}; & \text{if } x \neq 3 \ 6; & \text{if } x = 3 \end{cases}$ Show that $f(x)$ is continuous at $x = 3$.

Watch Video Solution

123. If $f(x) = \left\{ rac{x^2-1}{x-1}; ext{ for } x
eq 1; extsf{ 2 for } x = 1. ext{ Find whether } f(x) ext{ is }
ight\}$

continuous at x = 1.

Watch Video Solution

124. If $f(x) = \left\{ \frac{\sin 3x}{x}, when \ x \neq 01, when \ x = 0 \ .$ Find whether

f(x) is continuous at x=0 .

Watch Video Solution

125. If
$$f(x)=\left\{e^{1/x}, \quad ext{if} \quad x
eq 01, \quad ext{if} \quad x=0$$
 . Find whether f is

continuous at x=0

Watch Video Solution

126. Let $f(x) = \left\{ rac{1-\cos x}{x^2}, \quad when \ x
eq 0; 1, \quad when \ x = 0 \ .$ Show

that f(x) is discontinuous at x=0 .

128.

that

$$f(x)=iggl\{rac{|x-a|}{x-a}, \hspace{0.2cm} when \hspace{0.1cm} x
eq a$$

is discontinuous at x = a for any value of f(a)

Watch Video Solution

129. Discuss the continuity of $f(x)=ig\{|x|\cosig(rac{1}{x}ig),\ x
eq 00,\ x=0$

at x = 0

130. Discuss the differentiability of
$$f(x)=iggl\{x^2\siniggl(rac{1}{x}iggr), x
eq 0; 0$$
 if

x=0 at x=0

Watch Video Solution

132.
$$f(x)=iggl\{ rac{e^x-1}{\log(1+2x)}, \quad ext{if} \quad x
eq 0$$
 7, ext{if} $\quad x=0$ at $x=0$

133.
$$f(x) = igg\{ rac{1-x^n}{1-x}, \ (x
eq 1, (n-1)atx = 1, n \in N ext{ at } x = 1 igg\}$$

134.
$$f(x)=egin{cases} rac{|x^2-1|}{x-1}, & ext{for }x
eq 1 & 2, ext{ for }x=1 ext{ at }x=1 \end{cases}$$

Watch Video Solution

135.
$$f(x)=egin{cases} rac{2|x|+x^2}{x}, \ \ x
eq 0, \ \ ext{ and } 0 ext{ at } x=0 ext{ is continuous at } x=0$$

0 or not.

Watch Video Solution

136.
$$f(x) = \left\{ |x-a| \sin\left(\frac{1}{x-a}\right), f \text{ or } x \neq a, 0 \text{ if } x = a \text{ at } x = a
ight\}$$

137. Show that
$$f(x)=ig\{1+x^2, ext{ if } 0\leq x\leq 1,2-x, ext{ if } x>1 ext{ is }$$

discontinuous at x = 1 .

Watch Video Solution

138.Showthat
$$f(x) = \begin{cases} \frac{\sin 3x}{\tan 2x}, & \text{if } x < 0, \frac{3}{2}, & \text{if } x = 0, \frac{\log(1+3x)}{e^{2x}-1}, & \text{if } x = 0 \end{cases}$$
if $x = 0$ Watch Video Solution

139. Find the value of 'a' for which the function f defined by $f(x) = \begin{cases} a \frac{\sin \pi}{2}(x+1), & x \le 0 \frac{\tan x - \sin x}{x^3}, & x > 0 \text{ is continuous} \end{cases}$ at x = 0.

140. Examine the continuity of the function $f(x)=\{3x-2,\ x\leq 0x+1,\ x>0 ext{ at }x=0 ext{ . Also sketch the graph}$ of this function.

Watch Video Solution

142. Discuss the continuity of the function $f(x) = \begin{cases} x & 0 \le x < \frac{1}{2} \\ 12 & x = \frac{1}{2} \\ 1 - x & \frac{1}{2} < x \le 1 \end{cases}$ at

the point x = 1/2.

143. Discuss the continuity of $f(x)=\{2x-1, \ x<0; \{2x+1, \ x\geq 0\}$

at
$$x = 0$$

145. Determine the value of the constant k so that the function

$$f(x)=iggl\{rac{x^2-3x+2}{x-1}, \quad ext{ if } x
eq 1iggr)\colon \{k, \quad ext{ if } x=1 ext{ is continuous }$$
at $x=1$.

146. For what value of
$$k$$
 is the function $f(x)=iggl\{ {\sin 5x\over 3x}, \ {
m if} \ x
eq 0, \ k, \ {
m if} \ x=0$ continuous at $x=0$?

Watch Video Solution

147. Determine the value of the constant k so that the function $f(x) = \{kx^2, \text{ if } x \leq 23, \text{ if } x > 2 ext{ is continuous at } x = 2 ext{ .}$

Watch Video Solution

148. Determine the value of the constant k so that the function $f(x) = \left\{ \frac{\sin 2x}{5x}, \quad \text{if } x \neq 0 \ , k \quad \text{if } x = 0 \ \text{is continuous at } x = 0
ight\}$

149. Find the values of a so that the function $f(x)=\{ax+5, ext{ if } x\leq 2 \ x-1, ext{ if } x>2 ext{ is }$

continuous at x=2

Watch Video Solution

150. Prove that the function $f(x)=iggl\{rac{x}{|x|+2x^2},\ x
eq 0k,\ x=0$

remains discontinuous at x=0 , regardless the choice of k .

Watch Video Solution

151. Find the value of k if f(x) is continuous at $x = \pi/2$, where $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, x \neq \frac{\pi}{2} \\ 3, \qquad x = \frac{\pi}{2} \end{cases}$

152. Determine the values of
$$a, b, c$$
 for which the function $f(x)=iggl\{rac{\sin(a+1)x+\sin x}{x}$, for $x<0$ `c, for $x=0$ $rac{\sqrt{x+bx^2}}{bx^{3/2}}$,

for x>0 is continuous at x=0

Watch Video Solution

153. If
$$f(x) = \left\{ rac{1-\cos kx}{x\sin x}, x
eq 0$$
 $rac{1}{2}, x = 0$ is continuous at x=0,

find k.

Watch Video Solution

154.

$$f(x) = igg\{rac{x-4}{|x-4|} + a, \quad ext{ if } \ \ x < 4, a+b \quad ext{ if } \ \ x = 4, rac{x-4}{|x-4|} + b,$$

is continuous at x=4 , find $a,\ b$.

Watch Video Solution

If

155. For what value of
$$k$$
 is the function $f(x) = \left\{ \frac{\sin 2x}{x}, x \neq 0k, x = 0 \text{ continuous at } x = 0 \right\}$
Watch Video Solution

156. Let
$$f(x)=rac{\logig(1+rac{x}{a}ig)-\logig(1-rac{x}{b}ig)}{x}, \ x
eq 0$$
 . Find the value of f

at x=0 so that f becomes continuous at x=0 .

Watch Video Solution

157. If
$$f(x)=egin{cases} rac{2^{x+2}-16}{4^x-16} & x
eq 2\ k & x=2\ k & x=2\ \end{cases}$$
 is continuous at $x=2$, find k .

158. If
$$f(x)=egin{cases} rac{\cos^2x-\sin^2x-1}{\sqrt{x^2+1}-1}, \ x
eq 0$$
 is continuous at $x=0$, find k .

159. Extend the definition of the following by continuity $f(x) = rac{1-\cos7(x-\pi)}{5{(x-\pi)}^2}$ at the point $x=\pi$.

Watch Video Solution

160. If
$$f(x)=rac{2x+3\sin x}{3x+2\sin x}$$
 , $x
eq 0$ is continuous at $x=0$, then find $f(0)$

Watch Video Solution

161. Find the values of
$$k$$
 for which $f(x)=\left\{rac{1-\cos 4x}{8x^2},\ when\ x
eq 0k,\ when\ x=0$ is continuous at $x=0$.

162. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \begin{cases} \frac{1-\cos 2kx}{x^2} & \text{if } x \neq 0 \\ 8 & \text{if } x = 0 \end{cases}$ at x = 0

163. Find the value of the constant k so that the given function is

continuous at the indicated point:
$$f(x)=egin{cases} (x-1) anigg(rac{\pi x}{2}igg) & ext{if} \quad x
eq 1 \ k & ext{if} \quad x=1 \ \end{cases}$$
 at $x=1$

Watch Video Solution

164. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \left\{k(x^2 - 2x), \quad ext{if} \quad x < 0\cos x, \quad ext{if} \quad x \ge 0 ext{ at } x = 0
ight.$ **165.** Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \{kx + 1, \text{ if } x \le \pi \cos x, \text{ if } x > \pi \text{ at } x = \pi$ Watch Video Solution

166. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \{kx + 1, \text{ if } x \leq 53x - 5, \text{ if } x > 5 \text{ at } x = 5$

Watch Video Solution

167. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & x \neq 5k, & x = 5 \end{cases}$ at x = 5

168. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x)=\{kx^2,\ x\geq 14,\ x<1$ at x=1

169. Find the value of the constant
$$k$$
 so that the given function is
continuous at the indicated point:
 $f(x) = \{k(x^2 + 2), \text{ if } x < 03x + 1, \text{ if } x > 0 \text{ at } x = 0.$

Watch Video Solution

170. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \left\{ \frac{x^3 + x^2 - 16x + 20}{\left(x - 2\right)^2}, \ x \neq 2 \ k, \ x = 2 ext{ at } x = 0 ext{.}
ight.$

171. Find the values of a and b so that the function f given by f(x)={1, if x<=3, ax+b, if 3 < x < 5, 7 if x >= 5 is continuous at x=3 and x=5.

Watch Video Solution

172. If
$$f(x) = \left\{ rac{x^2}{2}, ext{ if } 0 \leq x < 1, 2x^2 - 3x + rac{3}{2}, ext{ if } 1 \leq x \leq 2
ight.$$

.Show that f is continuous at x = 1 .

Watch Video Solution

173. Discuss the continuity of the f(x) at the indicated point: f(x) = |x| + |x - 1| at x = 0, 1.

Watch Video Solution

174. Discuss the continuity of the f(x) at the indicated point:f(x)=|x-1|+|x+1| at $x=-1,\ 1.$

175. Prove that
$$f(x)=egin{cases} rac{x-|x|}{x} & x
eq 0\ 2 & x=0 \end{cases}$$
 is discontinuous at $x=0$.

Watch Video Solution

176. If
$$f(x)=ig\{2x^2+k$$
 , if $x\geq 0$

 $x^2 - 2x^2 + k \quad, \qquad ext{if} \quad x < 0$, then what should be the value of k

so that f(x) is continuous at x=0 .

Watch Video Solution

177. For what value of λ is the function $f(x)=ig\{\lambdaig(x^2-2xig)\ , \ ext{if}\ x\leq 04x+1\ , \ ext{if}\ x>0$

continuous at x=0 ? What about the continuity at $x=\pm 1$?

178. For what value of k is the following function continuous at x = 2?

Watch Video Solution

179. Let
$$f(x) = \begin{cases} \frac{1 - \sin^3 x}{3 \cos^2 x} & \text{if } x < \frac{\pi}{2}, a & \text{if } x = \frac{\pi}{2} \end{cases}$$
. If $f(x)$ is continuous at $x = \frac{\pi}{2}$ b(1-sinx)/(pi-2x)^2, if x>pi/2 find a and b..

Watch Video Solution

180. If the functions f(x) , defined below is continuous at x=0 , find the

value

$$k$$
 :

$$f(x) = igg\{ rac{1-\cos 2x}{2x^2} \hspace{0.2cm}, \hspace{0.2cm} x < 0 \hspace{0.2cm} k, \hspace{0.2cm} x = 0, rac{x}{|x|} \hspace{0.2cm}, \hspace{0.2cm} x > 0 \hspace{0.2cm}$$

181. Find the relationship between 'a' and 'b' so that the function 'f' defined by $f(x)=\{ax+1\ ,\ ext{if}\ x\leq 3bx+3\ ,\ ext{if}\ x>3$ is continuous at x=3 .

Watch Video Solution

182. If a function f is defined as $f(x) = \left\{ rac{|x-4|}{|x-4|} \;\;,\;\;x
eq 40 \;\;,\;\;x=4
ight.$

Show that f is everywhere continuous except at x = 4 .

183. Discuss the continuity of the function
$$f(x) = \left\{ \frac{\sin 2x}{x}, \text{ if } x < 0x + 2, \text{ if } x \ge 0
ight.$$
 Watch Video Solution

186. Show that the function f defined by f(x) = |1 - x + |x|| is everywhere continuous.

187. Prove that $f(x)=\sqrt{|x|-x}$ is continuous for all $x\geq 0$.

188. Given $f(x) = rac{1}{x-1}$. Find the points of discontinuity of the composite function f(f(x)) .

Watch Video Solution

189. Determine the value of the constant k so that the function

 $f(x)=ig\{kx^2\ ,$ if $x\leq 23\ ,$ if x>2 is continuous.

Watch Video Solution

190. Determine the value of the constant m so that the function

 $f(x) = ig\{mig(x^2-2xig) \quad ext{ if } x < 0, \ \cos x \quad ext{if } x \ge 0 ext{ is continuous.}$

191.

$$f(x) = \{3ax + b \text{ if } x > 1, 11 \text{ if } x = 1, 5ax - 2b, \text{ if } x < 1. Deter m a and b'so that f(x) is continuous.$$

$$\textcircled{O} Watch Video Solution$$

$$192. Prove that the function f(x) = \left\{\frac{\sin x}{x}, x < 0 x + 1, x \ge 0 \text{ is everywhere continuous.} \right\}$$

$$\textcircled{O} Watch Video Solution$$

$$193. Discuss the continuity of the function f(x) = \left\{\frac{x}{|x|}, x \ne 00, x = 0.\right\}$$

$$\textcircled{O} Watch Video Solution$$

lf

194. Find the points of discontinuity, if any, of the following function: $f(x) = \{ [x^3 - x^2 + 2x - 2 , \text{ if } x \neq 1], [4 \text{ if } x = 1] \}$ Watch Video Solution

195. Find the points of discontinuity, if any, of the following function:

$$f(x) = igg\{ rac{x^4 - 16}{x - 2} \ , \quad ext{ if } \ x
eq 2 \ 16 \ , \quad ext{ if } \ x = 2 igg\}$$

Watch Video Solution

196. Find the points of discontinuity, if any, of the following function:

$$f(x)=igg\{rac{\sin x}{x} \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x<02x+3 \hspace{0.1 in}, \hspace{0.1 in} x\geq 0$$

Watch Video Solution

197. Find the points of discontinuity, if any, of the following function: $f(x)=iggl\{ {\sin 3x\over x}\ ,\ {
m if}\ x
eq 04\ ,\ {
m if}\ x=0$

198. Find the points of discontinuity, if any, of the following function:

$$f(x)=igg\{rac{\sin x}{x}+\cos x \hspace{.1in}, \hspace{.1in} ext{if} \hspace{.1in} x
eq 0k \hspace{.1in}, \hspace{.1in} ext{if} \hspace{.1in} x=0 igg\}$$

Watch Video Solution

199. Find the points of discontinuity, if any, of the following function:

$$f(x) = igg\{ rac{x^4 + x^3 + 2x^2}{tan^{-1}x} \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x
eq 0, 0 \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x = 0$$

Watch Video Solution

200. Find the points of discontinuity, if any, of the following function:

$$f(x) = egin{cases} rac{e^x - 1}{\left(\log
ight)_e (1 + 2x)} &, & ext{if} \quad x
eq 0 \quad 7 \;, & ext{if} \quad x = 0 \end{cases}$$

201. Find the points of discontinuity, if any, of the following function:

$$f(x) = \left\{ |x-3|, \quad \text{if } x \ge 1 \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, \quad \text{if } x < 1
ight.$$
Watch Video Solution

202. Find the points of discontinuity, if any, of the following function:

 $f(x) = \{ |x|+3 \hspace{0.1in} ext{if} \hspace{0.1in} x \leq \hspace{0.1in} -3, \hspace{0.1in} -2x, \hspace{0.1in} ext{if} \hspace{0.1in} -3 < x < 3, 6x+2, \hspace{0.1in} ext{if} \hspace{0.1in} x >$

Watch Video Solution

203. Find the points of discontinuity, if any, of the following function:

$$f(x) = ig\{ x^{10} - 1 \ , \quad ext{ if } \ x \leq 1 x^2 \ , \quad ext{ if } \ x > 1 ig\}$$

Watch Video Solution

204. Find the points of discontinuity, if any, of the following function: $f(x)=\{2x\ ,\ ext{if}\ x<00\ ,\ ext{if}\ 0\leq x\leq 14x\ ,\ ext{if}\ x>1$

205. Find the points of discontinuity, if any, of the following function:

 $f(x)=\{\sin x-\cos x \hspace{.1 in}, \hspace{.1 in} ext{if} \hspace{.1 in} x
eq 0 \hspace{.1 in} -1 \hspace{.1 in}, \hspace{.1 in} ext{if} \hspace{.1 in} x=0$

Watch Video Solution

206. Find the points of discontinuity, if any, of the following function:

 $f(x) = \{ -2 \hspace{.1in} ext{if} \hspace{.1in} x \leq \hspace{.1in} -1, 2x \hspace{.1in} ext{if} \hspace{.1in} -1x < 1, 2 \hspace{.1in} ext{if} \hspace{.1in} x \geq 1 \}$

Watch Video Solution

207. Determine the value(s) of constant(s) involved in the definition so

that the given function is continuous: $f(x)=igg\{rac{\sin 2x}{5x}\ , \ ext{if}\ x
eq 03k\ , \ ext{if}\ x=0$

208. Determine the value(s) of constant(s) involved in the definition so that the given function is continuous: $f(x) = \{kx + 5, \text{ if } x \leq 2, x - 1, \text{ if } x > 2\}$ **Vatch Video Solution**

209. Determine the value(s) of constant(s) involved in the definition so that the given function is continuous: $f(x) = \{k(x^2+3), \text{ if } x < 0 \text{ and } \cos 2x, \text{ if } x \ge 0\}$

Watch Video Solution

210. Determine the value(s) of constant(s) involved in the definition so

that the given function is continuous: $f(x)=\{2, ext{ if } x\leq 3, ax+b, ext{ if } 3< x<5,9, ext{ if } x\geq 5 \}$

213. Determine the equation so that the given function is continuous:

$$f(x)=$$
 {5 if x <= 2, ax+b, $ext{ if } x>2$ '

214. Find the value of k so that the function f defined by
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \end{cases}$$
 3, if $x = \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$

Watch Video Solution

215. The function
$$f(x)=iggl\{rac{x^2}{a}\ ,$$
 if $0\leq x<1$ a , if $1\leq x$ is continuous

then find the value of constant term

Watch Video Solution

216.

$$f(x) = \Big\{x + \sqrt{2}a\sin x, 0 < x < rac{\pi}{4} ext{ and } 2x\cot x + b, rac{\pi}{4} \leq x < rac{\pi}{2} ext{ and } a \Big\}$$
. Determine the value of a and b If function is continuous for interval

 $[0,\pi]$

217. The function f(x) is defined by $f(x)=ig\{x^2+ax+b\ ,\ 0\leq x<2,\ 3x+2\ ,\ 2\leq x\leq 4,\ 2ax+5b$ f is continuous them determine the value of a and b

Natch Video Solution

218. If
$$f(x) = \frac{\tan(\frac{\pi}{4} - x)}{\cot 2x}$$
 for $x \neq \frac{\pi}{4}$, find the value which can be assigned to $f(x)$ at $x = \frac{\pi}{4}$ so that the function $f(x)$ becomes continuous everywhere in $\left[0, \frac{\pi}{2}\right]$.

Watch Video Solution

219. Discuss the continuity of the function $f(x)=\{2x-1$, if $x<2, rac{3x}{2}$ if $x\geq 2$

220. Find
$$rac{dy}{dx}$$
 if $y=x-y-2x^2$.

Watch Video Solution

221. Prove that the function
$$f(x)=iggl\{ {\sin x\over x} \ , \ x<0, \ x+1 \ , \ x\geq 0$$

is everywhere continuous.

Watch Video Solution

222. Show that the function defined by g(x) = x - [x] is discontinuous

at all integral points. which [x] denotes the greatest integer function.

Watch Video Solution

223. Find the derivative if $f(x) = \sin x + \cos x$

224. Find the derivative of $f(x) = \sin x - \cos x$

Watch Video Solution

226. Find
$$f'(x)$$
 if $f(x) = \cos\left(x^2\right)$

Watch Video Solution

227. Find
$$\displaystyle rac{dy}{dx}$$
 if $x+x^7=2y$
228. Find all the points of discontinuity of f defined by $f(x) = |\mathbf{x}| \cdot |\mathbf{x}+1|$.

Watch Video Solution

229. Determine if f defined by
$$f(x) = \left\{x^2 \sin\left(\frac{1}{x}\right), \text{ if } x \neq 0, 0 \text{ if } x = 0 \text{ is a continuous function}
ight\}$$

Watch Video Solution

230. Given the function $f(x)=rac{1}{x+2}$. Find the points of discontinuity of the function f(f(x))

231. Find all point of discontinuity of the function
$$f(t) = \frac{1}{t^2 + t - 2}$$
,
where $t = \frac{1}{x - 1}$
232. Define continuity of a function at a point.
233. What happens to a function $f(x)$ at $x = a$, if
 $(\lim_{x \to a} f(x) = f(a)$
234. Find $f(0)$, so that $f(x) = \frac{x}{1 - \sqrt{1 - x}}$ becomes continuous at
 $x = 0$.
Watch Video Solution

235. The function
$$f(x)= egin{cases} rac{\sin 3x}{x} & x
eq 0 \ rac{k}{2} & x=0 \ \end{cases}$$
 is continuous of

$$x=0, thenk=\,$$
 (a) 3 (b) 6 (d) 9 (d) 12

Watch Video Solution

236. If the function
$$f(x)=rac{\sin 10x}{x}$$
 , $x
eq 0$ is continuous at $x=0$, find $f(0)$.

D Watch Video Solution

237. If
$$f(x) = \left\{ rac{x^2-16}{x-4}, ext{ if } x
eq 4k, ext{ if } x=4 ext{ is continuous at } x=4 ext{, find } k ext{.}
ight.$$

238. Determine whether $f(x)=iggl\{ rac{\sin x^2}{x} \ , \ x
eq 00 \ , \ x=0$ is

continuous at x = 0 or not.

Watch Video Solution

239. If
$$f(x)=iggl\{rac{1-\cos x}{x^2}\ ,\ x
eq 0k\ ,\ x=0$$
 is continuous at $x=0$

, find k

Watch Video Solution

240. If
$$f(x)=igg\{rac{\sin^{-1}x}{x}\ ,\ x
eq 0k\ ,\ x=0$$
 is continuous at $x=0$,

write the value of k.

Watch Video Solution

241. Write the value of b for which $f(x)=\{5x-4,when 0 < x \le 1, 4x^2+3bx\}$

,when 1 < x< 2 is continuous at x=1

242. The function $f(x) = rac{4-x^2}{4x-x^3}$ (a) discontinuous at only one point

(b) discontinuous exactly at two points (c) discontinuous exactly at three

points (d) none of these

Watch Video Solution

243. If $f(x) = |x - a| \varphi(x)$, where $\varphi(x)$ is continuous function, then $f'(a^+) = \varphi(a)$ (b) $f'(a^-) = -\varphi(a)$ (c) $f'(a^+) = f'(a^-)$ (d) none of these

Watch Video Solution

244. If $f(x) = |(\log)_{10}x|$, then atx = 1 f(x) is continuous and $f'(1^+) = (\log)_{10}e f(x)$ is continuous and $f'(1^+) = (\log)_{10}e f(x)$ is

continuous and $f'(1^-) = (\log)_{10}e$ f(x) is continuous and $f'(1^-) = -(\log)_{10}e$ Vatch Video Solution

245. If
$$f(x) = \left\{ rac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, x
eq 0 \ k, x = 0 \ ext{is continuous at}
ight.$$

x = 0, then k equal to

Watch Video Solution

246. If
$$f(x)$$
 defined by $f(x)=iggl\{ rac{|x^2-x|}{x^2-|x|}, x
eq 0, 1-1.$ Then (A)f(x) is

continuous for all x (B) for all x except x = 0 (C) for all x except x = 1

(D) for all x except x = 0 and x = 1

247.

$$f(x) = egin{cases} & 1 - \sin x \ (\pi - 2x)^2 \ \overline{(\log(1 + \pi^2 - 4\pi x + 4x^2))}, x
eq rac{\pi}{2}, k \, atx = rac{\pi}{2} \ ext{is continuous at } x = rac{\pi}{2}, thenk = -rac{1}{16} ext{ (b) } -rac{1}{32} ext{ (c) } -rac{1}{64} ext{ (d) } -rac{1}{28} \ \end{array}$$

Watch Video Solution

248. If $f(x) = (x+1)^{\cot x}$ be continuous at x = 0, the f(0) is equal to

Watch Video Solution

249.

$$f(x) = igg\{ rac{\log(1+ax) - \log(1-bx)}{x} \ , \ x
eq 0, \ k \ , \ x = 0 igg\}$$

and f(x) is continuous at x=0 , then the value of k is a-b (b) a+b

(c) $\log a + \log b$ (d) none of these

Watch Video Solution

If

250. The function
$$f(x)=egin{cases} rac{e^{rac{1}{x}}-1}{e^{rac{1}{x}}+1}, x
eq 0 \qquad 0, x=0 ext{ at } x=0 \end{cases}$$

Watch Video Solution

251.

$$f(x) = igg\{rac{x-4}{|x-4|} + a, x < 4 \quad a+b, x = 4 \quad \ , rac{x-4}{|x-4|} + b, x > 4$$

Then f(x) is continous at x = 4 when

Watch Video Solution

252. If the function $f(x) = \left\{ (\cos x)^{rac{1}{x}}, x
eq 0k, x = 0 ext{ is continuous at }
ight\}$

x=0 , then the value of k is (a)0 (b) 1 (c) -1 (d) None of these

Watch Video Solution

253. Let $f(x)=|x|+|x-1|,\,$ then (a)f(x) is continuous at $x=0,\,$ as

well at x = 1 (b)f(x) is continuous at x = 0, but not at x = 1 (c)f(x) is

Let

continuous at x = 1, but not at x = 0 (d)none of these

$$f(x)=igg\{rac{x^4-5x^2+4}{|(x-1)(x-2)|} \hspace{0.1 in}, \hspace{0.1 in} x
eq 1, \hspace{0.1 in} 16 \hspace{0.1 in}, \hspace{0.1 in} x=1, \hspace{0.1 in} 12, \hspace{0.1 in} x=2$$

Let

If

. Then, f(x) is continuous on the set R (b) $R-\{1\}$ (c) $R-\{2\}$ (d)

$$R - \{1, 2\}$$

Watch Video Solution

255.

$$f(x) = f(x) = \left\{ rac{\sin(a+1)x + \sin x}{x}, \, x < 0, c \ atx = 0, \, rac{\sqrt{x+bx^2} - \sqrt{x}}{bx\sqrt{x}}
ight.$$
is continuous at $x = 0, then$ (a). $a = -rac{3}{2}, b = 0, c = rac{1}{2}$ (b)
 $a = -rac{3}{2}, b = 1, c = -rac{1}{2}$ (c) $a = -rac{3}{2}, b \in R - [0], c = rac{1}{2}$ (d) none

of these

256. If
$$f(x)=\left\{mx+1\ ,\ x\leq rac{\pi}{2},\ \sin x+n\ ,\ x>rac{\pi}{2}
ight.$$
 is continuous at $x=rac{\pi}{2}$, then

Watch Video Solution

257. The value of
$$f(0)$$
, so that the function

$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
becomes continuous for all x , given by $a^{\frac{3}{2}}$ (b) $a^{\frac{1}{2}}$ (c) $-a^{\frac{1}{2}}$ (d) $-a^{\frac{3}{2}}$

Natch Video Solution

258. The value of
$$f(0)$$
, so that the function
 $f(x) = \frac{(27-2x)^{\frac{1}{3}}-3}{9-3(243+5x)^{1/5}} (x \neq 0)$ is continuous, is given by (a) $\frac{2}{3}$ (b)
6 (c) 2 (d) 4

259. The value of f(0) so that the function $f(x)=rac{2-(256-7x)^{rac{1}{8}}}{(5x+32)^{1/5}-2}, x
eq 0$ is continuous everywhere, is given by

 $-\,1$ (b) 1 (c) 26 (d) none of these

Watch Video Solution

260.
$$f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x}, \ -1 \le x < 0 \frac{2x+1}{x-2}, 0 \ge x \ge 1 \end{cases}$$

is continuous in the interval $[-1, 1]$, then p is equal to -1 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1

Watch Video Solution

261. The function $f(x)=ig\{x^2a\quad,\quad 0\leq x<1,\quad a,\qquad 1\leq x$ is

continuous then find the value of constant term

262. If $f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$, $when x \neq \frac{\pi}{2} and f\left(\frac{\pi}{2}\right) = \lambda$, the f(x) will be continuous function at $x = \frac{\pi}{2}$, $where \lambda = \frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) none of

these

Watch Video Solution

263. The value of a for which the function
$$f(x) = f(x) = \left\{ \frac{(4^x - 1)\hat{3}}{\sin(xa)\log\{(1 + x^23)\}}, x \neq 012(\log 4)^3, x = 0 \text{ may} \right.$$

be continuous at x = 0 is 1 (b) 2 (c) 3 (d) none of these

Watch Video Solution

264. The function $f(x) = \tan x$ is discontinuous on the set

265. The function $f(x) = \left\{\frac{\sin 3x}{x}, x \neq 0 \frac{k}{2}, x = 0 \text{ is continuous of } x = 0, then k = 3$ (b) 6 (d) 9 (d) 12

Watch Video Solution

266. If the function $f(x) = \frac{2x - \sin^{-1}x}{2x + \tan^{-1}x}$ is continuous at each point of its domain, then the value of f(0) (a) 2 (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$

Watch Video Solution

267. The value of a for which the function $f(x)=\{5x-4\setminus \setminus, \setminus \in 0\}$

268. If $f(x) = \frac{1}{1-x}$, then the set of points discontinuity of the function f(f(f(x)))is {1} (b) {0,1} (c) {-1,1} (d) none of these

269. Let $f(x) = \frac{\tan(\frac{\pi}{4} - x)}{\cot 2x}, x \neq \frac{\pi}{4}$. The value which should be assigned to f(x) at $x = \frac{\pi}{4}$, so that it is continuous everywhere is 1 (b) $\frac{1}{2}$ (c) 2 (d) none of these

Watch Video Solution

270. The function $f(x) = rac{x^3+x^2-16x+20}{x-2}$ is not defined for x=2. In order to make f(x) continuous at x=2, f(2) should be defined as 0 (b) 1 (c) 2 (d) 3

Watch Video Solution

$$\begin{array}{ll} \textbf{271.} \quad \text{If} \quad f(x)= \left\{a\frac{\sin\pi}{2}(x+1),\,,x\leq 0\frac{\tan x-\sin x}{x^3},\,x>0 \quad \text{ is} \\ \text{continuous at }x=0\,, \text{then a equal }\frac{1}{2} \text{ (b) }\frac{1}{3} \text{ (c) }\frac{1}{4} \text{ (d) }\frac{1}{6} \end{array} \right.$$

272. If `f(x)={a x^2+b ,0lt=x<1 4,x=1x+3,1

273. If the function
$$f(x)$$
 defined by $f(x)=\left\{ rac{\log(1+3x)-\log(1-2x)}{x}
ight., \ x
eq 0$ k, $x=0$ is

continuous at x=0 , then $k=\,$ (a) 1 (b) 5 (c) -1 (d) none of these

Watch Video Solution

274.

$$f(x) = egin{cases} rac{1-\cos 10x}{x^2}, x < 0 & a, \ x = 0 \ rac{\sqrt{x}}{\sqrt{625+\sqrt{x}-25}}, \ x > 0 \end{cases}$$

, then the value of a so that f(x) may be continuous at x=0 , is (a) 25

(b) 50 (c) -25 (d) none of these

Watch Video Solution

If

275. If $f(x) = x \sin\left(\frac{1}{x}\right), x \neq 0$, then the value of the function at x = 0, so that the function is continuous at x = 0, is (a) 0 (b) -1 (c) 1 (d) indeterminate

Watch Video Solution

 276.
 The value of k which makes

$$f(x) = \left\{ \frac{\sin 1}{x}, x \neq 0k, x = 0 cont \in uousatx = 0, is 8 (b) 1 (c) - 1 (d) \right\}$$

none of these

Watch Video Solution

277. The values of the constants a, b, c for which the function $f(x) = \left\{ (1+ax)^{1/x}, x < 0 \text{ and } \frac{(x+c)^{\frac{1}{3}} - 1}{(x+1)^{\frac{1}{2}} - 1}, x > 0 \text{ and } b, x = 0 \right.$

may be continuous at $x=0,\,$ are

278. The points of discontinuity of the function $f(x) = \left\{ 2\sqrt{x} \ , \ 0 \leq x \leq 1, \ 4-2x \ , \ 1 < x
ight.$

Watch Video Solution

279. If
$$f(x) = \begin{cases} \frac{1 - \sin^2 x}{3 \cos^2 x} & x < \frac{\pi}{2} \\ a & x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x)^2} & x > \frac{\pi}{2} \end{cases}$$
 then f(x) is continuous at $x = \frac{\pi}{2}$

(a)
$$a=rac{1}{3},b=2$$
 (b) $a=rac{1}{3},\ =rac{8}{3}$ (c) $a=rac{2}{3},b=rac{8}{3}$ (d) none of these

Watch Video Solution

280. The points of discontinuity of the function $f(x) = \left\{ rac{1}{5} \left(2x^2 + 3
ight), \ x \leq 1, \ 6-5x, \ 1 < x
ight.$

281. The value of a for which the function $f(x)=\{5x-4\setminus \setminus , \setminus \setminus if \setminus 0 \}$

282. If
$$f(x) = \begin{cases} \frac{\sin(\cos x) - \cos x}{(\pi - 2x)^2} & , x \neq \frac{\pi}{2} \\ \end{cases}$$
, $x \neq \frac{\pi}{2}$, $k = \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$, then k is equal to (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) -1