©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

DIFFERENTIABILITY

Others

1. Find the values of a and b so that the function $f(x)=\left\{\begin{array}{ll}x^{2}+3 x+a & \text { if } x \leq 1 \\ b x+2 & \text { if } x>1\end{array}\right.$ is differentiable at each $x \in R$

- Watch Video Solution

2. Show that $f(x)=\left\{12 x-13, \quad\right.$ if $x \leq 3,2 x^{2}+5$ if $x>3$ is differentiable at $x=3$. Also, find $f^{\prime}(3)$.
3. Show that $f(x)=(x)^{\frac{1}{3}}$ is not differentiable at $x=0$.

Watch Video Solution

4. Show that $f(x)=|x-3|$ is continuous but not differentiable at $x=3$.

- Watch Video Solution

5. Show that the function $f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), 0, x \neq 0, x=0\right.$ is differentiable at $x=0$,if $m>1$ and continuous but not differentiable at $x=0$, if $0<m<1$.
6. Discuss the continuity and differentiability of the function $f(x)=|x|+|x-1|$ in the interval $(-1,2)$.

- Watch Video Solution

7. Show that the function f defined as follows
$f(x)=\left\{\begin{array}{ll}3 x-2 & 0<x \leq 1 \\ 2 x^{2}-x & 1<x \leq 2 \\ 5 x-4 & x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$ but not
differentiable.

- Watch Video Solution

8. Discuss the continuity and differentiability of $f(x)= \begin{cases}(x-c) \cos \left(\frac{1}{x-c}\right) & x \neq c \\ 0 & x=c\end{cases}$
9. Write an example of a function which is everywhere continuous but fails to be differentiable exactly at five points.

- Watch Video Solution

10. Discuss the continuity and differentiability of $f(x)=|\log | x| |$

- Watch Video Solution

11. If f is defined by $f(x)=x^{2}-4 x+7$, show that $f^{\prime}(5)=2 f^{\prime}\left(\frac{7}{2}\right)$

- Watch Video Solution

12. If f is defined by $f(x)=x^{2}$, find $f^{\prime}(2)$.
13. Find the derivative of the function f defined by $f(x)=m x+c$ at $x=0$.

- Watch Video Solution

14. Discuss the continuity and differentiability of $f(x)=e^{|x|}$.

(D) Watch Video Solution

15. If for the function $\varphi(x)=\lambda x^{2}+7 x-4, \varphi^{\prime}(5)=97$, find λ.

- Watch Video Solution

16. Is $|\sin x|$ differentiable ?What about $\cos |x|$?

- Watch Video Solution

17. The set of points where the function $f(x)$ given by $f(x)=|x-3| \cos x$ is differentiable, is (a) $\mathrm{R}(\mathrm{b}) R-\{3\}$ (c) $(0, \infty)$ (d) none of these

- Watch Video Solution

18. If $f(x)=\left\{\frac{1-\cos x}{x \sin x}, x \neq 0\right.$ and $\frac{1}{2}, x=0$ then at $x=0, f(x)$ is (a)continuous and differentiable (b)differentiable but not continuous (c)continuous but not differentiable (d)neither continuous nor differentiable

- Watch Video Solution

19. If $f(x)=\left\{\frac{1}{1+e^{\frac{1,}{x}}}, x \neq 00, x=0\right.$, then $f(x)$ is continuous as well as differentiable at $x=0$ continuous but not differentiable at $x=0$ differentiable but not continuous at $x=0$ none of these
20. If $f(x)=|3-x|+(3+x)$, where (x) denotes the least integer greater than or equal to x, then $f(x)$ is continuous and differentiable at $x=3$ continuous but not differentiable at $x=3$ differentiable but not continuous at $x=3$ neither differentiable nor continuous at $x=3$

- Watch Video Solution

21. Let $f(x)=a+b|x|+c|x|^{4}$, where a, bandc are real constants. Then, $f(x)$ is differentiable at $x=0$, if $a=0$ (b) $b=0$ (c) $c=0$ (d) none of these

- Watch Video Solution

22. The function $f(x)=\frac{\sin (\pi[x-\pi])}{4+[x]^{2}}$, where [] denotes the greatest integer function, (a) is continuous as well as differentiable for all
$x \in R$ (b) continuous for all x but not differentiable at some x (c) differentiable for all x but not continuous at some x.(d) none of these

- Watch Video Solution

23. Let $f(x)=\left\{a x^{2}+1, x>1 ; \quad x+\frac{1}{2}, x \leq 1\right.$. then, $f(x) \quad$ is derivable at $x=1$, if $a=2$ (b) $a=1$ (c) $a=0$ (d) $a=\frac{1}{2}$

- Watch Video Solution

24. Show that the function defined by $g(x)=\mathrm{x}-[x]$ is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

- Watch Video Solution

25. It A is a symmetric matrix, write whether A^{T} is symmetric or skew symmetric matrix.

(D) Watch Video Solution

26. If $f(x)=\left\{x^{2}+3 x+a, x \leq 1, b x+2, f\right.$ or $x>1$ is everywhere differentiable, find the values of $a a n d b$.

- Watch Video Solution

27. Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then (a) $f(x) \operatorname{andg}(x)$ both are continuous at $x=0$ (b) $f(x) \operatorname{andg}(x)$ both are differentiable at $x=0$
(c) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x=0$ (d) $f(x)$ and $g(x)$ both are not differentiable at $x=0$

- Watch Video Solution

28. Is $|\sin x|$ differentiable? What about $\cos |x|$?

- Watch Video Solution

29. Find the values of $a a n d b$ so that the function $f(x)=\left\{x^{2}+3 x+a\right.$, if $x \leq 1 b x+2, \quad$ if $x>1$ is differentiable at each $x \in R$.

- Watch Video Solution

30. The function $f(x)=e^{-|x|}$ is continuous everywhere but not differentiable at $x=0$ continuous and differentiable everywhere not continuous at $x=0$ none of these

- Watch Video Solution

31. Discuss the continuity and differentiability of $f(x)=\{1-x, x<1(1-x)(2-x), 1 \leq x \leq 2(3-x), x>2$

- Watch Video Solution

32. If $y=(x-1) \log (x-1)-(x+1) \log (x+1)$, prove that : $\frac{d y}{d x}=\log \left(\frac{x-1}{1+x}\right)$

- Watch Video Solution

33. The set of points where the function $f(x)=x|x|$ is differentiable is $(-\infty, \infty)(b)(-\infty, 0) \cup(0, \infty)(0, \infty)(d)[0, \infty)$

- Watch Video Solution

34. The function $f(x)=\sin ^{-1}(\cos x)$ is (a). discontinuous at $x=0$ (b). continuous at $x=0$ (c). differentiable at $x=0$ (d). non of these

- Watch Video Solution

35. Let $f(x)=\left\{\frac{1}{|x|} f\right.$ or $|x| \geq 1 a x^{2}+b f$ or $|x|<1 \Leftrightarrow(x) \quad$ is continuous and differentiable at any point, then $a=\frac{1}{2}, b=-\frac{3}{2}$ (b)
$a=-\frac{1}{2}, b=\frac{3}{2} a=1, b=-1$ (d) none of these

- Watch Video Solution

36. If $f(x)=\sqrt{1-\left(\sqrt{1}-x^{2}\right)}$, then $f(x)$ is (a)continuous on $[-1,1]$ and differentiable on ($-1,1$) (b) continuous on $[-1,1]$ and differentiable on $(-1,0) \cup(0,1)(C)$ continuous and differentiable on $[-1,1](\mathrm{d})$ none of these

- Watch Video Solution

37. If $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ and if $f(x)$ is differentiable at $x=0$ then

- Watch Video Solution

38. Solve the following equation for x : $\cos \left(\tan ^{-1} x\right)=\sin \left(\cot ^{-1}\left(\frac{3}{4}\right)\right)$

- Watch Video Solution

39. Find the principal values the following : $\sin ^{-1}\left\{\cos \left(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right\}\right.$

- Watch Video Solution

40. Solve the following equation for x : $\cos \left(\tan ^{-1} x\right)=\sin \left(\cot ^{-1}\left(\frac{3}{4}\right)\right)$
41. For the principal values, evaluate the following : $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)+\operatorname{cosec}{ }^{-1}\left(-\frac{2}{\sqrt{3}}\right)$

- Watch Video Solution

42. If A is a square matrix such that $|A|=2$, write the value of $\left|\forall^{T}\right|$

- Watch Video Solution

43. Find the domain of the function $f(x)=\sin ^{-1} \sqrt{x-1}$

- Watch Video Solution

44. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then find the value of $x^{2}+y^{2}+z^{2}$
45. If $\mathrm{f}(\mathrm{x})=\left(\frac{x^{l}}{x^{m}}\right)^{l+m}\left(\frac{x^{m}}{x^{n}}\right)^{m+n}\left(\frac{x^{n}}{x^{l}}\right)^{n+l}$, then find $\mathrm{f}^{\prime}(\mathrm{x})$.

- Watch Video Solution

46. Show that $f(x)=|x|$ is not differentiable at $x=0$.

- Watch Video Solution

47. Evaluate $: \tan \left(\cos ^{-1}\left(-\frac{7}{25}\right)\right)$

- Watch Video Solution

48. For what choice of a and b is the function $f(x)=\left\{x^{2}, x \leq c\right.$ and $a x+b, x>c$ is differentiable at $x=c$
49. Discuss the differentiability of $f(x)=x|x|$ at $x=0$

- Watch Video Solution

50. Show that the function $\mathrm{f}(\mathrm{x})=\left\{x^{2} \sin \left(\frac{1}{x}\right)\right.$, when $x \neq 0$ and 0 when $x=0\}$ is differentiable at $\mathrm{x}=0$.

- Watch Video Solution

51. If $f(2)=2 a n d f^{\prime}(2)=1$, then find $(\lim)_{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}$

- Watch Video Solution

52. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then find the value of $x^{2}+y^{2}+z^{2}$
53. Show that $f(x)=|x|$ is not differentiable at $x=0$.

- Watch Video Solution

54. Show that the function $f(x)=\{x-1, \quad$ if $\quad x<2$

$$
2 x-3, \quad \text { if } x \geq 2 \quad \text { is } \quad \text { not }
$$

differentiable at $x=2$.

- Watch Video Solution

55. Show that the function $f(x)=\left\{\begin{array}{cll}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right)$ is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=0$

- Watch Video Solution

56. Show that $f(x)=x^{2}$ is differentiable at $x=1$ and find $f^{\prime}(1)$.

- Watch Video Solution

57. Show that the function $f(x)=|x-1|$ for all $x \in R$, is not differentiable at $x=1$.

Watch Video Solution

58. Discuss the differentiability of $f(x)=x|x|$ at $x=0$.

(D) Watch Video Solution

$$
\begin{array}{lrrr}
\text { 5how } & \text { that } & \text { the }
\end{array} \begin{aligned}
& \text { function }
\end{aligned}
$$ but not differentiable at $x=0$.

- Watch Video Solution

$f(x)=\left\{x e-\left(\frac{1}{|x|}+\frac{1}{x}\right), x \neq 0 x, x=0 a t x=0\right.$

- Watch Video Solution

61. If $f(x)$ is differentiable at $x=a$, find $(\lim)_{x \rightarrow a} \frac{x^{2} f(a)-a^{2} f(x)}{x-a}$

- Watch Video Solution

62. For what choice of a and b is the function $f(x)=\left\{x^{2}, \quad x \leq c \quad a x+b \quad, \quad x>c\right.$ is differentiable at $x=c$.

- Watch Video Solution

63. If $f(2)=4$ and $f^{\prime}(2)=1$, then find $(\lim)_{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}$.
64. A function $f: R \rightarrow R$ satisfies that equation $f(x+y)=f(x) f(y)$ for all $x, y \in R, f(x) \neq 0$. Suppose that the function $f(x)$ is differentiable at $x=0$ and $f^{\prime}(0)=2$. Prove that $f^{\prime}(x)=2 f(x)$.

- Watch Video Solution

65. Show that $f(x)=|x-3|$ is continuous but not differentiable at $x=3$.

- Watch Video Solution

66. Show that $f(x)=x^{1 / 3}$ is not differentiable at $x=0$.

- Watch Video Solution

$f(x)=\left\{12 x-13, \quad\right.$ if $\quad x \leq 3 \quad 2 x^{2}+5, \quad$ if $\quad x>3 \quad$ is differentiable at $x=3$. Also, find $f^{\prime}(3)$.

- Watch Video Solution

68. Show that the function f defined as follows $\mathfrak{f}(\mathrm{x})=\{3 \mathrm{x}-2,0<\mathrm{x}<=1$, $2 x^{\wedge} 2-x, 1<x<=2,5 x-4, x>2$ is continuous at $x=2$, but not differentiable thereat.

- Watch Video Solution

69. Discuss the continuity and differentiability of the function
$f(x)=|x|+|x-1|$ in the interval $(-1,2)$.

- Watch Video Solution

70. Find whether the following function is differentiable at $x=1$ and $x=$ 2 or not: $f(x)=\left\{x, x<12-x, 1 \leq x \leq 2-2+3 x-x^{2}, x>2\right.$

- Watch Video Solution

71.

Show
that
the
function
$f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), x=0,0, \quad x \neq 0, \quad x=0\right.$ is differentiable at $x=0$, if $m>1$

- Watch Video Solution

72. Show that the function $f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), \quad x \neq 0,0 x=0\right.$ is differentiable at $x=0$, if ($\mathrm{m}>1$)

- Watch Video Solution

73.

$f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), \quad x \neq 00, \quad x=0 \quad\right.$ is \quad neither continuous nor differentiable, if $m \leq 0$

- Watch Video Solution

74. Find the values of a and b so that the function
$f(x)=\left\{x^{2}+3 x+a, \quad\right.$ if $\quad x \leq 1$
$b x+2, \quad$ if $\quad x>1 \quad$ is differentiable at each x in R.

- Watch Video Solution

75. Show that the function $f(x)=\{|2 x-3|[x], x \geq 1$;

$$
\sin \left(\frac{\pi x}{2}\right), \quad x<1 \text { is continuous at }
$$

$x=1$.

- Watch Video Solution
 differentiable at $x=1$, find a, b.

- Watch Video Solution

77. Find the values of a and b, if the function $f(x)$ defined by $f(x)=\left\{x^{2}+3 x+a, x \leq 1 b x+2, \quad x>1\right.$ is differentiable at $x=1$.

- Watch Video Solution

78. If $f(x)=x^{2}+2 x+7$, find $f^{\prime}(3)$.

- Watch Video Solution

79. Find $f^{\prime}(2)$ and $f^{\prime}(5)$ when $f(x)=x^{2}+7 x+4$.
80. For the function f given by $f(x)=x^{2}-6 x+8$, prove that $f^{\prime}(5)=4$.

- Watch Video Solution

81. Discuss the continuity and differentiability of $f(x)=\{1-x, \quad x<1 \quad(1-x)(2-x), \quad 1 \leq x \leq 2 \quad 3-x, \quad x>2$

- Watch Video Solution

82. Discuss the differentiability of $f(x)=|x-1|+|x-2|$

- Watch Video Solution

83. If $f(x)=\left\{x^{2}+3 x+a, \quad f\right.$ or $x \leq 1 b x+2, \quad f$ or $x>1$ is everywhere differentiable, find the values of a and b.

- Watch Video Solution

84. Discuss the differentiability of $f(x)=\left|(\log)_{e} x\right|, x>0$

- Watch Video Solution

85. If f is defined by $f(x)=x^{2}$, find $f^{\prime}(2)$.

- Watch Video Solution

86. If f is defined by $f(x)=x^{2}-4 x+7$, find $f^{\prime}(x)$

- Watch Video Solution

87. find the derivative of the function f given by $f(x)=2 x^{3}-9 x^{2}+12 x+9$

Watch Video Solution
88. If for the function $\operatorname{Phi}(x)=\lambda x^{2}+7 x-4, \operatorname{Phiprime}^{\wedge}(5)=97$, find λ.

- Watch Video Solution

89. If $f(x)=x^{3}+7 x^{2}+8 x-9$, find $f^{\prime}(4)$.

- Watch Video Solution

90. Find the derivative of the function f defined by $f(x)=m x+c$ at $x=0$.
91. Examine the differentiability of the function f defined by ${ }^{\mathrm{f}}(\mathrm{x})=\{2 \mathrm{x}+3$, if $-3<=x<-2, x+1$, if $-2<=x<0, x+2$, if $0<=x<=1$

- Watch Video Solution

92. Write an example of a function which is everywhere continuous but fails to be differentiable exactly at five points.

- Watch Video Solution

93. Discuss the continuity and differentiability of $f(x)=|\log | x| |$.

- Watch Video Solution

94. Discuss the continuity and differentiability of $f(x)=e^{|x|}$.
95. Discuss the continuity and differentiability of $f(x)=\left\{\begin{array}{ll}(x-c) \cos \left(\frac{1}{x-c}\right), & x \neq c 0,\end{array} \quad x=c\right.$

- Watch Video Solution

96. Is $|\sin x|$ differentiable? What about $\cos |x|$?

- Watch Video Solution

97. Define differentiability of a function at a point.

- Watch Video Solution

98. Is every differentiable function continuous?
99. Is every continuous function differentiable?

- Watch Video Solution

100. Give an example of a function which is continuous but not differentiable at a point.

- Watch Video Solution

101. If $f(x)$ is differentiable at $x=c$, then write the value of $(\lim)_{x \rightarrow c} f(x)$.

- Watch Video Solution

102. If $f(x)=|x-2|$ write whether $f^{\prime}(2)$ exists or not.
103. Write the points where $f(x)=\left|(\log)_{e} x\right|$ is not differentiable.

- Watch Video Solution

104. Write the points of non-differentiability of $f(x)=|\log | x| |$.

- Watch Video Solution

105. Write the derivative of $f(x)=|x|^{3}$ at $x=0$.

- Watch Video Solution

106. Write the number of points where $f(x)=|x|+|x-1|$ is continuous but not differentiable.
107. If $(\lim)_{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists finitely, write the value of $(\lim)_{x \rightarrow c} f(x)$.

- Watch Video Solution

108. Write the value of the derivative of $f(x)=|x-1|+|x-3|$ at $x=2$.

- Watch Video Solution

109. If $f(x)=\sqrt{x^{2}+9}$, write the value of $(\lim)_{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}$.

- Watch Video Solution

110. Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then (a). $f(x)$ and $g(x)$ both are continuous at $x=0$ (b) $f(x)$ and $g(x)$ both are differentiable at $x=0$
(c) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x=0$ (d) $f(x)$ and $g(x)$ both are not differentiable at $x=0$

- Watch Video Solution

111. The function $f(x)=\sin ^{-1}(\cos x)$ is discontinuous at $x=0$ (b) continuous at $x=0$ (c) differentiable at $x=0$ (d) none of these

- Watch Video Solution

112. The set of points where the function $f(x)=x|x|$ is differentiable is $(\mathrm{a})(-\infty, \infty)(\mathrm{b})(-\infty, 0) \cup(0, \infty)(\mathrm{c})(0, \infty)(\mathrm{d})[0, \infty]$

- Watch Video Solution

113. If $f(x)=\left\{\frac{|x+2|}{\tan ^{-1}(x+2)}, x \neq-2, \quad x=-2\right.$, then (a). $f(x)$ is continuous at $x=-2(\mathrm{~b})$ not continuous at $x=-2$
(c) differentiable at $x=-2$ (d) continuous but not derivative at $x=-2$

- Watch Video Solution

114. Let $f(x)=(x+|x|)|x|$. Then, for all $x f$ is continuous

- Watch Video Solution

115. The function $f(x)=e^{|x|}$ is (a) Continuous everywhere but not differentiable at $x=0$ (b) Continuous and differentiable everywhere (c) Not continuous at $x=0$ (d) None of the above

- Watch Video Solution

116. The function $f(x)=|\cos x|$ is (a) everywhere continuous and differentiable (b) everywhere continuous but not differentiable at
$(2 n+1) \pi / 2, n \in Z$ (c) neither continuous nor differentiable at $(2 n+1) \pi / 2, n \in Z(\mathrm{~d})$ none of these

- Watch Video Solution

117. If $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$, then $f(x)$ is (a) continuous on $[-1,1]$ and differentiable on ($-1,1$) (b) continuous on $[-1,1]$ and differentiable on $(-1,0) \cup(0,1)^{\text {(}}$ (c) continuous and differentiable on $[-1,1]$ (d) none of these

- Watch Video Solution

118. If $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ and if $f(x)$ is differentiable at

$$
\begin{align*}
& x=0 \quad, \quad \text { then } \quad a=b=c=0 \quad \text { (b) } \quad a=0, \quad b=0 ; \quad c \in R \\
& b=c=0, a \in R \tag{c}
\end{align*}
$$

(D) Watch Video Solution

119. If $f(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots+\frac{x^{2}}{\left(1+x^{2}\right)^{n}}+$, then at $x=0, f(x)$ (a)has no limit (b) is discontinuous (c)is continuous but not differentiable (d) is differentiable

(D) Watch Video Solution

120. If $f(x)=\left|(\log)_{e} x\right|$, then (a) $f^{\prime}\left(1^{+}\right)=1$ (b) $f^{\prime}\left(1^{-}\right)=-1$ (c)
$f^{\prime}(1)=1$ (d) $f^{\prime}(1)=-1$

- Watch Video Solution

121. If $f(x)=\left|(\log)_{e}\right| x| |$, then $(\mathrm{a}) f(x)$ is continuous and differentiable for all x in its domain] (b) $f(x)$ is continuous for all x in its domain but not differentiable at $x= \pm 1$ (c) $f(x)$ is neither continuous nor differentiable at $x= \pm 1$ (d) none of these

- Watch Video Solution

122. Let $f(x)=\left\{\begin{array}{cl}\frac{1}{|x|} & f \text { or }|x| \geq 1 \\ a x^{2}+b & f \text { or }|x|<1\end{array}\right)$. If $f(x)$ is continuous and differentiable at any point, then
A. $a=\frac{1}{2}, b=-\frac{3}{2}$
B. $a=-\frac{1}{2}, b=\frac{3}{2}$
C. $a=1, b=-1$
D. none of these

Answer: B

- Watch Video Solution

123. The function $f(x)=x-[x]$, where [•] denotes the greatest integer function is (a) continuous everywhere (b) continuous at integer points only (c) continuous at non-integer points only (d) differentiable everywhere
124. Let $f(x)=\left\{a x^{2}+1, \quad x>1, \quad x+1 / 2, \quad x \leq 1\right.$ Then, $f(x)$ is derivable at $x=1$, if $a=2$ (b) $b=1$ (c) $a=0$ (d) $a=1 / 2$

- Watch Video Solution

125. Let $f(x)=|\sin x|$. Then, (a) $f(x)$ is everywhere differentiable. (b) $f(x)$ is everywhere continuous but not differentiable at $x=n \pi, n \in Z \quad$ (c) $f(x)$ is everywhere continuous but not differentiable at $x=(2 n+1) \frac{\pi}{2}, n \in Z$.(d) none of these

(D) Watch Video Solution

126. Let $f(x)=|\cos x|$ (a) Then, $f(x)$ is everywhere differentiable (b) $f(x)$ is everywhere continuous but not differentiable at $x=n \pi, n \in Z \quad$ (c) $f(x)$ is everywhere continuous but not differentiable at $x=(2 n+1) \frac{\pi}{2}, \quad n \in Z$ (d) none of these

- Watch Video Solution

127. The function $f(x)=1+|\cos x|$ is (a) continuous no where (b) continuous everywhere (c) not differentiable at $x=0$ (d) not differentiable at $x=n \pi, \quad n \in Z$

- Watch Video Solution

128. The $f(x)=|\cos x|$ (a)Then, $\mathrm{f}(\mathrm{x})$ is everywhere differentiable at $x=(2 n+1) \pi / 2, \quad n \in Z$ (b) continuous but not differentiable at $x=(2 n+1) \pi / 2, n \in Z$ (c) neither differentiable nor continuous at $x=n \pi, \quad n \in Z(\mathrm{~d})$ none of these

- Watch Video Solution

129. The function $f(x)=\frac{\sin (\pi[x-\pi])}{4+[x]^{2}}$, where [] denotes the greatest integer function,(a) is continuous as well as differentiable for
all $x \in R$ (b) continuous for all x but not differentiable at some x (c) differentiable for all x but not continuous at some x.(d) none of these

- Watch Video Solution

130. Let $f(x)=a+b|x|+c|x|^{4}$, where a, b, and c are real constants.

Then, $f(x)$ is differentiable at $x=0$, if
A. $a=0$
B. $b=0$
C. $c=0$
D. none of these

Answer: B

131. If $f(x)=|3-x|+[3+x]$, where $[x]$ denotes the least integer greater than or equal to x, then $f(x)$ is
A. (a) continuous and differentiable at $x=3$
B. (b) continuous but not differentiable at $x=3$
C. (c) differentiable but not continuous at $x=3$
D. (d) neither differentiable nor continuous at $x=3$

Answer: null

- Watch Video Solution

132. If $f(x)=\left\{\frac{1}{1+e^{1 / x}}, \quad x \neq 00, \quad x=0\right.$, then $f(x)$ is continuous as well as differentiable at $x=0$ (b) continuous but not differentiable at $x=0$ (c) differentiable but not continuous at $x=0$
(d) none of these
133. If $f(x)=\left\{\frac{1-\cos x}{x \sin x}, x \neq 0\right.$ and $\frac{1}{2}, x=0$ then at $x=0, f(x)$ is (a)continuous and differentiable (b)differentiable but not continuous (c)continuous but not differentiable (d)neither continuous nor differentiable

- Watch Video Solution

134. The set of points where the function $f(x)$ given by $f(x)=|x-3| \cos x$ is differentiable, is R (b) $R-\{3\}$ (c) $(0, \infty)$ (d) none of these

- Watch Video Solution

135. Let $f(x)=\{1, x<=-1,|x|,-1<x<1,0, x>=1$. Then, f is (a) continuous at $x=-1$ (b) differentiable at $x=-1$ (c) everywhere continuous (d) everywhere differentiable
