

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

DIFFERENTIABILITY

Others

1. Find the values of a and b so that the function $f(x) = \begin{cases} x^2 + 3x + a & ext{if } x \leq 1 \\ bx + 2 & ext{if } x > 1 \end{cases}$ is differentiable at each $x \in R$

Watch Video Solution

2. Show that $f(x)=\{12x-13,$ if $x\leq 3, 2x^2+5$ if x>3 is

differentiable at x=3 . Also, find $f^{\,\prime}(3)_{\cdot}$

3. Show that $f(x) = (x)^{\frac{1}{3}}$ is not differentiable at x = 0.

Watch Video Solution

4. Show that f(x) = |x - 3| is continuous but not differentiable at x = 3.

Watch Video Solution

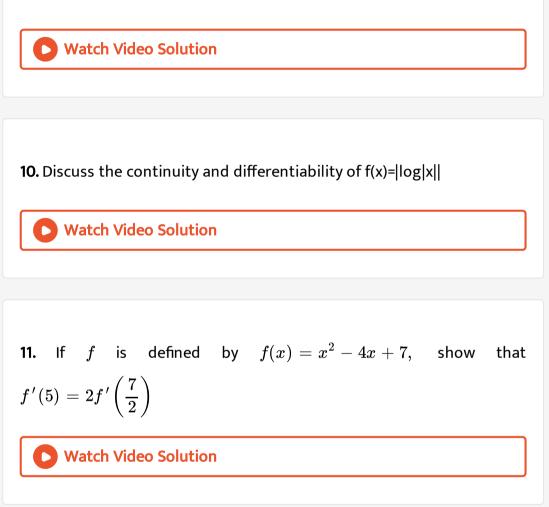
5. Show that the function $f(x) = \left\{x^m \sin\left(rac{1}{x}
ight), 0, x
eq 0, x = 0 ext{ is }
ight.$

differentiable at x = 0,if m > 1 and continuous but not differentiable at x = 0,if 0 < m < 1.

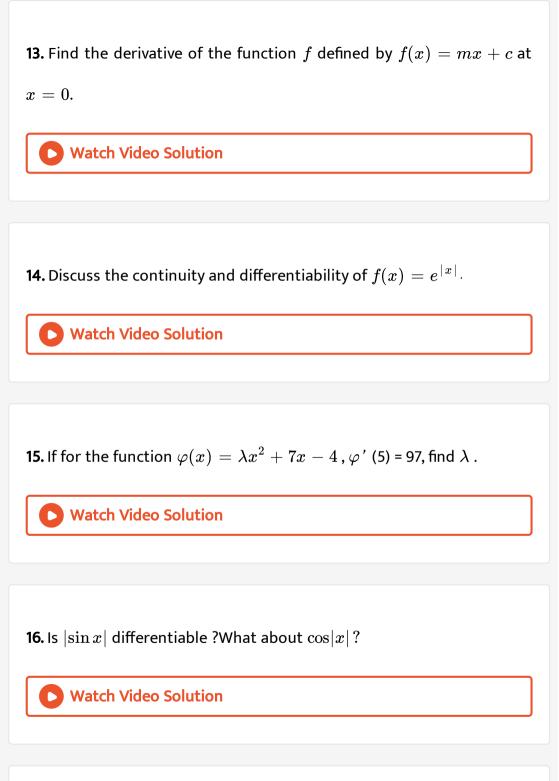
6. Discuss the continuity and differentiability of the function f(x) = |x| + |x-1| in the interval (-1,2).

Watch Video Solution

7. Show that the function
$$f$$
 defined as follows $f(x) = \begin{cases} 3x-2 & 0 < x \leq 1 \\ 2x^2-x & 1 < x \leq 2 \end{cases}$ is continuous at x=2 but not $5x-4 & x>2 \end{cases}$


differentiable.

Watch Video Solution


8. Discuss the continuity and differentiability of
$$f(x) = egin{cases} (x-c)\cos\left(rac{1}{x-c}
ight) & x
eq c \ 0 & x = c \end{cases}$$

9. Write an example of a function which is everywhere continuous but

fails to be differentiable exactly at five points.

12. If f is defined by $f(x)=x^2, ext{ find } f'(2).$

17. The set of points where the function f(x) given by $f(x)=|x-3|\cos x$ is differentiable, is (a) R (b) $R-\{3\}$ (c) $(0,\infty)$ (d) none of these

Watch Video Solution

18. If
$$f(x) = \left\{\frac{1-\cos x}{x\sin x}, x \neq 0 \text{ and } \frac{1}{2}, x = 0 \text{ then at } x = 0, f(x) \text{ is} \right.$$

(a)continuous and differentiable (b)differentiable but not continuous (c)continuous but not differentiable (d)neither continuous nor differentiable

Watch Video Solution

19. If $f(x)=iggl\{rac{1}{1+e^{rac{1}{x}}},x
eq 00,x=0,thenf(x) ext{ is continuous as}$

well as differentiable at x=0 continuous but not differentiable at

x=0 differentiable but not continuous at x=0 none of these

20. If f(x) = |3 - x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f(x) is continuous and differentiable at x = 3 continuous but not differentiable at x = 3 differentiable but not continuous at x = 3 neither differentiable nor continuous at x = 3

21. Let $f(x) = a + b|x| + c|x|^4$, where a, bandc are real constants. Then, f(x) is differentiable at x = 0, if a = 0 (b) b = 0 (c) c = 0 (d) none of these

Watch Video Solution

22. The function $f(x) = rac{\sin(\pi [x-\pi])}{4+{[x]}^2}$, where [] denotes the greatest

integer function, (a) is continuous as well as differentiable for all

 $x\in R$ (b) continuous for all x but not differentiable at some x (c) differentiable for all x but not continuous at some x .(d) none of these

23. Let
$$f(x) = \left\{ax^2 + 1, x > 1; x + \frac{1}{2}, x \le 1. then, f(x) \text{ is derivable at } x = 1, \text{ if } a = 2 \text{ (b) } a = 1 \text{ (c) } a = 0 \text{ (d) } a = \frac{1}{2} \right\}$$

Watch Video Solution

24. Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

25. It A is a symmetric matrix, write whether A^T is symmetric or skew -

symmetric matrix.

26. If $f(x)=ig\{x^2+3x+a,x\leq 1,bx+2,f ext{ or }x>1 ext{ is everywhere}$

differentiable, find the values of *aandb*.

Watch Video Solution

27. Let f(x) = |x| and $g(x) = |x^3|$, then (a)f(x) and g(x) both are continuous at x = 0 (b)f(x) and g(x) both are differentiable at x = 0(c)f(x) is differentiable but g(x) is not differentiable at x = 0 (d)f(x)and g(x) both are not differentiable at x = 0

Watch Video Solution

28. Is $|\sin x|$ differentiable? What about $\cos |x|$?

29. Find the values of aandb so that the function $f(x)=ig\{x^2+3x+a, ext{ if } x\leq 1bx+2, ext{ if } x>1 ext{ is differentiable}$ at each $x\in R$.

Watch Video Solution

30. The function $f(x) = e^{-|x|}$ is continuous everywhere but not differentiable at x = 0 continuous and differentiable everywhere not continuous at x = 0 none of these

Watch Video Solution

31. Discuss the continuity and differentiability of
$$f(x) = \{1-x, x < 1(1-x)(2-x), 1 \le x \le 2(3-x), x > 2$$

32. If
$$y = (x-1)\log(x-1) - (x+1)\log(x+1)$$
, prove that : $\frac{dy}{dx} = \log\left(\frac{x-1}{1+x}\right)$

Watch Video Solution

33. The set of points where the function f(x) = x|x| is differentiable is

 $(\,-\infty,\infty)$ (b) $(\,-\infty,0)\cup(0,\infty)$ $(0,\infty)$ (d) $[0,\infty)$

Watch Video Solution

34. The function $f(x) = \sin^{-1}(\cos x)$ is (a) . discontinuous at x = 0

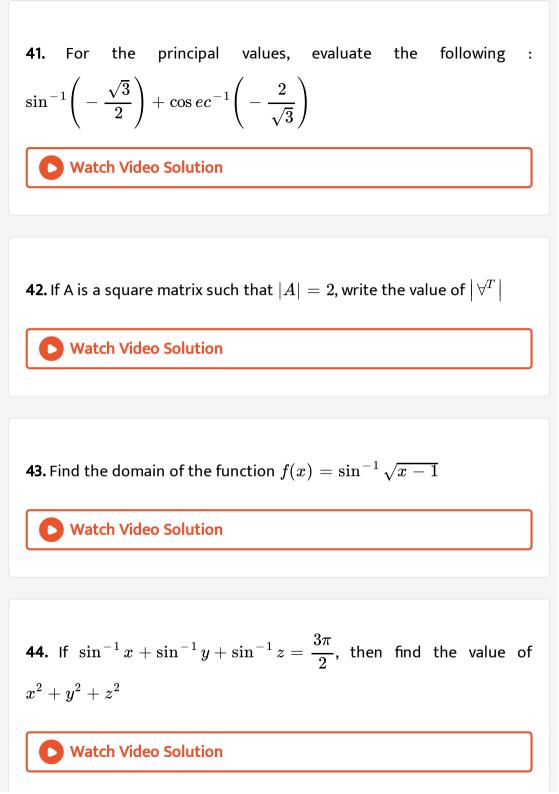
(b). continuous at x=0 (c) . differentiable at x=0 (d) . non of these

35. Let
$$f(x) = \left\{ \frac{1}{|x|} f \text{ or } |x| \ge 1ax^2 + bf \text{ or } |x| < 1 \Leftrightarrow (x) \text{ is continuous and differentiable at any point, then $a = \frac{1}{2}, b = -\frac{3}{2}$ (b)$$

$$a=\ -rac{1}{2}, b=rac{3}{2}\,a=1, b=\ -1$$
 (d) none of these

Watch Video Solution

36. If $f(x) = \sqrt{1 - (\sqrt{1} - x^2)}$, then f(x) is (a)continuous on [-1, 1] and differentiable on (-1, 1) (b) continuous on [-1,1] and differentiable on $(-1,0) \cup (0,1)$ (C) continuous and differentiable on [-1, 1](d) none of these



37. If $f(x) = a |\sin x| + b e^{|x|} + c |x|^3$ and if f(x) is differentiable at

 $x\,=\,0$ then

38. Solve the following equation for x ::

$$\cos(\tan^{-1} x) = \sin\left(\cot^{-1}\left(\frac{3}{4}\right)\right)$$

Watch Video Solution
39. Find the principal values the following ::
 $\sin^{-1}\left\{\cos\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right\}$
Watch Video Solution
40. Solve the following equation for x ::
 $\cos(\tan^{-1} x) = \sin\left(\cot^{-1}\left(\frac{3}{4}\right)\right)$
Watch Video Solution

45. If
$$f(x) = \left(\frac{x^l}{x^m}\right)^{l+m} \left(\frac{x^m}{x^n}\right)^{m+n} \left(\frac{x^n}{x^l}\right)^{n+l}$$
, then find f'(x).

46. Show that f(x) = |x| is not differentiable at x = 0.

47. Evaluate :
$$\tan\left(\cos^{-1}\left(-\frac{7}{25}\right)\right)$$

Watch Video Solution

48. For what choice of a and b is the function $f(x) = \left\{x^2, x \leq c \text{ and } ax + b, x > c \text{ is differentiable at } x = c
ight.$

49. Discuss the differentiability of f(x)=xert xert at x=0

50. Show that the function f(x)={ $x^2 \sin\left(rac{1}{x}
ight)$, when x
eq 0 and 0 when

x=0 } is differentiable at x=0.

Watch Video Solution

51. If
$$f(2) = 2andf'(2) = 1$$
, then find $(\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2})$

Watch Video Solution

52. If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$, then find the value of $x^2 + y^2 + z^2$

53. Show that f(x) = |x| is not differentiable at x = 0 .

54. Show that the function $f(x) = \{x-1 \ , \ ext{ if } \ x < 2$

2x-3 , if $x\geq 2$ is not

differentiable at x=2 .

Watch Video Solution

55. Show that the function
$$f(x) = \left\{ \begin{pmatrix} x^2 \sin\left(rac{1}{x}\right) & ext{if} & x
eq 0 \\ 0 & ext{if} & x = 0 \end{pmatrix}
ight\}$$
 is

differentiable at x=0 and f'(0) = 0

Watch Video Solution

56. Show that $f(x) = x^2$ is differentiable at x = 1 and find f'(1) .

57. Show that the function f(x) = |x-1| for all $x \in R$, is not

differentiable at x=1 .

Watch Video Solution

58. Discuss the differentiability of f(x) = x |x| at x = 0 .

Watch Video Solution

59. Show that the function
$$f(x) = \begin{cases} x \sin \frac{1}{x} & , when \ x \neq 0 & 0, when \ x = 0 \ ext{is continuous} \end{cases}$$

but not differentiable at x=0 .

60. Discuss the differentiability of
$$f(x) = \left\{xe - \left(\frac{1}{|x|} + \frac{1}{x}\right), x \neq 0x, x = 0atx = 0$$

Watch Video Solution

61. If $f(x)$ is differentiable at $x = a$, find $(\lim_{x \to a} \frac{x^2 f(a) - a^2 f(x)}{x - a}$.
Watch Video Solution

62. For what choice of a and b is the function $f(x) = \left\{x^2, x \leq c \ ax + b, x > c$ is differentiable at $x = c$.
Watch Video Solution

63. If $f(2) = 4$ and $f'(2) = 1$, then find $(\lim_{x \to 2} \frac{x f(2) - 2f(x)}{x - 2}$.

64. A function $f\colon R o R$ satisfies that equation f(x+y)=f(x)f(y)for all $x,\ y\in R$, f(x)
eq 0. Suppose that the function f(x) is differentiable at x=0 and f'(0)=2. Prove that $f'(x)=2\ f(x)$.

Watch Video Solution

65. Show that f(x) = |x-3| is continuous but not differentiable at

x = 3.

Watch Video Solution

66. Show that $f(x) = x^{1/3}$ is not differentiable at x = 0 .

$$f(x) = ig\{ 12x - 13, \quad ext{if} \quad x \leq 3 \quad 2x^2 + 5, \quad ext{if} \quad x > 3 \quad ext{is}$$

differentiable at x=3 . Also, find $f^{\,\prime}(3)$.

68. Show that the function f defined as follows `f(x)={3x-2, 0 < x <=1,

 $2x^2 - x$, 1 < x <= 2, 5x-4, x > 2 is continuous at x=2, but not differentiable thereat.

Watch Video Solution

69. Discuss the continuity and differentiability of the function f(x) = |x| + |x - 1| in the interval (-1, 2).

Watch Video Solution

that

70. Find whether the following function is differentiable at x = 1 and x = 2 or not : $f(x) = ig\{x, x < 12 - x, 1 \leq x \leq 2 - 2 + 3x - x^2, x > 2ig\}$

Watch Video Solution

71. Show that the function
$$f(x)=igg\{x^m\sinigg(rac{1}{x}igg),x=0,0,\ x
eq 0,\ x=0$$
 is differentiable at $x=0$, if $m>1$

Watch Video Solution

72. Show that the function $f(x)=iggl\{x^m\siniggl(rac{1}{x}iggr),\ x
eq 0$, $0\ x=0$ is

differentiable at x = 0 , if (m>1)

73. Show that the function
$$f(x) = \left\{ x^m \sin\left(rac{1}{x}
ight), \ x
eq 00, \qquad x=0 \quad ext{ is neither }$$

continuous nor differentiable, if $m \leq 0$

Vatch Video Solution

74. Find the values of
$$a$$
 and b so that the function
 $f(x) = \{x^2 + 3x + a, \text{ if } x \leq 1$
 $bx + 2, \text{ if } x > 1$ is differentiable at each x in R.
Watch Video Solution

75. Show that the function
$$f(x)=\{|2x-3|~[x],~x\geq 1;\ \sin\Bigl(rac{\pi x}{2}\Bigr),~x<1$$
 is continuous at

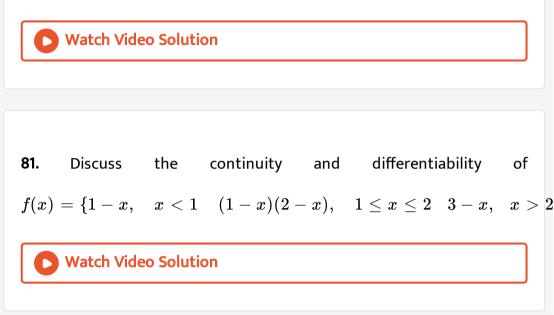
x = 1 .

76. If
$$f(x)=igg\{ax^2-b,$$
 if $|x|<1rac{1}{|x|},$ if $|x|\ge 1$ is

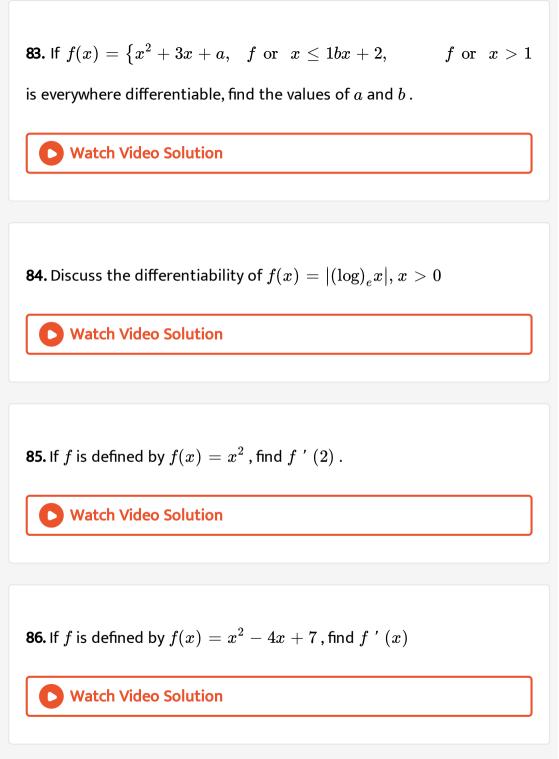
differentiable at x=1 , find $a,\ b$

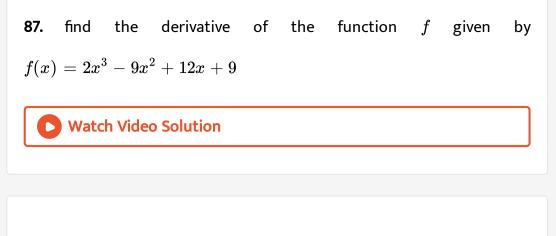
Watch Video Solution

77. Find the values of a and b , if the function f(x) defined by $f(x)=ig\{x^2+3x+a,\ x\leq 1bx+2,\ x>1\ ext{is differentiable at}\ x=1\,.$


Watch Video Solution

78. If
$$f(x)=x^2+2x+7$$
 , find f ' (3) .




79. Find f ' (2) and f ' (5) when $f(x) = x^2 + 7x + 4$.

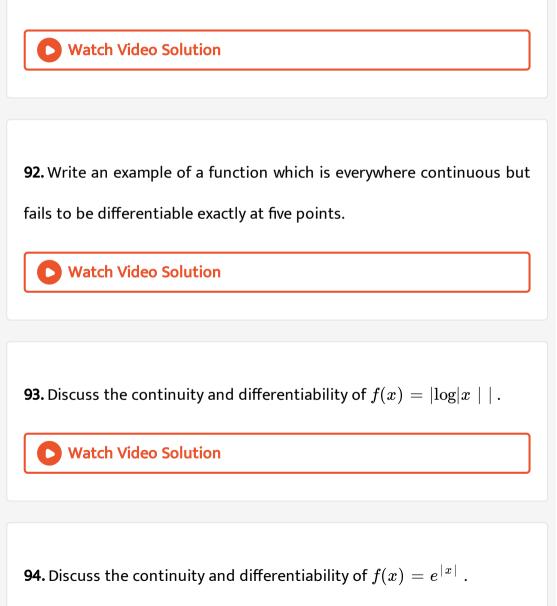
80. For the function f given by $f(x) = x^2 - 6x + 8$, prove that f ' (5) = 4 .

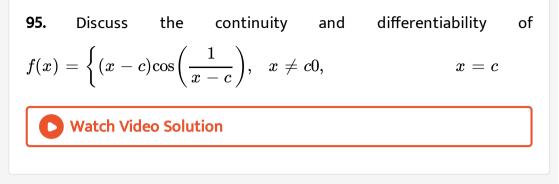
82. Discuss the differentiability of f(x) = |x-1| + |x-2|

88. If for the function $\operatorname{Phi}(x) = \lambda x^2 + 7x - 4, \ \operatorname{Phiprime}^{\hat{}}(5) = 97$, find λ .

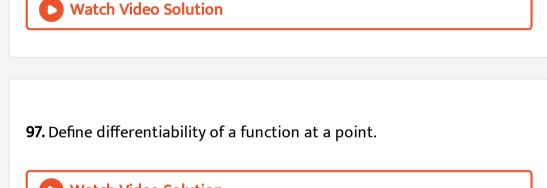
Watch Video Solution

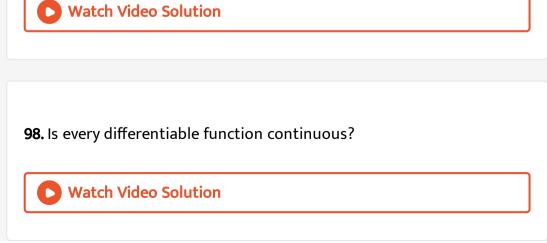
89. If
$$f(x) = x^3 + 7x^2 + 8x - 9$$
, find $f'(4)$.

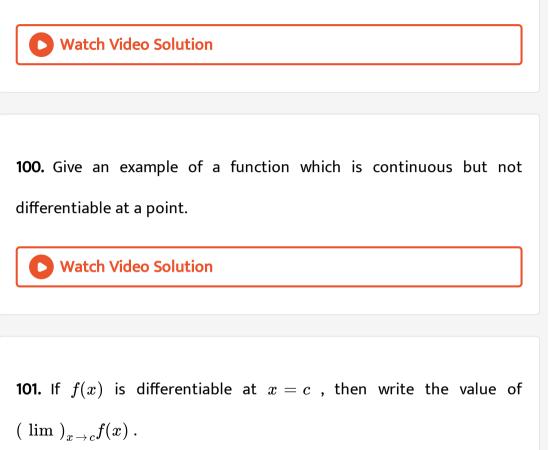

Watch Video Solution


90. Find the derivative of the function f defined by f(x) = mx + c at

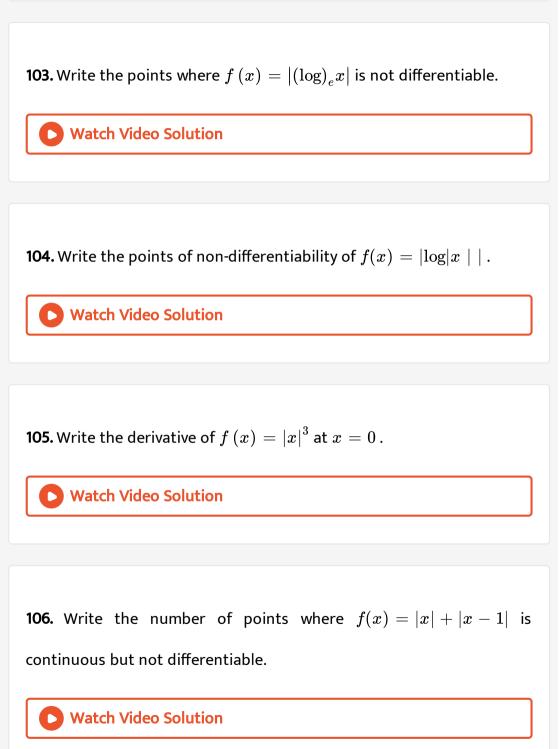
x = 0.


91. Examine the differentiability of the function f defined by $f(x)=\{2x+3,$


if -3 <= x< -2, x+1, if -2<=x<0, x+2, if 0<=x<=1



96. Is $|\sin x|$ differentiable? What about $\cos |x|$?



Watch Video Solution

102. If f(x) = |x - 2| write whether f ' (2) exists or not.

107. If $(\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely, write the value of $(\lim_{x \to c} f(x)$.

Watch Video Solution

108. Write the value of the derivative of f(x) = |x-1| + |x-3| at

x=2 .

Watch Video Solution

109. If
$$f(x)=\sqrt{x^2+9}$$
 , write the value of $(\ \lim\)_{x
ightarrow 4}rac{f(x)-f(4)}{x-4}$

Watch Video Solution

110. Let f(x)=|x| and $g(x)=\left|x^3\right|$, then (a).f(x) and g(x) both are continuous at x=0 (b) f(x) and g(x) both are differentiable at x=0

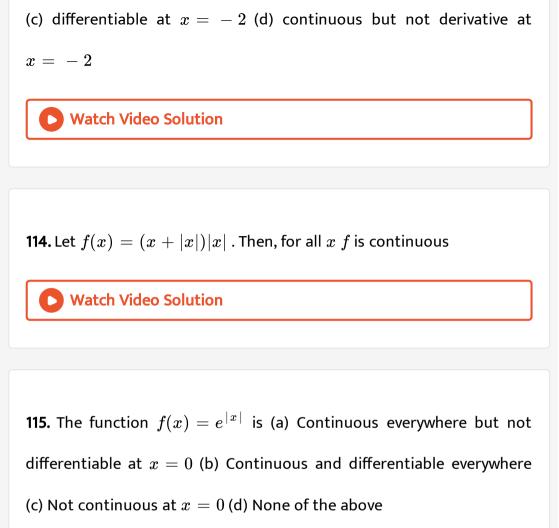
(c) f(x) is differentiable but g(x) is not differentiable at x=0 (d)

f(x) and g(x) both are not differentiable at x=0

111. The function $f(x) = \sin^{-1}(\cos x)$ is discontinuous at x = 0 (b)

continuous at x=0 (c) differentiable at x=0 (d) none of these

Watch Video Solution


112. The set of points where the function f(x) = x|x| is differentiable

is (a)
$$(\,-\infty,\,\infty)$$
 (b) $(\,-\infty,\,0)\cup(0,\,\infty)$ (c) $(0,\,\infty)$ (d) $[0,\,\infty]$

Watch Video Solution

113. If
$$f(x) = iggl\{ rac{|x+2|}{ anu^{-1}(x+2)}, \ x
eq -2, \qquad x=-2$$
 ,

then (a).f(x) is continuous at $x=\ -2$ (b) not continuous at $x=\ -2$

Watch Video Solution

116. The function $f(x) = |\cos x|$ is (a) everywhere continuous and differentiable (b) everywhere continuous but not differentiable at

 $(2n+1)\pi/2$, $n\in Z$ (c) neither continuous nor differentiable at $(2n+1)\pi/2$, $n\in Z$ (d) none of these

Watch Video Solution

117. If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$, then f(x) is (a) continuous on [-1, 1] and differentiable on (-1, 1) (b) continuous on [-1, 1] and differentiable on (- 1, 0) U (0, 1)` (c) continuous and differentiable on [-1, 1] (d) none of these

Watch Video Solution

118. If $f(x) = a | \sin x | + b \, e^{\, |\, x\,|} + c \, |x|^3$ and if f(x) is differentiable at

x=0 , then a=b=c=0 (b) $a=0,\;b=0;\;c\in R$ (c)

$$b=c=0, \;\; a\in R$$
 (d) $c=0, \;\; a=0, \;\; b\in R$

119. If
$$f(x) = x^2 + rac{x^2}{1+x^2} + rac{x^2}{\left(1+x^2
ight)^2} + \ldots + rac{x^2}{\left(1+x^2
ight)^n} + ,$$

then at $x=0,\,f(x)$ (a)has no limit (b) is discontinuous (c)is continuous but not differentiable (d) is differentiable

Watch Video Solution

120. If
$$f(x)=ig|(\log)_e xig|$$
 , then (a) $f'ig(1^+ig)=1$ (b) $f'ig(1^-ig)=-1$ (c) $f'(1)=1$ (d) $f'(1)=-1$

Watch Video Solution

121. If $f(x) = |(\log)_e |x||$, then (a)f(x) is continuous and differentiable for all x in its domain] (b) f(x) is continuous for all x in its domain but not differentiable at $x = \pm 1$ (c) f(x) is neither continuous nor differentiable at $x = \pm 1$ (d) none of these

122. Let
$$f(x)=egin{cases} rac{1}{|x|}&f ext{ or }|x|\geq 1\ ax^2+b&f ext{ or }|x|<1 \end{pmatrix}$$
 . If $f(x)$ is continuous and

differentiable at any point, then

A.
$$a = rac{1}{2}, b = -rac{3}{2}$$

B. $a = -rac{1}{2}, b = rac{3}{2}$

$$C. a = 1, b = -1$$

D. none of these

Answer: B

Watch Video Solution

123. The function f(x) = x - [x], where [·] denotes the greatest integer function is (a) continuous everywhere (b) continuous at integer points only (c) continuous at non-integer points only (d) differentiable everywhere 124. Let $f(x)=ig\{ax^2+1,\quad x>1,\quad x+1/2,\quad x\leq 1$ Then, f(x) is derivable at x=1 , if a=2 (b) b=1 (c) a=0 (d) a=1/2

Watch Video Solution

125. Let $f(x)=|\sin x|$. Then, (a) f(x) is everywhere differentiable. (b) f(x) is everywhere continuous but not differentiable at $x=n\,\pi,\ n\in Z$ (c) f(x) is everywhere continuous but not differentiable at $x=(2n+1)rac{\pi}{2}$, $n\in Z$.(d) none of these

Watch Video Solution

126. Let $f(x) = |\cos x|$ (a) Then, f(x) is everywhere differentiable (b) f(x) is everywhere continuous but not differentiable at $x = n\pi$, $n \in Z$ (c) f(x) is everywhere continuous but not differentiable at $x = (2n + 1) \frac{\pi}{2}$, $n \in Z$ (d) none of these 127. The function $f(x)=1+|{\cos x}|$ is (a) continuous no where (b) continuous everywhere (c) not differentiable at x=0 (d) not differentiable at $x=n\pi,\ n\in Z$

Watch Video Solution

128. The $f(x)=|\cos x|$ (a)Then, f (x) is everywhere differentiable at $x=(2n+1) \pi/2, \ n\in Z$ (b) continuous but not differentiable at $x=(2n+1) \pi/2, \ n\in Z$ (c) neither differentiable nor continuous at $x=n\pi, \ n\in Z$ (d) none of these

Watch Video Solution

129. The function $f(x)=rac{\sin(\pi[x-\pi])}{4+\left[x
ight]^2}$, where [] denotes the

greatest integer function,(a) is continuous as well as differentiable for

all $x \in R$ (b) continuous for all x but not differentiable at some x (c) differentiable for all x but not continuous at some x .(d) none of these

Watch Video Solution

130. Let $f(x) = a + b |x| + c |x|^4$, where $a, \ b, \ {
m and} \ c$ are real constants.

Then, f(x) is differentiable at x = 0 , if

A. a = 0

- B. b = 0
- C. c = 0

D. none of these

Answer: B

131. If f(x) = |3 - x| + [3 + x] , where [x] denotes the least integer greater than or equal to x , then f(x) is

A. (a) continuous and differentiable at $x\,=\,3$

B. (b) continuous but not differentiable at x=3

C. (c) differentiable but not continuous at x=3

D. (d) neither differentiable nor continuous at x=3

Answer: null

132. If
$$f(x) = \begin{cases} \frac{1}{1+e^{1/x}}, & x \neq 00, \\ x = 0 \end{cases}$$
, then $f(x)$ is continuous as well as differentiable at $x = 0$ (b) continuous but not differentiable at $x = 0$ (c) differentiable but not continuous at $x = 0$ (d) none of these

133. If $f(x) = \left\{ \frac{1 - \cos x}{x \sin x}, x \neq 0 \text{ and } \frac{1}{2}, x = 0 \text{ then at } x = 0, f(x) \right\}$ is (a)continuous and differentiable (b)differentiable but not continuous (c)continuous but not differentiable (d)neither continuous nor differentiable

Watch Video Solution

134. The set of points where the function f(x) given by $f(x) = |x - 3| \cos x$ is differentiable, is R (b) $R - \{3\}$ (c) $(0, \infty)$ (d) none of these

Watch Video Solution

135. Let $f(x)=\{1, x \le -1, |x|, -1 \le x \le 1, 0, x \ge 1\}$. Then, f is (a) continuous at

x=-1 (b) differentiable at x=-1 (c) everywhere continuous (d) everywhere

differentiable

