©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

DIFFERENTIAL EQUATION

Others

1. Solve the following differential equations:
$(1+x)\left(1+y^{2}\right) d x+(1+y)\left(1+x^{2}\right) d y=0$

- Watch Video Solution

2. Solve the differential equation $\frac{d y}{d x}=\frac{2 x(\log x+1)}{\sin y+y \cos y}$, given that $y=0, w h e n x=1$.
3. Solve the following differential equations: $\frac{d y}{d x}=e^{x+y}+e^{y} x^{3}$ Watch Video Solution
4. Solve the following differential equations: $\frac{d y}{d x}=\frac{e^{x}(2 x+\sin 2 x)}{y(2 \log y+1)}$

- Watch Video Solution

5. Solve:
(i) $\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y$
(ii) $\frac{d y}{d x}=\cos (x+y)$ $\frac{d y}{d x}=(4 x+y+1)^{2}$

- Watch Video Solution

6. Solve: $(x+y)^{2} \frac{d y}{d x}=a^{2}$
7. Find the solution of the differential equation $\cos y d y+\cos x \sin y d x=0$ given that $y=\pi / 2$, when $x=\pi / 2$.

- Watch Video Solution

8. Find the particular solution of the differential equation $\frac{d y}{d x}=-4 x y^{2}$ given that $y=1$, when $x=0$.

- Watch Video Solution

9. Solve the initial value problem: $\cos (x+y) d y=d x, y(0)=0$.

- Watch Video Solution

10. Solve: $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$

- Watch Video Solution

11. The equation of the curve passing through the point $\left(1, \frac{\pi}{4}\right)$ and having a slope of tangent at any point (x, y) as $\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$ is

- Watch Video Solution

12. A curve $y=f(x)$ has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of the point P from the x-axis. Then the differential equation of the curve

- Watch Video Solution

13. The slope of a curve at any point is the reciprocal of twice the ordinate at that point and it passes through the point $(4,3)$. The equation of the curve is:

- Watch Video Solution

14. The normal lines to a given curve at each point pass through $(2,0)$. The curve pass through $(2,3)$. Formulate the differntioal equation and hence find out the equation of the curve.

- Watch Video Solution

15. The slope of the tangent to a curve at any point (x, y) on its given by $\frac{y}{x}-\cot \left(\frac{y}{x}\right) \cdot \cos \left(\frac{y}{x}\right),(x>0, y>0)$ and the curve passes though the point $\left(1, \frac{\pi}{4}\right)$. Find the equation of the curve.

- Watch Video Solution

16. The slope of the tangent any point on a curve is λ times the slope of the joining the point of contact to the origin. Formulate the differential equation and hence find the equation of the curve.

- Watch Video Solution

17. Show that the curve for which the normal at every point passes through a fixed point is a circle.

- Watch Video Solution

18. If the tangent at any point P of a curve meets the axis of $\Xi n T$. find the curve for which $O P=P T, O$ being the origin.

- Watch Video Solution

19. The slope of the tangent at (x, y) to a curve passing through a point
$(2,1)$ is $\frac{x^{2}+y^{2}}{2 x y}$, then the equation of the curve is

(Watch Video Solution

20. Find the equation of a curve passing through the point $(1,1)$, given that the segment of any tangent drawn to the curve between the point
of tangency and the y-axis is bisected at the x-axis.

- Watch Video Solution

21. Solve the differential equation $(x+y) d y+(x-y) d x=0$; given that $\mathrm{y}=1$ when $\mathrm{x}=1$.

- Watch Video Solution

22. Solve the following differential equations: $\frac{d y}{d x}-1=e^{x-y}$

- Watch Video Solution

23. Solve: $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$.

- Watch Video Solution

24. Solve: ${ }^{\wedge} x^{\wedge} 2 y d x=\left(x^{\wedge} 3+y^{\wedge} 3\right) d y$

Watch Video Solution

25. Solve the following differential equations: $(x+y)^{2} \frac{d y}{d x}=1$

- Watch Video Solution

26. Solve the following differential equations: $\frac{d y}{d x}=\frac{(x-y)+3}{2(x-y)+5}$

- Watch Video Solution

27. Solve the following differential equations: $(x+y+1) \frac{d y}{d x}=1$

- Watch Video Solution

28. Solve the following differential equations:
$(x+y)(d x-d y)=d x+d y$
29. Solve $x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)+x-y \sin \left(\frac{y}{x}\right)=0$ given $y(1)=\frac{\pi}{2}$

- Watch Video Solution

30. Solve: $x \frac{d y}{d x}=y-x \tan \left(\frac{y}{x}\right)$.

- Watch Video Solution

31. A thermometer reading $80^{\circ} \mathrm{F}$ is taken outside. Five minutes later the thermometer reads $60^{\circ} \mathrm{F}$. After another 5 minutes the thermometer reads $50^{\circ} \mathrm{F}$. What is the temperature outside?

- Watch Video Solution

32. The doctor took the temperature of a dead body at 11.30 Pm which was $94.6^{\circ} \mathrm{F}$. He took the temperature of the body again after one hour,
which was $93.4^{\circ} \mathrm{F}$. If the temperature of the room was $70^{\circ} \mathrm{F}$, estimate the time of death. Taking normal temperature of human body as $98.6^{\circ} \mathrm{F}$. [Given: $\log \left(\frac{143}{123}\right)=0.15066, \log \left(\frac{123}{117}\right)=0.05$]

- Watch Video Solution

33. If is given that radium decomposes at a rate proportional to the amount present. If $p \%$ of th original amount of radium disappears in l years, what percentageof it will remain after $2 l$ years?

- Watch Video Solution

34. A radioactive substance disintegrates at as rate proportional to the amount of substance present. If $50 \% \mathrm{f}$ the given amount disintegrates in 1600 years. What percentage of the substance disintegrates i 10 years ? $\frac{-\log 2}{160}$ Takee $=0.9957$
35. If is known that, if the interest is compounded continuously, the principal changes at the rate equal to the product of the rate of interest per annum, and the principal. If the interest is compounded continuously at 5% per annum, in how many years will Rs. 100 double itself? At what interest rate will Rs. 100 double itself in 10 years $\left((\log)_{e} 2=0.6931\right)$ How much will Rs. 1000 be worth at 5% interest after 10 years? $\left(e^{0.5}=1.648\right)$.

- Watch Video Solution

36. It given that the rate at which some bacteria multiply is proportional to the instantaneous number presents. If the original number of bacteria doubles in two hours, in how many hours will it be five times?

- Watch Video Solution

37. A spherical rain drop evaporates at a rate proportional to its surface area at any instant t. The differential equation giving the rate of change
of the radius of the rain drop is \qquad

- Watch Video Solution

38. Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes to $80^{\circ} \mathrm{C}$ in a room of temperature $25^{\circ} \mathrm{C}$. Find (i) The temperature of water after 20 minutes (ii) The time when the temperature is $40^{\circ} \mathrm{C}$ [Given: $\left.(\log)_{e} \frac{11}{15}=-0.3101, \log 5=1.6094\right]$

- Watch Video Solution

39. The rate at which radioactive substances decay is known to be proportional to the number of such nuclei that are present in a given sample. In a certain sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of 100 years. Find what percentage of the original radioactive nuclei will remain after 1000 years.

- Watch Video Solution

40. In a college hostel accommodating 1000 students, one of them came in carrying a flu virus, then the hostel isolates. If rate at which the virus spreads is assumed to be proportional to the product of the number of infected students and the number of non-infected students, and if the number of infected students is 50 after 4 years then show that more than 95% of the students will be infected after 10 days.

D Watch Video Solution

41. Solve the following differential equations:
$(x+2) \frac{d y}{d x}-x^{2}+4 x-9, x \neq-2 \frac{d y}{d x}=\sin ^{3} x \cos ^{2} x+x e^{x}$

- Watch Video Solution

42. Solve: $\frac{d y}{d x}=\frac{1}{\sin ^{4} x+\cos ^{4} x}$ (ii) $\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^{x}+e^{-x}}$

- Watch Video Solution

43. Solve the initial value problem $e^{(d y / d x)}=x+1 ; y(0)=5$.

- Watch Video Solution

44. Solve the following initial value problems: $(22-26)$ $\sin \left(\frac{d y}{d x}\right)=k ; y(0)=1$

- Watch Video Solution

45. Solve the initial value problem $e^{(d y / d x)}=x+1 ; y(0)=5$.

- Watch Video Solution

46. Solve the following initial value problems: $(22-26)$
$x\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{d} x}=1 ; y(2)=0$

- Watch Video Solution

Watch Video Solution

48. Solve the following differential equations: $\frac{d y}{d x}=1+x+y+x y$ (ii)
$y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$

- Watch Video Solution

49. Solve: $\frac{d y}{d x}=e^{x+y}$ (ii) $\log \left(\frac{d y}{d x}\right)=a x+b y$

(D) Watch Video Solution

50. Solve the initial value problem $y^{\prime}=y \cot 2 x, y\left(\frac{\pi}{4}\right)=2$.

- Watch Video Solution

51. if a, b are two positive numbers such that $f(a+x)=b+\left[b^{3}+1-3 b^{2} f(x)+3 b\{f(x)\}^{2}-\{f(x)\}^{3}\right]^{\frac{1}{3}}$ for all real x, then prove that $f(x)$ is periodic and find its period?

Watch Video Solution

52. Solve the initial value problem: $d y=e^{2 x+y} d x, y(0)=0$.

- Watch Video Solution

53. Solve the initial value problem: $x(x d y+y d x)=y d x, y(1)=1$.

- Watch Video Solution

54. Solve: $\frac{d y}{d x}=y \sin 2 x$ it being given that $y(0)=1$.

- Watch Video Solution

55. Solve the initial value problem: $(x d y+y d x)=x y d x, y(1)=1$.

- Watch Video Solution

56. Find the equation of the curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abscissa and ordinate of the point.

- Watch Video Solution

57. Find the equation of the curve passing through the point $(1,0)$ if the slope of the tangent to the curve at any point $(x, y) i s \frac{y-1}{x^{2}+x}$.

- Watch Video Solution

58. Find the equation of the curve passing through the point $(-2,3)$ given that the slope of the tangent to the curve at any point $(x, y) i s \frac{2 x}{y^{2}}$.
59. Find the equation of the curve passing through the point $(1,1)$ whose differential equation is : $x d y=\left(2 x^{2}+1\right) d x$.

- Watch Video Solution

60. Solve the following differential equation : $x \cos y d y=\left(x e^{x} \log x+e^{x}\right) d x$

- Watch Video Solution

61. Solve the following differential equations: $x \cos ^{2} y d x=y \cos ^{2} x d y$

- Watch Video Solution

62. Experiments show that the rate of inversion of cane sugar in dilute solution is proportional to the concentration $y(t)$ of the unaltered
solution. Suppose that the concentration is $\frac{1}{100}$ at $t=0$ and $\frac{1}{300}$ at $t=10 \mathrm{hrs}$. Find $y(t)$

- Watch Video Solution

63. In a culture, the bacteria count is $1,00,000$. The number is increased by 10% in 2 hours. In how many hours will the count reach $2,00,000$, if the rate of growth of bacteria is proportional to the number present?

- Watch Video Solution

64. A bank pays interest by continuous compounding, that is ,by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year. [take $\left.e^{0.08} \approx 1.0833\right]$

- Watch Video Solution

65. Experiments show that radius disintegrates at a rate proportional to the amount of radium present at the moment. Its half life is 1590 years. What percentage will disappear in one year? [Use $e^{-\frac{\log 2}{1500}}=0.9996$]

- Watch Video Solution

66. The equation of the curve passing through the point $\left(1, \frac{\pi}{4}\right)$ and having a slope of tangent at any point (x, y) as $\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$ is

- Watch Video Solution

67. Find the equation to the curve satisfying
$x(x+1) \frac{d y}{d x}-y=x(x+1)$ and passing through $(1,0)$.

- Watch Video Solution

68. The curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P.

Prove that the differential equation of the curve is $y^{2}-2 x y \frac{d y}{d x}-x^{2}=0$, and hence find the curve.

- Watch Video Solution

69. The normal to a given curve at each point (x, y) on the curve passes through the point $(3,0)$. If the curve contains the point $(3,4)$, find its equation.

- Watch Video Solution

70. Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
$\left[\right.$ Given $\left.(\log)_{e} 0.989=0.01106 \operatorname{and}(\log)_{e} 2=0.6931\right]$
71. Find the equation of a curve passing through the point $(0,1)$. If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

- Watch Video Solution

72. Form the differential equation corresponding to $y^{2}=m\left(a^{2}-x^{2}\right)$ by eliminating parameters m and a

- Watch Video Solution

73. Form the differential equation not containing the arbitrary constants and satisfied by the equation $y=a e^{b x}, a a n d b$ are arbitrary constants.

- Watch Video Solution

74. if $(\log)_{a} \mathrm{x}=\mathrm{b}$ for permissible values of a and x then identify the statements which can be correct. (a) If a and b are two irrational numbers then x can be rational (b) if a is rational and b is irrational, then x can be rational (c) if a is irrational and b is rational, then x can be rational (d) If a and b are two rational numbers then x can be rational .

- Watch Video Solution

75. Form the differential equation corresponding to $y^{2}=a(b-x)(b+x)$ by eliminating parameters aandb.

- Watch Video Solution

76. In each of the following differential equations indicate its degree, wherever possible. Also, give the order of each of them. $\frac{d y}{d x}+\sin \left(\frac{d y}{d x}\right)=0$
77. Form the differential equation of the family of curves represented $c(y+c)^{2}=x^{3}$, where is a parameter.

- Watch Video Solution

78. Determine the order and degree of each of the following differential equations. State also if they are linear or non-linear. (i) $\frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}=k$

- Watch Video Solution

79. Show that the differential equation that represents the family of all parabolas having their axis of symmetry coincident with the axis of $x i s y y_{2}+y 12=0$.
80. Find the differential equation of All non-vertical lines in a plane.

- Watch Video Solution

81. Solve the following differential equations: $\frac{d y}{d x}=y \tan x-2 \sin x$

- Watch Video Solution

82. Solve the following differential equations: $\frac{d y}{d x}+y \cot x=x^{2} \cot x+2 x$

- Watch Video Solution

83. Solve the following differential equations:
$\frac{d y}{d x}+\frac{4 x}{x^{2}+1} y+\frac{1}{\left(x^{2}+1\right)^{2}}=0$
84. Solve the following differential equations: $x \frac{d y}{d x}-y=(x-1) e^{x}$

- Watch Video Solution

85. Solve each of the following initial value problems
$\sqrt{1-y^{2}} d x=\left(\sin ^{-1} y-x\right) d y, y(0)=0$

- Watch Video Solution

86. Solve the following differential equations: $x \frac{d y}{d x}+y=x e^{x}$

- Watch Video Solution

87. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1 \operatorname{and} y(0)=-1$ then show that $y(1)=-\frac{1}{2}$.

- Watch Video Solution

88. Solve: $\left(x+2 y^{3}\right) d y=y d x$.

- Watch Video Solution

89. Solve each of the following initial value problems:
$x \frac{d y}{d x}+y=x \log x, y(1)=\frac{1}{4}$

- Watch Video Solution

90. Solve each of the following initial value problems:
$\frac{d y}{d x}+\frac{2 x}{x^{2}+1} y=\frac{1}{\left(x^{2}+1\right)^{2}}, y(0)=0$
$\left(x^{2}+1\right) \frac{d y}{d x}-2 x y=\left(x^{4}+2 x^{2}+1\right) \cos x, y(0)=0$

- Watch Video Solution

91. Solve the following differential equations: $\left(2 x-10 y^{3}\right) \frac{d y}{d x}+y=0$

92. Solve the following differential equations:
 $\frac{d y}{d x}+y \cot x=x^{2} \cot x+2 x$

- Watch Video Solution

93. Solve the following differential equations: $\frac{d y}{d x}+y \cos x=\sin x \cos x$

- Watch Video Solution

94. Solve the following differential equations: $(x+\tan y) d y=\sin 2 y d x$

- Watch Video Solution

95. Solve the following differential equations: $\frac{d y}{d x}-y=x e^{x}$
96. Solve the following differential equations:
$\left(1+x^{2}\right) \frac{d y}{d x}-2 x y=\left(x^{2}+2\right)\left(x^{2}+1\right)$

- Watch Video Solution

97. The surface are of a balloon being inflated changes at a constant rate.

If initially, its radius is 3 units sand after 2 seconds, it s 5 units, find the radius after t seconds.

- Watch Video Solution

98. Solve the following differential equations: $\frac{d y}{d x}+2 y=x e^{4 x}$

- Watch Video Solution

99. Suppose the growth of a population is proportional the umber present. If the population of a colony double in 25 days, in how many
days will the population become triple?

- Watch Video Solution

100. A population grows at the rate of 8% per year. How long does it take for the population to double? Use differential equation for it.

- Watch Video Solution

101. Verify that $y=\log \left(x+\sqrt{x^{2}+a^{2}}\right)^{2}$ satisfies the differential equation $\left(a^{2}+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0$.

- Watch Video Solution

102. Verify that $y=c e^{\tan -1_{x}}$ is a solution of differential equation
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}=0$.
103. Show that the differential equation of which $y=2\left(x^{2}-1\right)+c e^{-\left(x^{2}\right)}$ is a solution, is $\frac{d y}{d x}+2 x y=4 x^{3}$.

- Watch Video Solution

104. Form the differential equation corresponding to $y^{2}-2 a y+x^{2}=a^{2}$ by eliminating a.

- Watch Video Solution

105. Show that $y=A x+\frac{B}{x}, x \neq 0$ is a solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$

- Watch Video Solution

106. Form the differential
equation
having $y=\left(\sin ^{-1} x\right)^{2}+A \cos ^{-1} x+B$ where A and B are arbitrary constants,

- Watch Video Solution

107. Show that $y=a e^{2 x}+b e^{-x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)-2 y=0$.

- Watch Video Solution

108. Show that the function $y=(A+B x) e^{3 x}$ is a solution of the equation $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0$.

(Watch Video Solution

109. Show that $y=c x+\frac{a}{c}$ is a solution of the differential equation
$y=x \frac{d y}{d x}+\frac{a}{\frac{d y}{d x}}$.
110. Show that $y=a \cos (\log x)+b \sin (\log x)$ is a solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$.

(Watch Video Solution

111. Solve the following differential equations:
$\left(x^{2}+y^{2}\right) \frac{d y}{d x}=8 x^{2}-3 x y+2 y^{2}$

- Watch Video Solution

112. Solve the following differential equations:
$\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0$

- Watch Video Solution

113. Solve the differential equation: $2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$
114. Solve the following differential equations: $\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}$

- Watch Video Solution

115. Solve the following differential equations:
$\left[x \sqrt{x^{2}+y^{2}}-y^{2}\right] d x+x y d y=0$

- Watch Video Solution

116. Solve the following differential equations:
$\frac{y}{x} \cos \left(\frac{y}{x}\right) d x-\left\{\frac{x}{y} \sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right\} d y=0$

- Watch Video Solution

117. Solve the following differential equations: $\frac{d y}{d x}=\frac{x+y}{x-y}$
118. Solve the following differential equations: $x \frac{d y}{d x}=x+y$

- Watch Video Solution

119. Solve the following differential equations: $x y \frac{d y}{d x}=x^{2}+y^{2}$

- Watch Video Solution

120. Solve the following differential equations: $y e^{x / y} d x=\left(x e^{\frac{x}{y}}+y\right) d y$

- Watch Video Solution

121. Solve: $\frac{d y}{d x}=-\frac{x+y \cos x}{1+\sin x}$

- Watch Video Solution

122. Solve: $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$

- Watch Video Solution

123. Solve: $\frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x}$

- Watch Video Solution

124. Solve: $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x$.

- Watch Video Solution

125. Solve: $\frac{d y}{d x}+y=\cos x-\sin x$

- Watch Video Solution

126. Solve: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ subject to the initial condition $y(0)=0$.

- Watch Video Solution

127. Solve: $\frac{d y}{d x}-2 y=\cos 3 x$

- Watch Video Solution

128. Solve the differential equation: $\frac{d y}{d x}+\frac{y}{2 x}=3 x^{2}$

- Watch Video Solution

129. Solve the following differential equation:
$y d x+x \log \left(\frac{y}{x}\right) d y=2 x d y$
130. Solve the following differential equations:

$$
\left(2 x^{2} y+y^{3} \text { ^ }\right) d x+\left(x y^{2}-3 x^{3}\right) d y=0
$$

- Watch Video Solution

131. Determine the order and degree of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{3} x}{d t^{3}}+\frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{2}=e^{t}$

- Watch Video Solution

132. Determine the order and degree of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{2} y}{d x^{2}}+4 y=0$

- Watch Video Solution

133. Determine the order and degree of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{3} x}{d t^{3}}+\frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{2}=e^{t}$

- Watch Video Solution

134. Determine the order and degree of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+x y=0$

- Watch Video Solution

135. Determine the order and degree of the following differential equation. State also whether they are linear or non-linear: $\left(\frac{d y}{d x}\right)^{2}+\frac{1}{d y / d x}=2$
136. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{4} y}{d x^{4}}=\left\{c+\left(\frac{d y}{d x}\right)^{2}\right\}^{3 / 2}$

- Watch Video Solution

137. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $y \frac{d^{2} x}{d y^{2}}=y^{2}+1$

- Watch Video Solution

138. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+y\left(\frac{d y}{d x}\right)^{4}+y^{4}=0$
139. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\left(x y^{2}+x\right) d x+\left(y-x^{2} y\right) d y=0$

- Watch Video Solution

140. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2 / 3}$

- Watch Video Solution

141. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $y=p x+\sqrt{a^{2} p^{2}+b^{2}}$, where $p=\frac{d y}{d x}$

- Watch Video Solution

142. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$

(Watch Video Solution

143. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{2}-6 y=\log x$

- Watch Video Solution

144. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$

- Watch Video Solution

145. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear:
$\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\left(c \frac{d^{2} y}{d x^{2}}\right)^{1 / 3}$

- Watch Video Solution

146. Determine the order and degree of the following differential equation. State also whether they are linear or non-linear: $\sqrt[3]{\frac{d^{2} y}{d x^{2}}}=\sqrt{\frac{d y}{d x}}$

- Watch Video Solution

147. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $s^{2} \frac{d^{2} t}{d s^{2}}+s t \frac{d t}{d s}=s$
148. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{3} y}{d x^{3}}+\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\frac{d y}{d x}+4 y=\sin x$

Watch Video Solution

149. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear:
$\sqrt{1-y^{2}} d x+\sqrt{1-x^{2}} d y=0$

- Watch Video Solution

150. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear:
$2 \frac{d^{2} y}{d x^{2}}+3 \sqrt{1-\left(\frac{d y}{d x}\right)^{2}-y}=0$

- Watch Video Solution

151. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear:
$y=x \frac{d y}{d x}+a \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$

- Watch Video Solution

152. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d y}{d x}+e^{y}=0$

- Watch Video Solution

153. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$

- Watch Video Solution

154. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\left(y^{\prime \prime}\right)^{2}+\left(y^{\prime}\right)^{3}+\sin y=0$

- Watch Video Solution

155. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y \sin y=0$

- Watch Video Solution

156. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x$

- Watch Video Solution

157. Form the differential equation representing the family of curves $y=A \cos (x+B)$ where A and B are parameters.

- Watch Video Solution

158. Form the differential equation of the family of curves $y=a \sin (b x+c), a$ and c being parameters.

- Watch Video Solution

159. Find the differential equation of all circles touching the (i) x-axis at the origin (ii) y-axis at the origin

- Watch Video Solution

160. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
161. Find the area bounded by the curve $y^{2}=4 a x$ and the lines $y=2$ and y-axis.

- Watch Video Solution

162. Show that the differential equation representing one parameter family of curves
$\left(x^{2}-y^{2}\right)=c\left(x^{2}+y^{2}\right)^{2}$ is $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$

- Watch Video Solution

163. Represent the following family of curves by forming the corresponding differential equations (a, b are parameters) (i) $\frac{x}{a}+\frac{y}{b}=1$ (ii) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
164. Obtain the differential equation of all circles of radius r.

- Watch Video Solution

165. Form the differential equation of the family of curves represented by $y^{2}=(x-c)^{3}$.

- Watch Video Solution

166. Form the differential equation corresponding to $y=e^{m x}$ by eliminating m.

- Watch Video Solution

167. Form the differential equation from the following primitives where constants are arbitrary: $y^{2}=4 a x$
168. Form the differential equation from the following primitives where constants are arbitrary: $y=c x+2 c^{2}+c^{3}$

- Watch Video Solution

169. Form the differential equation from the following primitive where constant is arbitrary: $x y=a^{2}$

- Watch Video Solution

170. Form the differential equation from the following primitives where constants are arbitrary: $y=a x^{2}+b x+c$

- Watch Video Solution

171. Find the differential equation of the family of curves $y=A e^{2 x}+B e^{-2 x}$, where A and B are arbitrary constants.

- Watch Video Solution

172. Find the differential equation of the family of curves, $x=A \cos n t+B \sin n t$, where A and B are arbitrary constants.

- Watch Video Solution

173. Form the differential equation corresponding to $y^{2}=a(b-x)(\mathrm{b}+\mathrm{x})$ by eliminating a and b .

- Watch Video Solution

174. Form the differential equation corresponding to $(x-a)^{2}+(y-b)^{2}=r^{2}$ by eliminating a and b .
175. From the dffential equation of all circles pass thrrough origin and whose centres lie on Y-axis.

- Watch Video Solution

176. Find the differential equation of all the circles which pass thorough the origin and whose centres lie on x-axis.

- Watch Video Solution

177. Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
178. Find the differential equation of all the parabolas with latus rectum $4 a$ and whose axes are parallel to x -axis.

- Watch Video Solution

179. Form the differential equation of the family of curves represented by the equation (a being the parameter):
(i) $(2 x+a)^{2}+y^{2}=a^{2}$
(ii) $(2 x-a)^{2}-y^{2}=a^{2}$
(iii) $(x-a)^{2}+2 y^{2}=a^{2}$

- Watch Video Solution

180. Represent the following families of curves by forming the corresponding differential equations (a, b being parameters): (i) $x^{2}+y^{2}=a^{2}$ (ii) $x^{2}-y^{2}=a^{2}$

- Watch Video Solution

181. Represent the following families of curves by forming the corresponding differential equations (a being parameter): (i) $(x-a)^{2}-y^{2}=1$ (ii) $x^{2}+y^{2}=a x^{3}$

- Watch Video Solution

182. Represent the following families of curves by forming the corresponding differential equations (a, b being parameters): (i) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ (ii) $y=e^{a x}$

- Watch Video Solution

183. Represent the following families of curves by forming the corresponding differential equations (a, b being parameters): (i)
$y^{2}=4 a x$ (ii) $y^{2}=4 a(x-b)$

- Watch Video Solution

184. Represent the following families of curves by forming the corresponding differential equations (a, b being parameters): (i) $x^{2}+(y-b)^{2}=1$ (ii) $y=a x^{3}$

- Watch Video Solution

185. Represent the following families of curves by forming the corresponding differential equations (a, b being parameters): $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ ii. $y=e^{a x}$

- Watch Video Solution

186. Form the differential equation representing the family of ellipses having foci on x-axis and centre at the origin.

- Watch Video Solution

187. Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.

- Watch Video Solution

188. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

- Watch Video Solution

189. Show that $x y=a x^{x}+b e^{-x}=x^{2}$ is a solution of the differential equation. $x \frac{d^{2} y}{d x^{2}}+2-x y+x^{2}-2=0$.

- Watch Video Solution

190. Verify that the function $y=C_{1} e^{a x} \cos b x+C_{2} e^{a x} \sin b x, C_{1}, C_{2}$, are arbitrary constants is a solution of the differential equation
$\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$

Watch Video Solution

191. Show that $y=b e^{x}+c e^{2 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$.

(Watch Video Solution

192. Verify that $y=4 \sin 3 x$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+9 y=0$.

- Watch Video Solution

193. Show that $y=a e^{2 x}+b e^{-x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-2 y=0$.
194. Show that the function $y=A \cos x+b \sin x$ is as solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$.

- Watch Video Solution

195. Show that the function $y=A \cos 2 x-B \sin 2 x$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=0$.

- Watch Video Solution

196. Show that $y=A e^{B x}$ is as solution of the differential equation $\frac{d^{2} y}{d x^{2}}=\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}$.

(Watch Video Solution

197. Verity that $y=\frac{a}{x}+b$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{2}{x}\left(\frac{d y}{d x}\right)=0$.

- Watch Video Solution

198. Verify that $y^{2}=4 a x$ is a solution of the differential equation $y=x \frac{d y}{d x}+a \frac{d x}{d y}$.

- Watch Video Solution

199. Show that $A x^{2}+B y^{2}=1$ is a solution of the differential equation $x\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=y \frac{d y}{d x}$.

- Watch Video Solution

200. Show that $y=a x^{3}+b x^{2}+c$ is a solution of the differential equation $\frac{d^{3} y}{d x^{3}}=6 a$.

- Watch Video Solution

201. Show that $y=\frac{c-x}{1+c x}$ is a solution of the different equation $\left(1+x^{2}\right) \frac{d y}{d x}+\left(1+y^{2}\right)=0$.

- Watch Video Solution

202. Show that $y=e^{x}(A \cos x+B \sin x)$ is the solution of the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$.

- Watch Video Solution

203. Verify that $y=c x+2 c^{2}$ is a solution of the differential equation $2\left(\frac{d y}{d x}\right)^{2}+x \frac{d y}{d x}-y=0$.

- Watch Video Solution

204. Verify that $y=-x-1$ is a solution of the differential equation $(y-x) d y-\left(y^{2}-x^{2}\right) d x=0$.

Watch Video Solution

205. Verity that $y^{2}=4 a(x+a)$ is a solution of the differential equation
$y\left\{1-\left(\frac{d y}{d x}\right)^{2}\right\}=2 x \frac{d y}{d x}$.

- Watch Video Solution

206. Verify that $y=e^{m \cos ^{-1} x}$ satisfies the differential equation
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0$

- Watch Video Solution

207. Show that the differential equation of which $y=2\left(x^{2}-1\right)+c e^{-x \wedge} 2$ is a solution, is $\frac{d y}{d x}+2 x y=4 x^{3}$.

- Watch Video Solution

208. Verify the solution problems: Show that $y=e^{-x}+a x+b$ is solution of the differential equation $e^{x} \frac{d^{2} y}{d x^{2}}=1$

- Watch Video Solution

209. For each of the following differential equations verify that the accompanying functions a solution. (i) $x \frac{d y}{d x}=y \Rightarrow y=a x$
$x+y \frac{d y}{d x}=0 \Rightarrow y= \pm \sqrt{a^{2}-x^{2}}$ (iii) $x \frac{d y}{d x} y+y^{2} \Rightarrow y=\frac{a}{x+a}$ (iv)
$x^{3} \frac{d^{2} y}{d x^{2}}=1 \Rightarrow y=a x+b+\frac{1}{2 x}$ (v) $y=\left(\frac{d y}{d x}\right)^{2} \Rightarrow y=\frac{1}{4}(x \pm a)^{2}$

- Watch Video Solution

210. Verify that the function defined by $y=\sin x-\cos x$ is a solution of the initial value problem $\frac{d y}{d x}=\sin x+\cos x$; such that $y(0)=-1$

- Watch Video Solution

211. Show that the function φ defined by $\varphi(x)=\cos x(x \in \mathbb{R})$; satisfies the initial value problem $\frac{d^{2} y}{d x^{2}}+y=0, y(0)=1, y^{\prime}(0)=0$.

- Watch Video Solution

212. For each of the following initial value problems verify that the accompanying functions is a solution.
$x \frac{d y}{d x}=1, y(1)=0 \Rightarrow y=\log x$ (ii) $\frac{d y}{d x}=y, y(0)=1 \Rightarrow y=e^{x}$
$\frac{d^{2} y}{d x^{2}}+y=0, y(0)=0, y^{\prime}(0)=1 \Rightarrow y=\sin x$
$\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0, y(0)=2, y^{\prime}(0)=1 \Rightarrow y=e^{x}+1$

- Watch Video Solution

213. Solve: $\frac{d y}{d x}=\frac{x}{x^{2}+1}$

(-) Watch Video Solution

214. Solve: $\left(e^{x}+e^{-x}\right) \frac{d y}{d x}=\left(e^{x}-e^{-x}\right)$

- Watch Video Solution

215. Solve the following differential equation: $\frac{d y}{d x}=x^{2}+x-\frac{1}{x}, x \neq 0$

- Watch Video Solution

216. Solve the following differential equation: $\frac{d y}{d x}+2 x=e^{3 x}$

- Watch Video Solution

217. Solve the following differential equation: $\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$

- Watch Video Solution

218. Solve the following differential equation: $\frac{d y}{d x}=\tan ^{-1} x$
219. Solve the following differential equation: $\frac{1}{x} \frac{d y}{d x}=\tan ^{-1} x, x \neq 0$

- Watch Video Solution

220. Solve the following differential equation:
$(\sin x+\cos x) d y+(\cos x-\sin x) d x=0$

- Watch Video Solution

221. Solve the following differential equation: $\frac{d y}{d x}-x \sin ^{2} x=\frac{1}{x \log x}$

- Watch Video Solution

222. Solve the following differential equation: $\sin ^{4} x \frac{d y}{d x}=\cos x$
223. Solve the following differential equation: $\sqrt{1-x^{4}} d y=x d x$

- Watch Video Solution

224. Solve the following differential equation:
$\left(1+x^{2}\right) \frac{d y}{d x}-x=2 \tan ^{-1} x$

- Watch Video Solution

225. Solve the following differential equation: $\frac{d y}{d x}=x \log x$

- Watch Video Solution

226. Solve the following differential equation:
$\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$
227. Solve the following differential equation: $\frac{d y}{d x}=x^{5}+x^{2}-\frac{2}{x}, x \neq 0$

- Watch Video Solution

228. Solve the following differential equation: $\left(x^{2}+1\right) \frac{d y}{d x}=1$

- Watch Video Solution

229. Solve the following differential equation: $(x+2) \frac{d y}{d x}=x^{2}+3 x+7$

- Watch Video Solution

230. Solve the following differential equation: $\frac{d y}{d x}=\log x$

- Watch Video Solution

231. Find $\frac{d y}{d x}$ if $y=x . e^{x}$

- Watch Video Solution

232. Solve the following differential equation: $\frac{d y}{d x}=x^{5} \tan ^{-1}\left(x^{3}\right)$

- Watch Video Solution

233. Solve the following differential equation: $\sqrt{a+x} d y+x d x=0$

- Watch Video Solution

234. Solve the following differential equation: $\frac{d y}{d x}=x e^{x}-\frac{5}{2}+\cos ^{2} x$

- Watch Video Solution

- Watch Video Solution

236. Solve the following initial value problem: $x \frac{d y}{d x}+1=0 ; y(-1)=0$

- Watch Video Solution

237. Solve: $\frac{d y}{d x}=\frac{1}{y^{2}+\sin y}$

(Watch Video Solution

238. Solve: $\frac{d y}{d x}=\sec y$

- Watch Video Solution

239. Solve: $\frac{d y}{d x}+y=1$

- Watch Video Solution

240. Solve the initial value problem $\frac{d y}{d x}+2 y^{2}=0, y(1)=1$ and find the corresponding solution curve.

- Watch Video Solution

241. Solve the following differential equation: $\frac{d y}{d x}+\frac{1+y^{2}}{y}=0$

- Watch Video Solution

242. Solve the following differential equation: $\frac{d y}{d x}=\frac{1+y^{2}}{y^{3}}$

- Watch Video Solution

243. Solve the following differential equation: $\frac{d y}{d x}=\frac{1-\cos 2 y}{1+\cos 2 x}$

- Watch Video Solution

244. Find the general solution of the differential equations $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

- Watch Video Solution

245. Solve: $e^{x} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0$

- Watch Video Solution

246. Find the particular solution of the differential equation
$\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$, given that $y=1$ when $x=0$.

- Watch Video Solution

247. Solve the differential equation: $\left(1+y^{2}\right)(1+\log x) d x+x d y=0$ given that when $x=1, y=1$.

- Watch Video Solution

248. Solve the differential equation $x\left(1+y^{2}\right) d x-y\left(1+x^{2}\right) d y=0$

- Watch Video Solution

249. Solve: $\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x^{2} y^{2}\right) d x=0$ given that, $y=1$, when $x=1$

- Watch Video Solution

250. Solve : $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

- Watch Video Solution

251. Solve: $\sin ^{3} x \frac{d x}{d y}=\sin y$

(Watch Video Solution

252. Solve the differential equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$

- Watch Video Solution

253. The solution of the differential equation $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$ is (A)
$y=e^{x}+\frac{1}{2} x^{2}+c$ (B) $e^{y-x}=\frac{1}{3} x^{3}+c \quad$ (C) $e^{y}=e^{x}+\frac{1}{3} x^{3}+c$
none of these

- Watch Video Solution

254. Solve: $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
255. Find $\frac{d y}{d x}$ if $y=x \cdot \tan x$.

- Watch Video Solution

256. Solve the initial value problem: $(x+1) \frac{d y}{d x}=2 e^{-y}-1, y(0)=0$

- Watch Video Solution

257. Solve the initial value problem:
$y-x \frac{d y}{d x}=2\left(1+x^{2} \frac{d y}{d x}\right), y(1)=1$

- Watch Video Solution

258. Show that the general solution of the differentia equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ is given by $x+y+1=A(1-x-y-2 x y)$ where A is a parameter.
259. Solve the following differential equation $\log \left(\frac{d y}{d x}\right)=3 x+4 y$

- Watch Video Solution

260. In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself?

- Watch Video Solution

261. Find the equation of the curve passing through the point ($0,-2$) given that at any point (x, y) on the curve the product of the slope of its tangent and y coordinate of the point is equal to the x-coordinate of the point.

- Watch Video Solution

262. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (4,3). Find the equation of the curve given that it passes through $(2,1)$.

- Watch Video Solution

263. Solve the following differential equation: $(x+1) \frac{d y}{d x}=2 x y$

- Watch Video Solution

264. Solve the following differential equation: $\frac{d y}{d x}=\left(e^{x}+1\right) y$

- Watch Video Solution

265. Solve the following differential equation:

$$
x y(y+1) d y=\left(x^{2}+1\right) d x
$$

266. Solve the following differential equation:
$x \cos y d y=\left(x e^{x} \log x+e^{x}\right) d x$

- Watch Video Solution

267. Solve the following differential equation: $x \frac{d y}{d x}+y=y^{2}$

- Watch Video Solution

268. Solve the following differential equation: $x \frac{d y}{d x}+\cot y=0$

- Watch Video Solution

269. Solve the following differential equation:
$\left(1-x^{2}\right) d y+x y d x=x y^{2} d x$
270. Solve the following differential equation: $\cos x \cos y \frac{d y}{d x}=-\sin x \sin y$

- Watch Video Solution

271. Solve the following differential equation:
$x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0$

Watch Video Solution
272. Solve the following differential equation:
$(y+x y) d x+\left(x-x y^{2}\right) d y=0$

- Watch Video Solution

273. Solve the following differential equation:

$$
\left(y^{2}+1\right) d x-\left(x^{2}+1\right) d y=0
$$

- Watch Video Solution

274. Solve the following differential equation: $\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

- Watch Video Solution

275. Solve the following differential equation:
$\left(x y^{2}+2 x\right) d x+\left(x^{2} y+2 y\right) d y=0$

- Watch Video Solution

276. Solve the following differential equation: $x y \frac{d y}{d x}=1+x+y+x y$

- Watch Video Solution

277. Solve the following differential equation: $\left(1+x^{2}\right) d y=x y d x$

- Watch Video Solution

278. Solve the following differential equation: $(x-1) \frac{d y}{d x}=2 x^{3} y$

- Watch Video Solution

279. Solve the following differential equation: $5 \frac{d y}{d x}=e^{x} y^{4}$

- Watch Video Solution

280. Solve the following differential equation: $\frac{d y}{d x}=e^{x+y}+x^{2} e^{y}$

- Watch Video Solution

281. Solve the differential equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$
282. Solve the following differential equation: $x y d y=(y-1)(x+1) d x$

- Watch Video Solution

283. Solve the following differential equation:
$y \sqrt{1+x^{2}}+x \sqrt{1+y^{2}} \frac{d y}{d x}=0$

- Watch Video Solution

284. The solution of the equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$ is

- Watch Video Solution

285. Find $\frac{d y}{d x}$ if $\tan y=x y$
286. Find $\frac{d y}{d x}$ if $\tan x=x+y$

- Watch Video Solution

287. Find $\frac{d y}{d x}$ if $\tan y=x+y$

- Watch Video Solution

288. Find $\frac{d y}{d x}$ if $\tan x=x+y$

- Watch Video Solution

289. Find $\frac{d y}{d x}$ if $1-x+y-x y=0$

- Watch Video Solution

- Watch Video Solution

291. Solve the following differential equation: $(x-1) \frac{d y}{d x}=2 x^{3} y$

- Watch Video Solution

292. Find $\frac{d y}{d x}$ if $y=\cos ^{2} x$

- Watch Video Solution

293. Find $\frac{d y}{d x}$ if $x^{2} y^{2}=0$

- Watch Video Solution

294. Find $\frac{d y}{d x}$ if $y\left(1-x^{2}\right)=6$

- Watch Video Solution

295. Find $\frac{d y}{d x}$ if $y=2 x+3 y$

- Watch Video Solution

296. Solve the following differential equation:
$\left(1+y^{2}\right) \tan ^{-1} d x+2 y\left(1+x^{2}\right) d y=0$

- Watch Video Solution

297. Solve the following initial value problem: $\frac{d y}{d x}=y \tan 2 x, y(0)=2$

- Watch Video Solution

298. Solve the following initial value problem: $x y \frac{d y}{d x}=y+2, y(2)=0$

- Watch Video Solution

299. Solve the following initial value problem: $\frac{d r}{d t}=-r t, r(0)=r_{0}$

- Watch Video Solution

300. Solve the following initial value problem: $\frac{d y}{d x}=y \tan x, y(0)=1$

- Watch Video Solution

301. Find: $\frac{d y}{d x}$ if $2 e^{2 x}+y^{2}=6$

- Watch Video Solution

302. Find $\frac{d y}{d x}$ if $2 x+\sin x=y$
303. Find $\frac{d y}{d x}$ if $1+x^{2}+y^{2}=9$

- Watch Video Solution

304. Solve the following initial value problem:
$x y \frac{d y}{d x}=(x+2)(y+2), y(1)=-1$

Watch Video Solution

305. Solve the following initial value problem: $\frac{d y}{d x}=1+x+y^{2}+x y^{2}$ when $y=0, x=0$.

- Watch Video Solution

306. Solve the following initial value problem: $2(y+3)-x y \frac{d y}{d x}=0$, $y(1)=-2$

- Watch Video Solution

307. Solve the following initial value problem: $2 x \frac{d y}{d x}=3 y, y(1)=2$

- Watch Video Solution

308. Solve the following initial value problem: $\frac{d y}{d x}=2 e^{x} y^{3}, y(0)=\frac{1}{2}$

- Watch Video Solution

309. Solve the following initial value problem: $\frac{d y}{d x}=y \sin 2 x, y(0)=1$

- Watch Video Solution

310. Solve the following initial value problem: $\frac{d y}{d x}=y \sin 2 x, y(0)=1$

- Watch Video Solution

311. Solve the following initial value problem: $2 x \frac{d y}{d x}=5 y, y(1)=1$

- Watch Video Solution

312. Solve the following initial value problem: $\cos y \frac{d y}{d x}=e^{x}, y(0)=\frac{\pi}{2}$

- Watch Video Solution

313. Solve the differential equation $x \frac{d y}{d x}+\cot y=0$, given that $y=\frac{\pi}{4}$, when $x=\sqrt{2}$

- Watch Video Solution

314. Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+\left(1+y^{2}\right)=0$, given that $y=1$, when $x=0$.

- Watch Video Solution

315. Find the equation of a curve passing through the point $(0,0)$ and whose differential equation is $y^{\prime}=e x \sin x$

- Watch Video Solution

316. Find $\frac{d y}{d x}$ if $(x+2)(x+1)=y$.

- Watch Video Solution

317. Find $\frac{d y}{d x}$ if $y=(x-1)(x-2)$
318. In a bank principal increases at the rate of $r \%$ per year. Find the value of r if Rs. 100 double itself in 10 years $\left((\log)_{e} 2=0.6931\right.$.)

- Watch Video Solution

319. In a bank, principal increases continuously at the rate of 5% per year.

An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$

- Watch Video Solution

320. In a culture the bacteria count is 100000 . The number is increased by 10% in 2 hours. In how many hours will the count reach 200000 , if the rate of growth of bacteria is proportional to the number present.
321. Find $\frac{d y}{d x}$ if $y=x(5-x)$

- Watch Video Solution

322. Find $\frac{d y}{d x}$ if $x+y+1=\sin x$

- Watch Video Solution

323. Find $\frac{d y}{d x}$ if $(x-y)(5-x)=77$

Watch Video Solution
324. Find $\frac{d y}{d x}$ if $\tan y=\sin x$

- Watch Video Solution

325. Find $\frac{d y}{d x}$ if $\cos (x-y)=1$
326. Find $\frac{d y}{d x}$ if $2=(x+y)^{2}$

- Watch Video Solution

327. Find $\frac{d y}{d x}$ if $x=\sec y$

- Watch Video Solution

328. Solve the following differential equation: $\frac{d y}{d x}=\tan (x+y)$

Watch Video Solution

329. Solve the following differential equation: $\cos ^{2}(x-2 y)=1-2 \frac{d y}{d x}$
330. Solve the differential equation $x^{2} d y+y(x+y) d x=0$, given that $y=1$ when $x=1$.

Watch Video Solution

331. Solve the differential equation $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$; given that $y=1$ when $x=1$.

- Watch Video Solution

332. Find the particular solution of the differential equation ; $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$ given that $y=0$ when $x=1$.

- Watch Video Solution

333. Find $\frac{d y}{d x}$ if $x^{2}=3 x y$
334. Find $\frac{d y}{d x}$ if $y=\cos x+\sin y$

Watch Video Solution

335. Find $\frac{d y}{d x}$ if $y=\frac{x-1}{x^{2}}$

- Watch Video Solution

336. Find $\frac{d y}{d x}$ if $\cos y=\sin y+2 x$

- Watch Video Solution

337. Solve each of the following initial value problem:
$2 x^{2} \frac{d y}{d x}-2 x y+y^{2}=0, y(e)=e$

- Watch Video Solution

338. Find the second order derivative of $x=\sin y$

- Watch Video Solution

339. Find $\frac{d y}{d x}$ if $\left(x^{2}+y^{2}\right)=3$

- Watch Video Solution

340. Solve the following initial value problem: $\left(x^{2}-2 y^{2}\right) d x+2 x y d y=0, y(1)=1$

- Watch Video Solution

341. Find $\frac{d y}{d x}$ if $y=x \cdot \log x$

- Watch Video Solution

342. Find $\frac{d y}{d x}$ if $y=e^{x} \cdot \log x$

- Watch Video Solution

343. Find $\frac{d y}{d x}$ if $\left(x^{2}-y^{2}\right)-2 x y=0$

- Watch Video Solution

344. Find $\frac{d y}{d x}$ if $y=x \cdot \sin x$

- Watch Video Solution

345. Find $\frac{d y}{d x}$ if $y=x \cdot \cos x$

- Watch Video Solution

346. Find $\frac{d y}{d x}$ if $y=x \cdot \sec x$
347. Solve the following differential equation: $\frac{d y}{d x}=\frac{y}{x}+\sin \left(\frac{y}{x}\right)$

- Watch Video Solution

348. Find $\frac{d y}{d x}$ if $y=x \cdot \cot x$

- Watch Video Solution

349. Solve the following differential equation:
$\left(1+e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$

- Watch Video Solution

350. Solve the following differential equation:
$\left(x^{2}-2 x y\right) d y+\left(x^{2}-3 x y+2 y^{2}\right) d x=0$
351. Solve the following differential equation: $x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

- Watch Video Solution

352. Solve the following differential equation: $x \frac{d y}{d x}-y=2 \sqrt{y^{2}-x^{2}}$

- Watch Video Solution

353. Solve the following differential equation:
$x \cos \left(\frac{y}{x}\right)(y d x+x d y)=y \sin \left(\frac{y}{x}\right)(x d y-y d x)$

(Watch Video Solution

354. Find $\frac{d y}{d x}$ if $\quad(x-y)=x+2 y$
355. Find $\frac{d y}{d x}$ if $y=x \cdot \cos e c x$

Watch Video Solution

356. Find $\frac{d y}{d x}$ if $y=x^{2}+x-2$

- Watch Video Solution

357. Solve the following differential equation:

$$
\left(y^{2}-2 x y\right) d x=\left(x^{2}-2 x y\right) d y
$$

- Watch Video Solution

358. Solve the following differential equation: $3 x^{2} d y=\left(3 x y+y^{2}\right) d x$
359. Solve the differential equation - $(x-2 y) d x+(2 x+y) d y=0$

- Watch Video Solution

360. Solve $x\left(\frac{d y}{d x}\right)=y(\log y-\log x+1)$

(Watch Video Solution

361. Solve the following differential equation:
$y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$

- Watch Video Solution

362. Solve the following differential equation: $x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

- Watch Video Solution

363. Solve the following differential equation: $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$

- Watch Video Solution

364. Solve each of the following initial value problem:
$\left(x^{2}+y^{2}\right) d x=2 x y d y, y(1)=0$

- Watch Video Solution

365. Solve the following initial value problem:
$x e^{y / x}-y+x \frac{d y}{d x}=0, y(e)=0$

- Watch Video Solution

366. Solve the following initial value problem:
$\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec} \frac{y}{x}=0, y(1)=0$
367. Solve the following initial value problem: $\left(x y-y^{2}\right) d x-x^{2} d y=0, y(1)=1$

Watch Video Solution

368. Find $\frac{d y}{d x}$ if $y(x+2 y)=5$

- Watch Video Solution

369. Find $\frac{d y}{d x}$ if $x^{4}=y^{4}$

- Watch Video Solution

370. Solve each of the following initial value problem: $x\left(x^{2}+3 y^{2}\right) d x+y\left(y^{2}+3 x^{2}\right) d y=0, y(1)=1$

- Watch Video Solution

371. Solve the following initial value problem:
$\left\{x \sin ^{2}\left(\frac{y}{x}\right)-y\right\} d x+x d y=0, y(1)=\frac{\pi}{4}$

- Watch Video Solution

372. Solve the initial value problem:
$x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0, y(2)=\pi$

- Watch Video Solution

373. Find the particular solution of the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ given that when $x=1, y=\frac{\pi}{4}$.

(Watch Video Solution

374. Find the particular solution of the differential equation $(x-y) \frac{d y}{d x}=x+2 y$, given that when $x=1, y=0$.

- Watch Video Solution

375. Find the particular solution of the differential equation $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$ given that $y=1$ when $x=0$.

(Watch Video Solution

376. Solve the differential equation : $\frac{d y}{d x}-\frac{y}{x}=2 x^{2}$

- Watch Video Solution

377. Find the general solution of the differential equations: $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
378. Solve the following differential equation:
$\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{1}{x^{2}-1} ;|x| \neq 1$

- Watch Video Solution

379. Solve: $\frac{d y}{d x}+y \sec x=\tan x$

- Watch Video Solution

380. Solve the following differential equation: $\cos ^{2} x \frac{d y}{d x}+y=\tan x$

- Watch Video Solution

381. Find the general solution of the differential equations:
$x \frac{d y}{d x}+y-x+x y \cot x=0(x \neq 0)$
382. Find the general solution of the differential equations:
$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$

- Watch Video Solution

383. If $\quad y+d /(d x)(x y)=x(\sin x+\log x)$, find y.

- Watch Video Solution

384. Solve: $y d x-\left(x+2 y^{2}\right) d y=0$

- Watch Video Solution

385. Solve: $y d x+\left(x-y^{3}\right) d y=0$
386. Solve $\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d x}{d y}=1(x \neq 0)$

- Watch Video Solution

387. Solve each of the following initial value problem: $(x-\sin y) d y+(\tan y) d x=0, y(0)=0$

- Watch Video Solution

388. Solve each of the following initial value problem:
$\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y, y(0)=0$

- Watch Video Solution

389. Solve the following differential equation: $\frac{d y}{d x}+2 y=e^{3 x}$

- Watch Video Solution

390. Solve the following differential equation : $\frac{d y}{d x}+2 y=6 e^{x}$

- Watch Video Solution

391. Solve the following differential equation: $x \frac{d y}{d x}+y=x \log x$

- Watch Video Solution

392. Solve the following differential equation: $\frac{d y}{d x}+\frac{y}{x}=x^{3}$

- Watch Video Solution

393. Solve the following differential equation: $\frac{d y}{d x}-y=\cos x$

- Watch Video Solution

394. Solve the following differential equations: $\frac{d y}{d x}=y \tan x-2 \sin x$

Watch Video Solution

395. Solve the following differential equation:
$x d y=\left(2 y+2 x^{4}+x^{2}\right) d x$

- Watch Video Solution

396. Solve the following differential equation: $y^{2}+\left(x-\frac{1}{y}\right) \frac{d y}{d x}=0$

- Watch Video Solution

397. Solve the following differential equations: $\frac{d y}{d x}=y \tan x-2 \sin x$

- Watch Video Solution

398. Solve the differential equation $\sin x \frac{d y}{d x}+y \cos x=2 \sin ^{2} x \cos x$
399. Solve the following differential equation: $x \frac{d y}{d x}+2 y=x \cos x$ Watch Video Solution
400. Solve the following differential equation: $4 \frac{d y}{d x}+8 y=5 e^{-3 x}$

- Watch Video Solution

401. Solve the differential equation: $\frac{d y}{d x}+y=e^{-2 x}$

- Watch Video Solution

402. Solve the following differential equation: $\frac{d y}{d x}+2 y=4 x$
403. Solve the following differential equations: $x \frac{d y}{d x}-y=(x-1) e^{x}$

- Watch Video Solution

404. Solve the following differential equation: $\frac{d y}{d x}+y=\sin x$

- Watch Video Solution

405. Solve the differential equation: $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$

- Watch Video Solution

406. The solution of differential equation
$\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$

- Watch Video Solution

407. Solve the differential equation:

$$
\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0 \text { (ii) } x \frac{d y}{d x}+\cos ^{2} y=\tan y \frac{d y}{d x}
$$

- Watch Video Solution

408. Solve the following differential equation: $d x+x d y=e^{-y} \sec ^{2} y d y$

- Watch Video Solution

409. Solve differential equation: $\left(x^{2}-1\right) \frac{d y}{d x}+2(x+2) y=2(x+1)$

- Watch Video Solution

410. Solve differential equation $\left(x+2 y^{2}\right) \frac{d y}{d x}=y$, given that when $x=2, y=1$

- Watch Video Solution

411. Find one parameter families of solution curves of the following differential equations: (or solve the following differential equations):
$(x \log x) \frac{d y}{d x}+y=\log x$

- Watch Video Solution

412. Find one parameter families of solution curves of the following differential equations: (or solve the following differential equations): (a) $\frac{d y}{d x} \cos ^{2} x=\tan x-y$ (b) $x \log x \frac{d y}{d x}+y=2 \log x$

- Watch Video Solution

413. Find one parameter families of solution curves of the following differential equations: (or solve the following differential equations): $x \frac{d y}{d x}+y=x^{4}$

- Watch Video Solution

414. Find one parameter families of solution curves of the differential equation: (or solve the differential equation): $\frac{d y}{d x}-\frac{2 x y}{1+x^{2}}=x^{2}+2$

- Watch Video Solution

415. Find one parameter families of solution curves of the following differential equations: (or solve the following differential equations): (a) $(x+y) \frac{d y}{d x}=1$ (b) $x \frac{d y}{d x}+2 y=x^{2} \log x$

- Watch Video Solution

416. Solve each of the following initial value problem: $y^{\prime}+y=e^{x}, y(0)=\frac{1}{2}$

- Watch Video Solution

417. Solve the following initial value problem:
$x \frac{d y}{d x}-y=\log x, y(1)=0$

- Watch Video Solution

418. Solve the following initial value problem: $\frac{d y}{d x}+2 y=e^{-2 x} \sin x, y(0)=0$

- Watch Video Solution

419. Solve the following initial value problem:
$\left(1+y^{2}\right) d x+\left(x-\tan ^{-1} y\right) d y=0, y(0)=0$

- Watch Video Solution

420. Solve each of the following initial value problem: $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, y(0)=1$
421. Solve the following initial value problem:
$\frac{d y}{d x}+y \cot x=2 \cos x, y\left(\frac{\pi}{2}\right)=0$

- Watch Video Solution

$\begin{array}{lccll}\text { 422. Solve the initial value } & \text { problem: } \\ x \frac{d y}{d x}+y=x \cos x+\sin x, y\left(\frac{\pi}{2}\right)=1 & & \end{array}$

- Watch Video Solution

423. Solve the following initial value problem:
$\frac{d y}{d x}+y \cot x=4 x \cos e c x, y\left(\frac{\pi}{2}\right)=0$

- Watch Video Solution

$$
\frac{d y}{d x}+2 y \tan x=\sin x ; y=0 \text { when } x=\frac{\pi}{3} .
$$

- Watch Video Solution

| 425. Solve the initial | value | problem: | |
| :--- | :---: | :---: | :---: | :---: |
| $\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2$ | when $x=\frac{\pi}{2}$. | | |

- Watch Video Solution

426. Solve the following initial value problem:
$\frac{d y}{d x}+y \cot x=2 \cos x, y\left(\frac{\pi}{2}\right)=0$

- Watch Video Solution

427. Solve the initial value problem: $d y=\cos x(2-y \cos e c x) d x$
428. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$.

- Watch Video Solution

429. Find the general solution of the differential equation $\frac{d y}{d x}-y=\cos x$

- Watch Video Solution

430. Solve the differential equation $\left(y+3 x^{2}\right) \frac{d x}{d y}=x$.

- Watch Video Solution

431. Find the particular solution of the differential equation $\frac{d x}{d y}+x \cot y=2 y+y^{2} \cot y, y \neq 0$ given that $x=0$ when $y=\frac{\pi}{2}$.
432. The temperature T of a cooling object drops at a rate proportional to the difference $T-S$ where S is constant temperature of surrounding medium. If initially $T=150^{\circ} C$; find the temperature of the cooling object at any time t .

- Watch Video Solution

433. The slope of the tangent to the curve at any point is reciprocal of twice the ordinate of that point. The curve passes through the point $(4,3)$. Determine its equation.

- Watch Video Solution

434. The equation of electromotive forces for an electric circuit containing resistance and self inductance is $E=R i+L \frac{d i}{d t}$, where E is the electromotive force given to the circuit, R, the resistance and L, the
coefficient of induction. Find the current i at time t when (i) $E=0$ (ii) $E=a$,non-zero constant.

D Watch Video Solution

435. The surface area of a balloon being inflated changes at a constant rate. If initially, its radius is 3 units and after 2 seconds, it is 5 units, find the radius after t seconds.

- Watch Video Solution

436. A population grows at the rate of 5% per year. Then the population will be doubled in :

- Watch Video Solution

437. The rate of growth of a population is proportional to the number present. if the population of a city doubled in the past 25 years, and the
present population is 100000, when will the city have a population of 500000? [Given, $\log _{e} 5=1.609, \log _{e} 2=0.6931$.]

- Watch Video Solution

438. If the interest is compounded continuously at 6% per annum, how much worth Rs. 1000 will be after 10 years? How long will it take to double Rs. 1000? [Given $e^{0.6}=1.822$]

- Watch Video Solution

439. The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs., find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present. [Given $\log _{e} 3=1.0986, e^{2.1972}=9$]

- Watch Video Solution

440. The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20,000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?

- Watch Video Solution

441. Solve the following initial value problem:
$C^{\prime}(x)=2+0.15 x ; C(0)=100$

- Watch Video Solution

442. The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

- Watch Video Solution

443. A curve passes through the point ($3,-4$) and the slope of the tangent to the curve at any point (x, y) is $\left(-\frac{x}{y}\right)$.find the equation of the curve.

- Watch Video Solution

444. Find $\frac{d y}{d x}$ if $y-x+x^{2}=0$

- Watch Video Solution

445. Find the curve for which the intercept cut off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

- Watch Video Solution

446. Show that the equation of the curve whose slope at any point is equal to $y+2 x$ and which passes through the origin is $y+2(x+1)=2 e^{x}$.
447. The tangent at any point (x, y) of a curve makes an angle $\tan ^{-1}(2 x+3 y)$ with x-axis. Find the equation of the curve if it passes through (1,2).

- Watch Video Solution

448. Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point $(1,2)$.

- Watch Video Solution

449. Find the equation of the curve which passes through the point $(3,-4)$ and has the slope $\frac{2 y}{x}$ at any point (x, y) on it.
450. Find the equation of the cure which passes through the origin and has the slope $x+3 y-1$ at the point (x, y) on it.

- Watch Video Solution

451. Find the equation of a curve passing through the point (0,1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

- Watch Video Solution

452. Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent art a point is twice the abscissa and which passes through the point $(1,2)$.
453. The rate of increase of the bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.

- Watch Video Solution

454. Show that the line $y=2 x-4$ is a tangent to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{48}=1$. Find its point of contact.

- Watch Video Solution

455. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

- Watch Video Solution

456. Find the equation of a curve passing through the point $(0,1)$ if the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

- Watch Video Solution

457. The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point $(-1,1)$.

- Watch Video Solution

458. What is differential equation and order and degree of a differential equation

- Watch Video Solution

459. What is a differential equation and the order and degree of a differential equation?

- Watch Video Solution

460. What is a differential equation and the order and degree of a differential equation?

- Watch Video Solution

461. What is a differential equation and the order and degree of a differential equation?

- Watch Video Solution

462. Write the differential equation representing the family of straight lines $y=C x+5$, where C is an arbitrary constant.
463. Write the differential equation obtained by eliminating the arbitrary constant C in the equation $x^{2}-y^{2}=C^{2}$.

- Watch Video Solution

464. Write the differential equation obtained eliminating the arbitrary constant C in the equation $x y=C^{2}$.

- Watch Video Solution

465. Write the degree of the differential equation
$a^{2} \frac{d^{2} y}{d x^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{1 / 4}$.

- Watch Video Solution

466. Write the order of the differential equation $1+\left(\frac{d y}{d x}\right)^{2}=7\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$.

(D) Watch Video Solution

467. Write the order and degree of the differential equation
$y=x \frac{d y}{d x}+a \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$.

- Watch Video Solution

468. Write the degree of the differential equation
$\frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}=2 x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$.

- Watch Video Solution

469. Form the differential equation of the family of circles touching the y axis at origin.

- Watch Video Solution

470. Write the order of the differential equation of all non horizontal lines in a plane.

- Watch Video Solution

471. If $\sin x$ is an integrating factor of the differential equation $\frac{d y}{d x}+P y=Q$, then write the value of P.

- Watch Video Solution

472. Write the order of the differential equation of the family of circles of radius r.
473. Write the order of the differential equation whose solution is $y=a \cos x+b \sin x+c e^{-x}$.

- Watch Video Solution

474. Write the order of the differential equation associated with the primitive $y=C_{1}+C_{2} e^{x}+C_{3} e^{-2 x}+C_{4}$, where $C_{1}, C_{2}, C_{3}, C_{4}$ are arbitrary constants.

- Watch Video Solution

475. What is the degree of the following differential equation?
$5 x\left(\frac{d y}{d x}\right)^{2}-\frac{d^{2} y}{d x^{2}}-6 y=\log x$

- Watch Video Solution

476. Write the degree of the differential equation $\left(\frac{d y}{d x}\right)^{4}+3 x \frac{d^{2} y}{d x^{2}}=0$.

- Watch Video Solution

477. Form the differential equation representing the family of curves $y=m x$, where, m is arbitrary constant.

- Watch Video Solution

478. Write the degree of the differential equation $x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x\left(\frac{d y}{d x}\right)^{4}=0$.

- Watch Video Solution

479. Write degree of the differential equation $\left(1+\frac{d y}{d x}\right)^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$.
480. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$

- Watch Video Solution

481. Determine the order and degree of each of the following differential equation. State also whether they are linear or non-linear: $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$

- Watch Video Solution

482. Write the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{1 / 4}+x^{1 / 5}=0$.
483. The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+e^{d y / d x}=0$.

- Watch Video Solution

484. The number of arbitrary constants in the particular solution of a differential equation of third order are: (A) 3
(B) 2
(C) 1
(D) 0

- Watch Video Solution

485. Write the order of the differential equation representing the family of curves $y=a x+a^{3}$.

- Watch Video Solution

486. Find the sum of the order and degree of the differential equation $y=x\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}$.
487. Find the solution of the differential equation $x \sqrt{1+y^{2}} d x+y \sqrt{1+x^{2}} d y=0$.

- Watch Video Solution

488. find the solution of the following differential equation $x \log x \frac{d y}{d x}+y=2 \log x$

- Watch Video Solution

489. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is

- Watch Video Solution

490. Integrating factor of differential equation $\cos x \frac{d y}{d x}+y \sin x=1$ is
491. The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-\left(\frac{d y}{d x}\right)=y^{3}$, is
a. $\frac{1}{2}$ b. 2 c. 3 d. 4

- Watch Video Solution

492. The degree of the differential equation
$\left\{5+\left(\frac{d y}{d x}\right)^{2}\right\}^{5 / 3}=x^{5}\left(\frac{d^{2} y}{d x^{2}}\right)$, is a. 4 b. 2 c. 5 d. 10

- Watch Video Solution

493. The general solution of the differentia equation $\frac{d y}{d x}+y \cot x=\operatorname{cosec} x$, is (a). $x+y \sin x=C$ (b). $x+y \cos x=C$ (c). $y+x(\sin x+\cos x)=C$ (d). $y \sin x=x+C$

- Watch Video Solution

494. The differential equation obtained on eliminating A and B from $y=A \cos \omega t+b \sin \omega t, \quad$ is \quad (a) $y^{\prime \prime}+y^{\prime}=0 \quad$ (b.) $y^{\prime \prime}+\omega^{2} y=0$
$y^{\prime \prime}=\omega^{2} y$ (d.) $y^{\prime \prime}+y=0$

- Watch Video Solution

495. The equation of the curve whose slope is given by $\frac{d y}{d x}=\frac{2 y}{x} ; x>0, y>0$ and which passes through the point $(1,1)$ is
A. $x^{2}=y$
B. $y^{2}=x$
C. $x^{2}=2 y$
D. $y^{2}=2 x$

Answer: null

- Watch Video Solution

496. The order of the differential equation whose general solution is given by $y=c_{1} \cos \left(2 x+c_{2}\right)-\left(c_{3}+c_{4}\right) a^{x+c_{5}}+c_{6} \sin \left(x-c_{7}\right) i s$ a. 3 b . 4 c. 5 d. 2

- Watch Video Solution

497. The solution of the differential equation $\frac{d y}{d x}=\frac{a x+g}{b y+f}$ represents a circle when
A. $a=b$
B. $a=-b$
C. $a=-2 b$
D. $a=2 b$

Answer: null

498. Solution of the differential equation $\frac{d y}{d x}+\frac{2 y}{x}=0$, where $y(1)=1$, is

- Watch Video Solution

499. The solution of the differential equation $\frac{d y}{d x}-\frac{y(x+1)}{x}=0$ is given by a. $y=x e^{x+C}$ b. $x=y e^{x}$ c. $y=x+C$ d. $x y=e^{x}+C$

- Watch Video Solution

500. The order of the differential equation satisfying
$\sqrt{1-x^{4}}+\sqrt{1-y^{4}}=a\left(x^{2}-y^{2}\right)$ is
A. 1
B. 2
C. 3
D. 4

Answer: null

D Watch Video Solution

501. The solution of the differential equation $y_{1} y_{3}=y_{2}^{2}$ is

- Watch Video Solution

502. The general solution of the differential equation $\frac{d y}{d x}+y g^{\prime}(x)=g(x) g^{\prime}(x)$, where $g(x)$ is a given function of x, is a. $g(x)+\log \{1+y+g(x)\}=C$
b. $g(x)+\log \{1+y-g(x)\}=C$ C.
$g(x)-\log \{1+y-g(x)\}=C$ d. None of these

Watch Video Solution

503. The solution of the differential equation $\frac{d y}{d x}=1+x+y^{2}+x y^{2}, y(0)=0$ is a. $y^{2}=\exp \left(x+\frac{x^{2}}{2}\right)-1$ b.
$y^{2}=1+C \exp \left(x+\frac{x^{2}}{2}\right)$
c. $\quad y=\tan \left(C+x+x^{2}\right)$
d
$y=\tan \left(x+\frac{x^{2}}{2}\right)$

- Watch Video Solution

504. The differential equation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=C$ is
A. $\frac{y^{\prime \prime}}{y^{\prime}}+\frac{y^{\prime}}{y}-\frac{1}{x}=0$
B. $\frac{y^{\prime \prime}}{y^{\prime}}+\frac{y^{\prime}}{y}+\frac{1}{x}=0$
C. $\frac{y^{\prime \prime}}{y^{\prime}}-\frac{y^{\prime}}{y}-\frac{1}{x}=0$
D. none of these

Answer: null

- Watch Video Solution

505. Solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=\sin x$ is a. $x(y+\cos x)=\sin x+C$
b. $x(y-\cos x)=\sin x+C$
c. $x(y+\cos x)=\cos x+C$
d. None of these

- Watch Video Solution

506. The equation of the curve satisfying the differential equation $y\left(x+y^{3}\right) d x=x\left(y^{3}-x\right) d y$ and passing through the point $(1,1)$ is

- Watch Video Solution

507. The solution of the differential equation $2 x \frac{d y}{d x}-y=3$ represents
(a) circles b.straight lines c. ellipses d. parabolas

Watch Video Solution

508. The solution of the differential equation $x \frac{d y}{d x}=y-x \tan \left(\frac{y}{x}\right)$, is
509. The differential equation which represents the family of curves $y=e^{C x}$ is $y_{1}=C^{2} y$ b. $x y_{1}-\operatorname{In} y=0$ c. x In $y=y y_{1}$ d. y In $y=x y_{1}$

- Watch Video Solution

510. Which of the following transformations reduce the differential equation $\quad \frac{d z}{d x}+\frac{z}{x} \log z=\frac{z}{x^{2}}(\log z)^{2} \quad$ into the form $\frac{d v}{d x}+P(x) v=Q(x)$

- Watch Video Solution

511. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\varphi\left(\frac{y}{x}\right)}{\varphi^{\prime}\left(\frac{y}{x}\right)}$ is
a. $\varphi\left(\frac{y}{x}\right)=k x$
b. $x \varphi\left(\frac{y}{x}\right)=k$
c. $\varphi\left(\frac{y}{x}\right)=k y$
d. $y \varphi\left(\frac{y}{x}\right)=k$

Watch Video Solution

512. If m and n are the order the degree of the differential equation $\left(y_{2}\right)^{5}+\frac{4\left(y_{2}\right)^{3}}{y_{3}}+y_{3}=x^{2}-1$, then a. $m=3, n=3$ b. $m=3, n=2$ c. $m=3, n=5$ d. $m=3, n=1$

- Watch Video Solution

513. The solution of the differential equation $\frac{d y}{d x}+1=e^{x+y}$, is a. $(x+y) e^{x+y}=0 \quad$ b. $\quad(x+C) e^{x+y}=0 \quad$ c. $\quad(x-C) e^{x+y}=1 \quad$ d.
$(x+C) e^{x+y}+1=0$

- Watch Video Solution

514. The solution of $x^{2}+y^{2} \frac{d y}{d x}=4$ is
a. $x^{2}+y^{2}=12 x+C$
b. $x^{2}+y^{2}=3 x+C$
c. $x^{3}+y^{3}=3 x+C$
d.
$x^{3}+y^{3}=12 x+C$
515. The family of curves in which the sub tangent at any point of a curve is double the abscissa, is given by
a. $x=C y^{2}$
b. $y=C x^{2}$
c. $x^{2}=C y^{2}$
d. $y=C x$

Watch Video Solution

516. The solution of the differential equation $x d x+y d y=x^{2} y d y-y^{2} x d x, \quad$ is \quad a. $\quad x^{2}-1=C\left(1+y^{2}\right) \quad$ b. $x^{2}+1=C\left(1-y^{2}\right)$ c. $x^{3}-1=C\left(1+y^{3}\right)$ d. $x^{3}+1=C\left(1-y^{3}\right)$

- Watch Video Solution

517. The solution of the differential equation
$\left(x^{2}+1\right) \frac{d y}{d x}+\left(y^{2}+1\right)=0$ is
a. $y=2+x^{2}$
b. $y=\frac{1+x}{1-x}$
c. $y=x(x-1)$
d. $y=\frac{1-x}{1+x}$

- Watch Video Solution

518. The differential equation $x \frac{d y}{d x}-y=x^{2}$, has the general solution
a. $y-x^{3}=2 c x$
b. $2 y-x^{3}=c x$
c. $2 y+x^{2}=2 c x$
d. $y-x^{2}=c x$
519. The solution of the differential equation $\frac{d y}{d x}-k y=0, y(0)=1$, approaches zero when $x \rightarrow \infty$, if

- Watch Video Solution

520. The solution of the differential equation
$\left(1+x^{2}\right) \frac{d y}{d x}+1+y^{2}=0$, is
a) $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} C$
b) $\tan ^{-1} y-\tan ^{-1} x=\tan ^{-1} C$
c) $\tan ^{-1} y \pm \tan ^{-1} x=\tan C$
d) $\tan ^{-1} y+\tan ^{-1} x=\tan ^{-1} C$

- Watch Video Solution

521. The solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$, is
a.) $\tan ^{-1}\left(\frac{x}{y}\right)=\log y+C$
b.) $\tan ^{-1}\left(\frac{y}{x}\right)=\log x+C$
c.)
$\tan ^{-1}\left(\frac{x}{y}\right)=\log x+C$ d.) $\tan ^{-1}\left(\frac{y}{x}\right)=\log y+C$
522. The differential equation $\frac{d y}{d x}+P y=Q y^{n}, n>2$ can be reduced to linear form by substituting
a. $z=y^{n-1}$
b. $z=y^{n}$
c. $z=y^{n+1}$
d. $z=y^{1-n}$

- Watch Video Solution

523. If p and q are the order and degree of the differential equation $y \frac{d y}{d x}+x^{3} \frac{d^{2} y}{d x^{2}}+x y=\cos x$, then
a. $p<q$ b. $p=q$ c. $p>q$ d. none of these

- Watch Video Solution

524. find the solution of the following differential equation $x \log x \frac{d y}{d x}+y=2 \log x$
525. Solve: $\frac{d y}{d x}+y \sec x=\tan x$

- Watch Video Solution

526. Integrating factor of differential equation $\cos x \frac{d y}{d x}+y \sin x=1$ is

- Watch Video Solution

527. The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$
(A) 3 (B) 2 (C) 1 (D) not defined

- Watch Video Solution

528. The order of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is
(A) 2 (B) 1 (C) 0 (D) not defined
529. The number of arbitrary constants in the particular solution of a differential equation of third order are:
(A) 3
(B) 2
(C) 1
(D) 0

- Watch Video Solution

530. Which of the following differential equations has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution?
(A) $\frac{d^{2} y}{d x^{2}}+y=0$ (B) $\frac{d^{2} y}{d x^{2}}-y=0$ (C) $\frac{d^{2} y}{d x^{2}}+1=0$ (D) $\frac{d^{2} y}{d x^{2}}-1=0$

- Watch Video Solution

531. Which of the following differential equations has $y=x$ as one of its particular solution?
(A) $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x$
(B) $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=x$
(C) $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0$
(D) $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=0$

- Watch Video Solution

532. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
(A) $e^{x}+e^{-y}=C$
(B) $e^{x}+e^{y}=C$
(C) $e^{-x}+e^{y}=C$
$e^{-x}+e^{-y}=C$

- Watch Video Solution

533. A homogeneous differential equation of the from $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the substitution.
(A) $y=v x$ (B) $v=y x$ (C) $x=v y$ (D) $x=v$

- Watch Video Solution

534. Which of the following is a homogeneous differential equation?
(A)
$(4 x+6 y+$
5) $d y$
$(3 y+2 x+$
6) $d x=$
0
(B) $(x y) d x-\left(x^{3}+y^{3}\right) d y=0$
(C) $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
(D) $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$

- Watch Video Solution

535. The Integrating Factor of the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is
(A) e^{-x}
(B) e^{-y}
(C) $\frac{1}{x}$
(D) x

- Watch Video Solution

536. The Integrating Factor of the differential equation $\left(1-y^{2}\right) \frac{d x}{d y}+y x=a y$
A. $\frac{1}{y^{2}-1}$
B. $\frac{1}{\sqrt{y^{2}-1}}$
C. $\frac{1}{1-y^{2}}$
D. $\frac{1}{\sqrt{1-y^{2}}}$

Answer: null

- Watch Video Solution

537. The general solution of the differential equation $\frac{y d x-x d y}{y}=0$ is
(A) $x y=$
C (B) $x=C y^{2}$
(C) $y=$
$C x$ (D) $y=C x^{2}$

- Watch Video Solution

538. The general solution of a differential equation of the type $\frac{d x}{d y}+P_{1} x=Q_{1}$ is
(A) $y e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
(B) $y \dot{e}{ }^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+C$
(C) $x e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
(D) $x e^{\int p_{1} d x}=\int Q_{1} e^{\int p_{1} d x} d x+C$

- Watch Video Solution

539. The general solution of the differential equation $e^{x} d y+\left(y e^{x}+2 x\right) d x=0$ is
(A) $x e^{y}+x^{2}=C$ (B) $x e^{y}+y^{2}=C$ (C) $y e^{x}+x^{2}=C$ (D) $y e^{y}+x^{2}=C$

- Watch Video Solution

540. Determine order and degree (if defined) of differential equations given $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$

- Watch Video Solution

541. Determine order and degree (if defined) of differential equations given $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
542. Determine order and degree (if defined) of differential equations given $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$

- Watch Video Solution

543. Verify that the function $y=e^{-3 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$

- Watch Video Solution

544. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=e^{x}+1: y^{\prime \prime}-y^{\prime}=0$

- Watch Video Solution

545. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: (1)y $=e^{\wedge} x+1: y^{\prime \prime}-y=0(2)$
$y=x^{2}+2 x+C: y^{\prime}-2 x-2=0(3) y=\cos x+c: y^{\prime}+\sin x=0$

- Watch Video Solution

546. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\cos x+C: y^{\prime}+\sin x=0$

- Watch Video Solution

547. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\sqrt{1+x^{2}}: y^{\prime}=\frac{x y}{1+x^{2}}$

- Watch Video Solution

548. Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
$y=x \sin x \rightarrow x y^{\prime}=y+x \sqrt{x^{2}-y^{2}}$
549. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\sqrt{a^{2}-x^{2}} x \in(-x, a)$: $x+y \frac{d y}{d x}=0(y \neq 0)$

- Watch Video Solution

550. Form the differential equation representing the family of curves $y=m x$, where, m is arbitrary constant.

- Watch Video Solution

551. Form the differential equation representing the family of curves $y=a \sin (x+b)$, where a, b are arbitrary constants.

- Watch Video Solution

552. Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

- Watch Video Solution

553. Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

- Watch Video Solution

554. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

- Watch Video Solution

555. Form the differential equation representing the family of ellipses foci on x-axis and centre at the origin.
556. Form the differential equation representing the family of ellipses having foci on x-axis and centre at the origin.

- Watch Video Solution

557. Show that $x y=a e^{x}+b e^{-x}+x^{2}$ is a solution of the differential equation $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y+x^{2}-2=0$.

- Watch Video Solution

558. Verify that $y=c x+2 c^{2}$ is a solution of the differential equation $2\left(\frac{d y}{d x}\right)^{2}+x \frac{d y}{d x}-y=0$.

- Watch Video Solution

559. Show that $y^{2}-x^{2}-x y=a$ is a solution of the differential equation $(x-2 y) \frac{d y}{d x}+2 x+y=0$

- Watch Video Solution

560. Verify that $y=A \cos x+\sin x$ satisfies the differential equation $\cos x \frac{d y}{d x}+(\sin x) y=1$.

- Watch Video Solution

561. Find the differential equation corresponding to $y=a e^{2 x}+b e^{-3 x}+c e^{x}$ where a, b, c are arbitrary constants.

- Watch Video Solution

562. The differential equation of all parabolas whose axis are parallel to the y-axis is
563. From $x^{2}+y^{2}+2 a x+2 b y+c=0$, derive a differential equation not containing a, b, and c.

- Watch Video Solution

564. Solve: $\frac{d y}{d x}=\sin ^{3} x \cos ^{4} x+x \sqrt{x+1}$

- Watch Video Solution

565. Solve the differential equation: $\frac{d y}{d x}=y^{2}+2 y+2$

- Watch Video Solution

566. Solve the following differential equation: $\frac{d y}{d x}=x^{2} e^{x}$
567. Solve the differential equation: $\tan y d x+\tan x d y=0$

- Watch Video Solution

568. Solve the differential equation: $x \cos ^{2} y d x=y \cos ^{2} x d y$

- Watch Video Solution

569. Solve: $\left(\frac{\ln (\sec x+\tan x)}{\cos x}\right) d x=\left(\frac{\ln (\sec y+\tan y)}{\cos y}\right) d y$

- Watch Video Solution

570. Solve the following differential equation: $\cos e c x \log y \frac{d y}{d x}+x^{2} y^{2}=0$
571. Solve the differential equation: $\frac{d y}{d x}=\frac{1}{x^{2}+4 x+5}$

- Watch Video Solution

572. Solve the differential equation: $\frac{d y}{d x}+4 x=e^{x}$

- Watch Video Solution

573. Solve the following differential equation: $\frac{d y}{d x}-x \sin ^{2} x=\frac{1}{x \log x}$

- Watch Video Solution

574. Solve the following differential equations:
$(x+2) \frac{d y}{d x}-x^{2}+4 x-9, x \neq-2 \frac{d y}{d x}=\sin ^{3} x \cos ^{2} x+x e^{x}$

- Watch Video Solution

575. Solve the differential equation: $\frac{d y}{d x}=\sin ^{3} x \cos ^{2} x+x e^{x}$

- Watch Video Solution

576. Solve the following differential equation:
$(1+x) y d x+(1+y) x d y=0$

- Watch Video Solution

577. Solve the following differential equation:
$\left(1-x^{2}\right) d y+x y d x=x y^{2} d x$

- Watch Video Solution

578. Solve the differential equation: $\frac{d y}{d x}+1=e^{x+y}$

- Watch Video Solution

579. Solve the following differential equation: $\frac{d y}{d x}=\sec (x+y)$

- Watch Video Solution

580. Solve the differential equation: $\frac{d y}{d x}=\frac{y(x-y)}{x(x+y)}$

- Watch Video Solution

581. Solve the differential equation: $\frac{d y}{d x}-y \cot x=\operatorname{cosec} x$

- Watch Video Solution

582. Solve the following differential equation: $\frac{d y}{d x}-y \tan x=e^{x} \sec x$

- Watch Video Solution

583. Solve the differential equation: $\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$

Watch Video Solution

584. Solve the differential equation: $y \sec ^{2} x+(y+7) \tan x \frac{d y}{d x}=0$

- Watch Video Solution

585. Solve the following differential equation:
$\left(x^{3}-2 y^{3}\right) d x+3 x y^{2} d y=0$

- Watch Video Solution

586. Solve the following differential equation:
$y-x \frac{d y}{d x}=b\left(1+x^{2} \frac{d y}{d x}\right)$

- Watch Video Solution

587. Solve the following differential equation: $\frac{d y}{d x}+y=4 x$

Watch Video Solution

588. Solve the following differential equation: $x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

- Watch Video Solution

589.

solution
of
differential
equation
$x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1$ is

(Watch Video Solution

590. Solve the differential equation: $y^{2}+\left(x+\frac{1}{y}\right) \frac{d y}{d x}=0$

- Watch Video Solution

591. Solve the differential equation: $2 \cos x \frac{d y}{d x}+4 y \sin x=\sin 2 x$, given that $y=0$ when $x=\frac{\pi}{3}$.
592. Solve the differential equation: $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$

- Watch Video Solution

593. Solve the following differential equation:
$x\left(e^{2 y}-1\right) d y+\left(x^{2}-1\right) e^{y} d x=0$

- Watch Video Solution

594. Solve the differential equation $\frac{d y}{d x}+\frac{y}{x}=\frac{y^{2}}{x^{2}}$

- Watch Video Solution

595.

Solve
the
following
differential
equation:
$(x+y-1) d y=(x+y) d x$
596. Solve the following differential equations: $\frac{d y}{d x}=y \tan x-2 \sin x$

- Watch Video Solution

597. Solve the following differential equation: $\frac{d y}{d x}-y \tan x=e^{x}$

- Watch Video Solution

598. Solve the following differential equation:
$\left(x^{2}+1\right) d y+(2 y-1) d x=0$

- Watch Video Solution

599. Solve the differential equation: $\left(2 a x+x^{2}\right) \frac{d y}{d x}=a^{2}+2 a x$
600. Solve the following differential equation:
$x^{2} d y+\left(x^{2}-x y+y^{2}\right) d x=0$

- Watch Video Solution

601. Solve the differential equation: $\frac{d y}{d x}+2 y=\sin 3 x$

- Watch Video Solution

602. Solve the differential equation: $\frac{d y}{d x}+5 y=\cos 4 x$

- Watch Video Solution

603. Solve the differential equation: $\cos ^{2} x \frac{d y}{d x}+y=\tan x$
604. Solve the differential equation: $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$

- Watch Video Solution

605. Solve the differential equation: $\frac{d y}{d x}+y \tan x=x^{n} \cos x, n \neq-1$

- Watch Video Solution

606. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{x+1}{2-y},(y \neq 2)$

- Watch Video Solution

607. Find the particular solution of the differential equation $\frac{d y}{d x}=-4 x y^{2}$ given that $y=1$, when $x=0$.

- Watch Video Solution

608. Find the general solution of the differential equations $\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$

- Watch Video Solution

609. Find the general solution of the differential equations $\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

- Watch Video Solution

610. Find the general solution of the differential equations $\frac{d y}{d x}=\sin ^{-1} x$

- Watch Video Solution

611. Find the general solution of differential equations (dy)/(dx)=sqrt(4-
612. Find the general solution of the differential equations $y \log y d x-x$ $d y=0$

- Watch Video Solution

613. Find the general solution of the differential equations $\frac{d y}{d x}+y=1(y \neq 1)$

- Watch Video Solution

614. For the differential equation, find a particular solution satisfying the given condition: $x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0$ when $x=2$
615. The differential equations, find a particular solution satisfying the given condition: $\cos \left(\frac{d y}{d x}\right)=a(a \in R) ; y=2$ when $\mathrm{x}=0$

- Watch Video Solution

616. The differential equations, find a particular solution satisfying the given condition: $\frac{d y}{d x}=y \tan x ; y=1$ when $\mathrm{x}=0$

- Watch Video Solution

617. Solve the following differential equation: $(x-y) \frac{d y}{d x}=x+2 y$

- Watch Video Solution

618. Show that the given differential equation is homogeneous and solve each of them. $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$
619. Solve the differential equation: $x \frac{d y}{d x}+2 y=x^{2}, x \neq 0$

- Watch Video Solution

620. Solve the differential equation: $\frac{d y}{d x}+y=e^{-2 x}$

- Watch Video Solution

621. Solve: $\frac{d y}{d x}+y \sec x=\tan x$

- Watch Video Solution

622. Find the general solution of the differential equations:
$x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
623. Solve the differential equation: $(x+y) \frac{d y}{d x}=1$

- Watch Video Solution

624. Solve the differential equation: $\left(x+3 y^{2}\right) \frac{d y}{d x}=y$

- Watch Video Solution

625. Show that the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ is homogeneous and solve it.

- Watch Video Solution

626. Solve the differential equation: $\frac{d y}{d x}-y=\cos x$

- Watch Video Solution

627. Solve the differential equation: $\frac{d y}{d x}+2 y=\sin x$

- Watch Video Solution

628. Solve the differential equation: $\frac{d y}{d x}+\frac{y}{x}=x^{2}$

- Watch Video Solution

629. Solve $x \frac{d y}{d x}+2 y=x^{2} \log x$

- Watch Video Solution

630. Find the general solution of the differential equations:
$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$

- Watch Video Solution

631. Solve the differential equation: $y d x+\left(x-y^{2}\right) d y=0$

- Watch Video Solution

632. The differential equations, find a particular solution satisfying the given condition: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} ; y=0$ when $x=1$

- Watch Video Solution

633. Find a particular solution of the differential equation:
$(x+y) d y+(x-y) d x=0 ; y=1$ when $x=1$

- Watch Video Solution

634. Solve the differential equation $x^{2} d y+y(x+y) d x=0$, given that $y=1$ when $x=1$.
635. Find the equation of the curve passing through the point $(1,1)$ whose differential equation is: $x d y=\left(2 x^{2}+1\right) d x$

- Watch Video Solution

636. Find the equation of a curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$.

- Watch Video Solution

637. Find the equation of a curve passing through the point $(0,0)$ and whose differential equation is $y^{\prime}=e^{x} \sin x$

- Watch Video Solution

638. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve given that it passes through $(2,-1)$.

- Watch Video Solution

639. Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{x^{2}+y^{2}}{2 x y}$, is given by $x^{2}-y^{2}=c x$.

(Watch Video Solution

640. Find the equation of a curve passing through the point $(0,1)$. If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

- Watch Video Solution

641. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

- Watch Video Solution

642. Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .

- Watch Video Solution

643. The slope of the tangent to the curve at any point is reciprocal of twice the ordinate of that point. The curve passes through the point $(4,3)$. Determine its equation.
644. The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

- Watch Video Solution

645. Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. It's half life is 1590 years. What percentage will disappear in one year? [Use $\left.e^{-\frac{\log 2}{1590}}=0.9996\right]$

- Watch Video Solution

646. A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, if weather conditions remain the same?

- Watch Video Solution

