©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

DIRECTION COSINES AND DIRECTION RATIOS

Others

1. Show that the line through the points $(1,-1,2)$ and
$(3,4-2)$ is perpendicular to the line through the points
$(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

2. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

3. Find the acute angle between the lines whose direction ratios are proportional to $2: 3: 6$ and 1:2:2.

- Watch Video Solution

4. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.
5. Find the angle between the lines whose direction ratios are proportional a, b, c and $b-c, c-a, a-b$.

- Watch Video Solution

6. Find the angle between the vectors whose direction cosines are proportional to $2,3,-6$ and $3,-4,5$.

D Watch Video Solution

7. Find the angle between the vectors with direction ratios proportional to $1,-2,1$ and $4,3,2$.
8. Show that the line through points $(4,7,8)$ and $2,3,4)$ is parallel to the line through the points $(-1,-2,1)$ and $(1,2,5)$.

- Watch Video Solution

9. If the coordinates of the points A, B, C, D are $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$, then find the angle between $A B$ and $C D$.

- Watch Video Solution

10. Find the direction cosines of the lines, connected by the relations: $l+m+n=0$ and $2 l m+2 \ln -m n=0$.
11. Find the direction cosines of the two lines which are connected by th relations. $\quad l-5 m+3 n=0 \quad$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$

- Watch Video Solution

12. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

13. Show that the straight lines whose direction cosines are given by the equations $a l+b m+c n=0 \quad$ and $u l^{2}+z m^{2}=v n^{2}+w n^{2}=0$ are parallel or perpendicular as $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$ or $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$.

- Watch Video Solution

14. If a variable line in two adjacent positions has direction cosins l, m, n and $I+\delta l, m+\delta m m, n+\delta n$, show that he small angel $\delta \theta$ between two positions is given by $(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}$

- Watch Video Solution

15. If the edges of a rectangular parallelepiped are a, b, c prove that the angles between the four diagonals are given by $\cos ^{-1}\left(\frac{a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right)$.

D Watch Video Solution

16. If three mutually perpendicular lines have direction cosines $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$, then the line having direction ratio $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}$, and $n_{1}+n_{2}+n_{3}$, make an angle of

- Watch Video Solution

17. Find the direction cosines of the sides of the triangle whose vertices are $(3,5, \quad 4) \quad, \quad(1,1,2)$ and $\left(\begin{array}{lll}5, & 5\end{array}\right)$.

D Watch Video Solution

18. Prove that the straight lines whose direction cosines are
given by the relations
$a l+b m+c n=0 a n d f m n+g n l+h l m=0$
perpendicular, if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$ and parallel, if $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2 a b f g-2 b c g h-2 a c h f=0$.

- Watch Video Solution

19. The x-coordinates of a point on t line joining the points $Q(2,2,1) \operatorname{and} R(5,1,-2) i s 4$. Find its z-coordinate.

- Watch Video Solution

20. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divide $P R$.
21. Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $B(1,4,6)$ and $C(5,4,4)$.

- Watch Video Solution

22. Find the angle between the vectors with direction ratios proportional to $4,-3,5 a n d 3,4,5$.

- Watch Video Solution

23. Determine the point in XY-plane which is equidistant from thee points $A(2,0,3), B(0,3,2) \operatorname{and} C(0,0,1)$.
24. Find the angle between the lines whose direction cosines are
given by the equations $3 l+m+5 n=0,6 m n-2 n l+5 l m=0$

- Watch Video Solution

25. Find the distance between the points A and B with position vectors $\hat{i}-\hat{j}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

26. Find the locus of the point which is equidistant from the points $A(0,2,3)$ and $B(2,-2,1)$.

- Watch Video Solution

27. Find the distance between the points $P(-2,4,1)$ and $Q(1,2,5)$.

- Watch Video Solution

28. Prove by using distance formula that the points $P(1,2,3), Q(-1,-1,-1) \operatorname{and} R(3,5,7)$ are collinear.

D Watch Video Solution

29.

Show
that
the
points
$A(0,1,2), B(2,-1,3) \operatorname{and} C(1,-3,1)$ are vertices of an isosceles right-angled triangle.
30. Find the coordinates of a point equidistant from the four points $\mathrm{O}(0,0,0), \mathrm{A}(\ell, 0,0), \mathrm{B}(0, \mathrm{~m}, 0)$ and $\mathrm{C}(0,0, \mathrm{n})$.

- Watch Video Solution

31. Using vector method prove that the points $A(6,-7,-1), B(2,-3,1)$ and $C(4,-5,0)$ are collinear.

- Watch Video Solution

32. Find the coordinates of the point which divides the joint of
$P(2,-1,4) a n d q(4,3,2)$ in the ratio $2: 3$ (i) internally externally.
33. Find the ratio in which the line joining the points $(1,2,3) \operatorname{and}(-3,4,-5)$ is divided by the $x y$-plane. Also, find the coordinates of the point of division.

- Watch Video Solution

34. Find the ratio in which the join the $A(2,1,5) \operatorname{and} B(3,4,3)$ is divided by the plane $2 x+2 y-2 z=1$. Also, find the coordinates of the point of division.

- Watch Video Solution

35. Using distance formula prove that the following points are collinear: $P(0,7,-7), Q(1,4,-5) \operatorname{and} R(-1,10,-9)$
36. The mid-points of the sides of a triangle are $(1,5,-1),(0,4,-2) \operatorname{and}(2,3,4)$. Find its vertices.

- Watch Video Solution

37. Find the coordinates of the points which trisect the line segment $A B$, given that $A(2,1,-3)$ and $B(5,-8,3)$

- Watch Video Solution

38. Show that the centroid of the triangle with vertices $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $A\left(x_{3}, y_{3}, z_{3}\right)$ has the coordinates $\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{2}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{2}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{2}}{3}\right)$
39. Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $B(1,4,6) a n d C(5,4,4)$.

D Watch Video Solution

40. Find the angle between the vectors with direction ratios proportional to $4,-3,5 a n d 3,4,5$.

D Watch Video Solution

41. $\mathrm{P}(6, \quad 3, \quad 2), \mathrm{Q}(5, \quad 1,3) \operatorname{andR}(3, \quad 3, \quad 5)$ are three vertices of a triangle P Q R . Find $\angle \mathrm{P} \mathrm{Q} R$.
42. Find the direction cosines of the line which is perpendicular to the lines with direction cosines proportional to (1, $-2,-2$) and $(0,2,1)$

- Watch Video Solution

43. If $, \mathrm{l}_{1}, \mathrm{~m}_{1},(\backslash \mathrm{n})_{1}(\backslash \text { and } \backslash \mathrm{l})_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ be the direction cosines of two lines, show that the directioin cosines of the line perpendicular to both them are proportional to

$$
\left(\mathrm{m}_{1}(\backslash \mathrm{n})_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right), \backslash\left(\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}\right), \backslash\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)
$$

- Watch Video Solution

44. If $, \mathrm{l}_{1}, \mathrm{~m}_{1},(\backslash \mathrm{n})_{1}(\backslash \text { and } \backslash \mathrm{l})_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ be the direction cosines of two lines, show that the directioin cosines of the line
perpendicular to both them are proportional to

$$
\left(\mathrm{m}_{1}(\backslash \mathrm{n})_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right), \backslash\left(\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}\right), \backslash\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)
$$

- Watch Video Solution

45. The angel between the two diagonals of a cube is a. $30^{\circ} \mathrm{b}$.
45^{0} c. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ d. $\cos ^{-\left(\frac{1}{3}\right)}$

(-) Watch Video Solution

46. If a line makes angle 900 , 60 oand 30 owith the positive direction of x, y and z -axis respectively, find its direction cosines.
47. if a line has direction ratio 2,-1,-2,determine its direction cosine

- Watch Video Solution

48. Find the direction cosines of the line passing through two points

- Watch Video Solution

49. Using direction ratios show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-11)$ are collinear.
50. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,1)$ and $(-5,-5,-2)$.

- Watch Video Solution

51. Find the angel between the vectors with direction ratios proportional to $1,-2,1$ and $4,3,2$.

- Watch Video Solution

52. Find the acute angle between the lines whose direction ratios are proportional to $2: 3: 6$ and $1: 2: 2$.

- Watch Video Solution

53. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

54. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.

- Watch Video Solution

55. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.
56. Find the angle between the lines whose direction ratios are proportional a, b, c and $b-c, c-a, a-b$.

- Watch Video Solution

57. If the coordinates of the points
A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$
respectively then find the angle between the lines $A B$ and $C D$.

- Watch Video Solution

58. Find the direction cosines of the lines, connected by the relations: $l+m+n=0$ and $2 l m+2 \ln -m n=0$.

- Watch Video Solution

59. Find the angle between the lines whose direction cosine are given by the equation: $\mathrm{l}-\mathrm{m}+\mathrm{n}=0$ and $\mathrm{l}^{2}-\mathrm{m}^{2}-\mathrm{n}^{2}=0$

- Watch Video Solution

60. Find the angle between the lines whose direction cosine are given by the equation: $1+\mathrm{m}+\mathrm{n}=0$ and $l^{2}+m^{2}-n^{2}=0$

- Watch Video Solution

61. Find the angle between the lines whose direction cosine are

$$
\begin{array}{lcc}
\text { given } & \text { by } & \text { the } \\
l+2 \mathrm{~m}+3 \mathrm{n}=0 & \text { and } & 3 \mathrm{~lm}-4 \ln +\mathrm{mn}=0
\end{array}
$$

62. Find the angle between the lines whose direction cosine are
given by the
$2 \mathrm{l}+2 \mathrm{~m}-\mathrm{n}=0$, and $\mathrm{m} \mathrm{n}+\mathrm{ln}+\mathrm{lm}=0$ equation:

D Watch Video Solution

63. Define direction cosines of a directed line.

D Watch Video Solution

64. What are the direction cosines of Y-axis?

- Watch Video Solution

65. Find the direction cosines of x, y and z-axis.
66. What are the direction cosines of Z-axis?

- Watch Video Solution

67. Write the distance of the point (7, -2, 3) from X Y, Y Z and X Z - planes.

- Watch Video Solution

68. Write the ratio in which YZ plane divides the segment joining

$$
\mathrm{P}(-2, \quad 5, \quad 9) \text { and } \mathrm{Q}(3, \quad-2, \quad 4)
$$

69. A line makes an angle of 60° with each of X-axis and Y-axis.

Find the acute angle made by the line with Z-axis.

- Watch Video Solution

70. If a line makes angle alpha, beta \backslash and \backslash gamma with the coordinate axes, find the value of $\cos 2$ alpha $+\cos 2$ beta $+\cos 2$ gamma.

- Watch Video Solution

71. Write the inclination of a line with Z-axis, if its direction ratios are proportional to $0,1,-1$.

- Watch Video Solution

72. Find the angel between the vectors with direction ratios proportional to $1,-2,1$ and $4,3,2$.

- Watch Video Solution

73. Write the distance of the point $P(2,3,5)$ from the xy-plane.

- Watch Video Solution

74. Write the coordinates the reflections of point $(3,5)$ in X and Y-axes.

- Watch Video Solution

75. Find the distance of the point $(2,3,4)$ from the x - axis.
76. If a line has direction ratios proportional to $2,-1,-2$, then what are its direction cosines?

D Watch Video Solution

77. Write the direction cosines of a line parallel to z-axis.

- Watch Video Solution

78. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find the value of θ.

- Watch Video Solution

79. For every point $P(x, y, z)$ on the xy-plane, a. $x=0$ b. $y=0$
c. $z=0$ d. $x=y=z=0$

- Watch Video Solution

80. For every point (x, y, z) on the x - axis (except the origin) a.

$$
\begin{aligned}
& x=0, y=0, z \neq 0 \quad \text { b. } \quad x=0, z=0, y \neq 0 \\
& y=0, z=0, x \neq 0 \text { d. } x=y=z=0
\end{aligned}
$$

c.

- Watch Video Solution

81. A rectangular parallelepiped is formed by planes drawn through the points $(5,7,9)$ and $(2,3,7)$ parallel to the coordinate planes. The length of an edge of this rectangular parallelepiped is a. 2 b .3 c .4 d . all of these
82. A parallelepiped is formed by planes drawn through the points $(2,3,5)$ and ($5,9,7$), parallel to the coordinate lanes. The length of a diagonal of the parallelepiped is a. $7 \mathrm{~b} . \sqrt{38} \mathrm{c} . \sqrt{155}$ d. none of these

- Watch Video Solution

83. The $x y$-plane divided the line joining the points $(-1,3,4)$ and (2 ,
$-5,6$). a. Internally in the ratio $2: 3 \mathrm{~b}$. Internally in the ratio $3: 2 \mathrm{c}$.
externally in the ratio 2:3 d. externally in the ratio 3:2
A. a. Internally in the ratio $2: 3$
B. b. Internally in the ratio 3:2
C. c. externally in the ratio $2: 3$
D. d. externally in the ratio 3:2

Answer: null

- Watch Video Solution

84. If the x-coordinate of a point P on the join of $Q(2,2,1)$ and $R(5,1,-2)$ is 4 , the find its z-coordinate.

- Watch Video Solution

85. The length of the perpendicular drawn from the point $P(a, b, c)$ from z-axis is $\sqrt{a^{2}+b^{2}}$ b. $\sqrt{b^{2}+c^{2}}$ c. $\sqrt{a^{2}+c^{2}} \mathrm{~d}$.
$\sqrt{a^{2}+b^{2}+c^{2}}$
86. Ratio in which the xy-plane divides the join of $(1,2,3)$ and (4,
2,1) is a. 3:1 internally
b. 3:1 externally
c. 1:2 internally
d. 2:1 externally

- Watch Video Solution

87. If $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear, then divides in the ratio a. 3:2 internally

b. 3:2 externally
c. 2:1

internally d. 2:1 externally

- Watch Video Solution

88. If O is the origin, $O P=3$, with direction ratios $-1,2$ and -2 , then find the coordinates of P.
89. Show that the angle between two diagonals of a cube is $\cos ^{-1} \sqrt{\frac{1}{3}}$.

- Watch Video Solution

90. A line makes angles \angle, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

- Watch Video Solution

