©゙’ doubtnut

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

FUNCTION

Others

1. Find gofandfog wehn $f: R \vec{R}$ and $g: R \vec{R}$ are defined by $f(x)=2 x+3$ and $g(x)=x^{2}+5 \quad f(x)=2 x+x^{2}$ and $g(x)=x^{3}$ $f(x)=x^{2}+8$ and $g(x)=3 x^{3}+1 f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

Watch Video Solution
2. Let $f=\{(1,-1),(4,-2),(9,-3),(16,4)\} \quad$ and $g=\{(-1,-2),(02,-4),(-3,-6),(4,8)\}$. Show that gof is
defined while $f o g$ is not defined. Also, find $g o f$.

- Watch Video Solution

3. Show that if $f_{1} a n d f_{2}$ are one-one maps from $R \rightarrow R$, then the product $f_{1} \times f_{2}: R \rightarrow R$ defined by $\left(f_{1} \times f_{2}\right)(x)=f_{1}(x) f_{2}(x)$ need not be one-one.

- Watch Video Solution

4. Give examples of two surjective function f_{1} and f_{2} from Z to Z such that $f_{1}+f_{2}$ is not surjective.

- Watch Video Solution

5. Given examples of two one-one functions $f_{1} a n d f_{2}$ from R to R such that $f_{1}+f_{2}: R \vec{R}$, defined by $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$ is not

(D) Watch Video Solution

6. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto functions show that $g o f$ is an onto function.

- Watch Video Solution

7. Show that the logarithmic function $f: R 0+\vec{R}$ given by $f(x)=(\log)_{a} x, a>0$ is bijection.

- Watch Video Solution

8. If $f: A \vec{B}$ andg: $B \vec{C}$ are one-one functions, show that gof is one-one function.
9. If $f: R \rightarrow R$ be the function defined by $f(x)=4 x^{3}+7$, show that f is a bijection.

- Watch Video Solution

10. Let $A=\{1,2,3\}$. Write all one-one from A to itself.

- Watch Video Solution

11. Show that $f: R \vec{R}$, given by $f(x)=x-[x]$, is neither one-one nor onto.

- Watch Video Solution

12. Suppose $f_{1} a n d f_{2}$ are non-zero one-one functions from $R \rightarrow R$. is $\frac{f_{1}}{f_{2}}$ necessarily one-one? Justify your answer. Here, $\frac{f_{1}}{f_{2}}: R \rightarrow R$ is given by $\left(\frac{f_{1}}{f_{2}}\right)(x)=\frac{f_{1}(x)}{f_{2}(x)}$ for all $x \in R$.

- Watch Video Solution

13. Let $f=\{(3,1),(9,3),(12,4)\} \quad$ and g $=\{(1,3),(3,3),(4,9),(5,9)\}$. Show that gof and fog are both defined. Also, find fog and gof.

- Watch Video Solution

14. Find $f \circ g(2)$ and $g o f(1)$ when: $f: R \rightarrow R ; f(x)=x^{2}+8$ and $g: R \rightarrow R ; g(x)=3 x^{3}+1$.

- Watch Video Solution

15. Let $f: R \vec{R}$ and $g: R \vec{R}$ be defined by $f(x)=x^{2}$ and $g(x)=x+1$. Show that $f o g \neq g o f$.

- Watch Video Solution

16. Let R^{+}be the set of all non-negative real numbers. if $f: R^{+} \rightarrow R^{+}$ and $g: R^{+} \rightarrow R^{+}$are defined as $f(x)=x^{2}$ and $g(x)=+\sqrt{x}$. Find $f o g$ and $g o f$. Are they equal functions.

- Watch Video Solution

17. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then $\cos \alpha$ equals

- Watch Video Solution

18. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=x+1$ and $g(x)=x-1$. Show that $f o g=g o f=I_{R}$.

- Watch Video Solution

19. Show that the exponential function $f: R \rightarrow R$, given by $f(x)=e^{x}$, is one-one but not onto. What happens if the co-domain is replaced by R_{0}^{+}(set of all positive real numbers).

- Watch Video Solution

20. Let $A=\{-1,0,1)$ and $f=\left\{\left(x, x^{2}\right): x A\right\}$. Show that $f: A \vec{A}$ is neither one-one nor onto.

- Watch Video Solution

21. If $f: A \vec{B}$ is an injection such that range of $f=\{a\}$. Determine the number of elements in A.

- Watch Video Solution

22. Which of the following functions from $A \rightarrow B$ are one-one and onto?

$$
f_{1}=\{(1,3),(2,5),(3,7)\} ; A=\{1,2,3\}, B=\{3,5,7\}
$$

$$
f_{2}=\{(2, a),(3, b),(4, c)\} ; A=\{2,3,4\}, B=\{a, b, c\}
$$

$$
f_{3}=\{(a, x),(b, x),(c, z),(d, z)\} ; A=\{a, b, c, d\}, B=\{x, y, z\}
$$

- Watch Video Solution

23. Prove that the function $F: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is one-one but not onto.

- Watch Video Solution

24. Let A be any non-empty set. Then, prove that the identity function on set A is a bijection.

- Watch Video Solution

25. Let $A=R-[2]$ and $B=R-[1]$. If $f: A \rightarrow B$ is a mapping defined by $f(x)=\frac{x-1}{x-2}$, show that f is bijective.

- Watch Video Solution

26. Show that if f_{1} and f_{1} are one-one maps from $R \rightarrow R$, then the product $f_{1} x f_{2}: R \vec{R}$ defined by $\left(f_{1} x f_{2}\right)(x)=f_{1}(x) f_{2}(x)$ need not be one-one.

- Watch Video Solution

27. Give examples of two one-one functions f_{1} and f_{2} from R to R such that $f_{1}+f_{2}: R \rightarrow R$, defined by $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$ is not one-one.

- Watch Video Solution

28. If $f, g: R-R$ are defined respectively by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find fog (ii) gof (iii) fof (iv) gog.

- Watch Video Solution

29. If the function $f: R \vec{R}$ be given by $f(x)=x^{2}+2$ andg: $R \vec{R}$ be given by $g(x)=\frac{x}{x-1}$. Find fogandgof.

- Watch Video Solution

30. If the function fandg are given by
$f=\{(1,2),(3,5),(4,1)\} \operatorname{andg}=((2,3),(5,1),(1,3)\}$, find range of fandg. Also, write down fogandgof as sets of ordered pairs.

- Watch Video Solution

31. Suppose f_{1} and f_{2} are non=zero one-one functions from $R \rightarrow R$ is $\frac{f_{1}}{f_{2}}$ necessarily one-one? Justify your answer. Here, $\frac{f_{1}}{f_{2}}: R \vec{R}$ is given by $\left(\frac{f_{1}}{f_{2}}\right)(x)=\frac{f_{1}(x)}{f_{2}(x)}$ for all $x R$.

- Watch Video Solution

32. Find whether the following functions are one-one or not: $f: R \vec{g}$ ivenby $f(x)=x^{3}+2 f$ or all $x \in R$.
$f: Z \vec{Z}$ givenby $f(x)=x^{2}+1 f$ or allx $\in Z$.

- Watch Video Solution

33. If the function f and g are given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, find range of f and g . Also write down fog and gofas set of ordered pairs.

- Watch Video Solution

34. Discuss the surjectivity of the following functions: $f: R \rightarrow$ given by $f(x)=x^{3}+2$ for all $x \in R$.

- Watch Video Solution

35. Show that the function $f: Z \vec{Z}$ defined by $f(x)=x^{2}+x$ for all $x \in Z$, is a many one function.

- Watch Video Solution

36. Let A be the set of all 50 students of class XII in a central school. Let $f: A \rightarrow N$ be a function defined by $f(x)=$ Roll number of student x. Show that f is one-one but not onto

- Watch Video Solution

37. Show that the function $f: R \vec{R}$ defined by $f(x)=3 x^{3}+5$ for all $x \in R$ is a bijection.

D Watch Video Solution

38. Show that the function $f: R \vec{R}$ given by
$f(x)=\cos x f$ or allx $\in R$, is neither one-one nor onto

- Watch Video Solution

39. Show that the function $f: R^{\rightarrow}$ given by $f(x)=x a+b$, where $a, b \in R, a \neq 0$ is a bijection.

- Watch Video Solution

40. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ then $\operatorname{fofof}(x)$
41. If $f(x)=\frac{3 x-2}{2 x-3}$, prove that $\left.f(f(x))\right)=x$ for all $x \in R-\left\{\frac{3}{2}\right\}$

- Watch Video Solution

42. Show that $f: R \vec{R}$, given by $f(x)=x-[x]$, is neither one-one nor onto.

- Watch Video Solution

43. Let $f: R-R$ be a function given by $f(x)=a x+b$ for all $x \in R$.

Find the constants a and b such that $f o f=I_{R}$.

- Watch Video Solution

44. If $f(x)=e^{x}$ and $g(x)=(\log)_{e} x(x>0)$, find fogandgof. Is $f o g=g o f ?$

- Watch Video Solution

45. If $f:[0, \infty) \vec{R}$ andg: $R \vec{R}$ be defined as $f(x)=\sqrt{x}$ and $g(x)=-x^{2}-1$, then find gofandfog.

- Watch Video Solution

46. Let f and g be real functions defined by
$f(x)=\frac{x}{x+1} \operatorname{andg}(x)=\frac{1}{x+3}$. Describe the functions gof and fog (if they exist).

- Watch Video Solution

47. If $f(x)=\sqrt{x}(x>0)$ and $g(x)=x^{2}-1$ are two real functions, find $f o g$ and $g o f$ is $f o g=g \circ f ?$

- Watch Video Solution

48. Let $f: N-[1] \vec{N}$ be defined by, $f(n)=$ the highest prime factor of n. Show that f is neither one-one nor onto. Find the range of f.

- Watch Video Solution

49. If $f: R^{\rightarrow}$ is defined by $f(x)=2 x+7$. Prove that f is a bijection.

Also, find the inverse of f.

- Watch Video Solution

50. If $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ and $g:[-1,1] \rightarrow R$ be defined as $f(x)=\tan x$ and $g(x)=\sqrt{1-x^{2}}$ respectively. Describe fog and $g \circ f$

- Watch Video Solution

51.

$f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right) \operatorname{andg}\left(\frac{5}{4}\right)=1$, then $(g o f)(x)$ is \qquad

- Watch Video Solution

52. Let $f, g: R-R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x$, for all x Then find fog and gof.

- Watch Video Solution

53. Let $A=\{a, b, c, d\}$ and $f: A \rightarrow A$ be given by $f=\{(a, b),(b, d),(c, a),(d, c)\}$, write f^{-1}
54. Let
$g=\{(1,3),(3,3),(4,9),(5,9)\}$. Show that gofandfog are both defined. Also, find fogandgof.

- Watch Video Solution

55. If $F:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$, then $f^{-1}(x)$ equals
(a) $\frac{x+\sqrt{x^{2}-4}}{2}$
(b) $\frac{x}{1+x^{2}}$
(c) $\frac{x-\sqrt{x^{2}-4}}{2}$
$1+\sqrt{x^{2}-4}$

- Watch Video Solution

56. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be two functions such that $f \circ g(x)=\sin x^{2}$ and $g \circ f(x)=\sin ^{2} x$ Then, find $f(x)$ and $g(x)$.

- Watch Video Solution

57. Let R be the set of real numbes. If $f: R \vec{R} ; f(x)=x^{2}$ and $g: R \vec{R} ; g(x)=2 x+1$. Then, find fogandgof. Also, show that $f o g \neq g \circ f$.

- Watch Video Solution

58. If $f(x)=-4-(x-7)^{3}$, write $f^{-1}(x)$.

- Watch Video Solution

59. If $f:\{5,6\} \overrightarrow{2,3}$ andg: $\{2,3\}, \overrightarrow{5,6}$ are given by $f=\{(5,2),(6,3)\}$ and $g=\{(2,5),(3,6)\}$, find fog.

- Watch Video Solution

60. If a function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by $g(x)=\alpha x+\beta$, find the values of $\alpha a n d \beta$.

- Watch Video Solution

61. Show that $f: R-[0] \rightarrow R-[0]$ given by $f(x)=\frac{3}{x}$ is invertible and it is inverse of itself.

- Watch Video Solution

62. Let $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$. Then number of surjections from A into B is $\mathrm{nP2}$ (b) $2^{n}-2$ (c) $2^{n}-1$ (d) nC2

- Watch Video Solution

63. If $f: R \overrightarrow{R-1,1}$ is defined by $f(x)=-\frac{x|x|}{1+x^{2}}$, then $f^{-1}(x)$ equals $\sqrt{\frac{|x|}{1-|x|}}$ (b) $-\operatorname{sgn}(x) \sqrt{\frac{|x|}{1-|x|}}-\sqrt{\frac{x}{1-x}}$ (d) none of these

- Watch Video Solution

64. Let $f: Z \rightarrow Z$ be defined by $f(n)=3 n$ for all $n \in Z$ and $g: Z \rightarrow Z$ be defined by $g(n)=\left\{\begin{array}{ll}\frac{n}{3} & \text { if } n \text { is amultipleof3 } \\ 0 & \text { if nisnotmultipleof3 }\end{array}\right.$ for all $n \in Z$ Show that $g o f=I_{Z}$ and $f o g \neq I_{Z}$

- Watch Video Solution

65. Let $A=\{x \in R: 0 \leq x \leq 1\}$. If $f: A \rightarrow A$ is defined by $f(x)=\left\{\begin{array}{ll}x & \text { if } x \in Q \\ 1-x & \text { if } x \notin Q\end{array}\right.$ then prove that $f o f(x)=x$ for all $x \in A$.

- Watch Video Solution

66. Let $A=[-1,1]$. Then, discuss whether the following functions from A to itself are one-one onto or bijective: $f(x)=\frac{x}{2}$ (ii) $g(x)=|x|$
(iii) $h(x)=x^{2}$
67. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) \mathrm{R}(u, v)$ if and only if $x v=y u$. Show that R is an equivalence relation.

Watch Video Solution

68. Let A be a finite set. If $f: A \vec{A}$ is an onto function, show that f is one-one also.

- Watch Video Solution

69. Show that the function $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is bijection.
70. Show that the function $f: R^{\rightarrow} \mathrm{R}$ given by $f(x)=x^{3}+x$ is a bijection.

- Watch Video Solution

71. Let $f: N \cup\{0\} \rightarrow N \cup\{0\}$ be defined by $f=\left\{\begin{array}{ll}n+1 & \text { if } n \text { is even } \\ n-1 & \text { if } n \text { is odd }\end{array}\right.$ Show that f is a bijection.

- Watch Video Solution

72. Let $f: N-[1] \vec{N}$ be defined by, $f(n)=$ the highest prime factor of n. Show that f is neither one-one nor onto. Find the range of f.

- Watch Video Solution

73. Let $A=\{1,2\}$. Find all one-to-one function from A to A .
74. Let $f: R \vec{a} n d g: R \vec{R}$ be defined by $f(x)=x+1 \operatorname{and} g(x)=x-1$. Show that $f o g=g o f=I_{R}$.

- Watch Video Solution

75. Verify assoiativity for the following three mappings : $f: N \rightarrow Z_{0}$ (the set of non zero integers), $g: Z_{0} \rightarrow Q$ and $h: Q \rightarrow R$ given by $f(x)=2 x, g(x)=\frac{1}{x}$ and $h(x)=e^{x}$.

- Watch Video Solution

76. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

- Watch Video Solution

77. If the set A contains 7 elements and the set B contains 10 elements, then the number of one-one functions from A to B is

- Watch Video Solution

78. $f: R \rightarrow R$ is defined by $f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}$ is :
A. (a) one-one but not onto
B. (b) many-one but onto
C. (c) one-one and onto
D. (d) neither one-one nor onto

Answer: null

- Watch Video Solution

79. The inverse of the function $f: R x \in R: x<1$ given by

$$
f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad \text { is(a) } \quad \frac{1}{2} \frac{\log (1+x)}{1-x} \quad \text { (b) } \quad \frac{1}{2} \frac{\log (2+x)}{2-x}
$$

$\frac{1}{2} \frac{\log (1-x)}{1+x}$ (d) None of these

- Watch Video Solution

80. Let $A=\{1,2,3\}$. Write all one-one from A to itself.

- Watch Video Solution

81. If $f: R \vec{R}$ be the function defined by $f(x)=4 x^{3}+7$, show that f is a bijection.

- Watch Video Solution

82. If the function $f:[1, \infty) \rightarrow[1, \infty)$ is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is (A) $\left(\frac{1}{2}\right)^{x(x-1)} \quad$ (B) $\frac{1}{2} \sqrt{1+4 \log _{2} x}$ $\frac{1}{2}\left(1+\sqrt{1+4 \log _{2} x}\right)$ (D) not defined
83. The value of parameter α, for which the function
$f(x)=1+\alpha x, \alpha \neq 0$ is the inverse of itself

- Watch Video Solution

84. Let R^{+}be the set of all non-negative real numbers. if $f: R^{+} \rightarrow R^{+}$ and $g: R^{+} \rightarrow R^{+}$are defined as $f(x)=x^{2}$ and $g(x)=+\sqrt{x}$. Find $f o g$ and $g o f$. Are they equal functions.

- Watch Video Solution

85. Show that the function $f: R \rightarrow R$ is given by $f(x)=1+x^{2}$ is not invertible.

- Watch Video Solution

86. $\int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x$

- Watch Video Solution

87. Let $f:[-1, \infty] \overrightarrow{-1,}$ is given by $f(x)=(x+1)^{2}-1, x \geq-1$. Show that f is invertible. Also, find the set $S=\left\{x: f(x)=f^{-1}(x)\right\}$.

- Watch Video Solution

88. Let $f: N \vec{R}$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \vec{S}$, where S is the range of f, is invertible. Also find the inverse of f

- Watch Video Solution

89. Let $A=R-\{3\}$ and $B=R-[1]$. Consider the function $f: A \vec{B}$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and
hence find f^{-1}

- Watch Video Solution

90. Let $f, g: \vec{R}$ be defined by $f(x)=2 x+1$ and $g(x)=x^{2}-2$ for all $x \in R$, respectively. Then, find gof

- Watch Video Solution

91. Let A and B be any two sets such that $n(B)=P, n(A)=q$ then the total number of functions $\mathrm{f}: A \rightarrow B$ is equal to

- Watch Video Solution

92. If $f: A \rightarrow A, g: A \rightarrow A$ are two bijections, then prove that (i) $f o g$ is an injection (ii) $f o g$ is a surjection.
93. Let $f: Z \rightarrow Z$ be defined by $f(x)=x+2$. Find $g: Z \rightarrow Z$ such that $g o f=I_{Z}$.

- Watch Video Solution

94. Which one the following relations on $A=\{1,2,3\}$ is function?
$f=\{(1,3),(2,3),(3,2)\}, g=\{(1,2),(1,3),(3,1)\}$

- Watch Video Solution

95. Write the domain of the real function f defined by $f(x)=\sqrt{25-x^{2}}$.

- Watch Video Solution

96. Let $A\} x:-1 \leq x \leq 1\}$ andf: $A \rightarrow$ A such that $f(x)=x|x|$, then f is (a) bijection (b) injective but not surjective Surjective but not
injective (d) neither injective nor surjective

- Watch Video Solution

97. If the function $f:[1, \infty) \rightarrow[1, \infty)$ is defined by
$f(x)=2^{x(x-1)}$, then $^{-1}(x) \quad$ is $\quad\left(\frac{1}{2}\right)^{x(x-1)}$
$\frac{1}{2}\left(1+\sqrt{1+4(\log)_{2} x}\right)$$\frac{1}{2}\left(1-\sqrt{1+(\log)_{2} x}\right.$ (d) not defined

(D) Watch Video Solution

98. If $f(x)=\frac{x-1}{x+1}, x \neq-1$, then show that $f(f(x))=-\frac{1}{x}$ provided that x ! $=0,-1$

- Watch Video Solution

99. Let f be a real function defined by $f(x)=\sqrt{x-1}$. Find $($ fofof $)(x)$. Also, show that fof $\neq f^{2}$.
100. Let $f: R \rightarrow R$ be the function defined by $f(x)=4 x-3$ for all $x \in R$. Then write f^{-1}.

- Watch Video Solution

101. Find whether $f: R \rightarrow R$ given by $f(x)=x^{3}+2$ for all $x \in R$.

- Watch Video Solution

102. Find whether $f: Z \rightarrow Z$ given by $f(x)=x^{2}+1$ for all $x \in Z$

(D) Watch Video Solution

103. Show that the function $f: Z \rightarrow Z$ defined by $f(x)=x^{2}$ for all $x \in Z$, is a function but not bijective function.
104. Discuss the surjectivity of $f: R \rightarrow R$ given by $f(x)=x^{3}+2$ for all $x \in R$

- Watch Video Solution

105. Discuss the surjectivity of $f: R \rightarrow R$ given by $f(x)=x^{2}+2$ for all $x \in R$

- Watch Video Solution

106. Discuss the surjectivity of $f: Z \rightarrow Z$ given by $f(x)=3 x+2$ for all $x \in Z$.

- Watch Video Solution

107. Show that the function $f: N \rightarrow N$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x \geq 2$, is onto but not one-one.

- Watch Video Solution

108. Show that the Signum function $f: R \rightarrow R$, given by
$f(x)=\left\{\begin{array}{cc}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right)$ is neither one-one nor onto

- Watch Video Solution

109. Prove that the function $f: Q \rightarrow Q$ given by $f(x)=2 x-3$ for all $x \in Q$ is a bijection.

- Watch Video Solution

110. Show that the function $f: R \rightarrow R$ defined by $f(x)=3 x^{3}+5$ for all $x \in R$ is a bijection.

- Watch Video Solution

111. Let $A=\{x \in R:-1 \leq x \leq 1\}=B$. Then, the mapping $f: A \rightarrow B$ given by $f(x)=x|x|$ is (a) injective but not surjective (b) surjective but not injective (c) bijective (d) none of these

- Watch Video Solution

112. Let A be the set of all 50 students of class $X I I$ in a central school.

Let $f: A \rightarrow N$ be a function defined by $f(x)=$ Roll mberofstudentx Show that f is one-one but not onto.

- Watch Video Solution

113. Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.

- Watch Video Solution

114. Prove that $f: R \rightarrow R$, given by $f(x)=2 x$, is one-one and onto.

- Watch Video Solution

115. Show that the function $f: R \rightarrow R$, defined as $f(x)=x^{2}$, is neither one-one nor onto.

- Watch Video Solution

116. Show that $f: R \rightarrow R$, defined as $f(x)=x^{3}$, is a bijection.
117. Show that the function $f: R_{0} \rightarrow R_{0}$, defined as $f(x)=\frac{1}{x}$, is oneone onto, where R_{0} is the set of all non-zero real numbers. Is the result true, if the domain R_{0} is replaced by N with co-domain being same as R_{0} ?

- Watch Video Solution

118. Prove that the greatest integer function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=[x]$, is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x .

- Watch Video Solution

119. Show that the modulus function $f: R \rightarrow R$, given by $f(x)=|x|$ is neither one-one nor onto.
120. Let C be the set of complex numbers. Prove that the mapping $F: C \rightarrow R$ given by $f(z)=|z|, \forall z \in C$, is neither one-one nor onto.

- Watch Video Solution

121. Show that the function $f: R^{\rightarrow}$ given by $f(x)=x a+b$, where $a, b \in R, a \neq 0$ is a bijection.

- Watch Video Solution

122. Show that the function $f: R \rightarrow R$ given by $f(x)=\cos x$ for all $x \in R$, is neither one-one nor onto.

- Watch Video Solution

123. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a mapping defined by $f(x)=\frac{x-1}{x-2}$, show that f is bijective.

- Watch Video Solution

124. Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is a bijection.

- Watch Video Solution

125. Let A be any non-empty set. Then, prove that the identity function on set A is a bijection.

- Watch Video Solution

126. Let $f: N-\{1\} \rightarrow N$ be defined by, $f(n)=$ the highest prime factor of n. Show that f is neither one-one nor onto. Find the range of f.
127. Let $A=\{1,2\}$. Find all one-to-one function from A to A .

D Watch Video Solution

128. Consider the identity function $I_{N}: N \rightarrow N$ defined as, $I_{N}(x)=x$ for all $x \in N$. Show that although I_{N} is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x)=x+x=2 x$ is not onto.

- Watch Video Solution

129. Consider a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R \quad$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$. Show that f and g are one-one, but $f+g$ is not one-one.

- Watch Video Solution

130. Let $f: X \rightarrow Y$ be a function. Define a relation R in X given by $R=\{(a, b): f(a)=f(b)\}$. Examine whether R is an equivalence relation or not.

- Watch Video Solution

131. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one-one and onto function.
A. defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one-one and onto function.
B. null
C. null
D. null

Answer: null

(D) Watch Video Solution

132. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}+x$ is a bijection.

- Watch Video Solution

133. check that $f: N-N$ defined by
$f(n)=\left\{\frac{n+1}{2},(\right.$ if nisodd $\left.)\right),\left(\frac{n}{2},(\right.$ if niseven $\left.)\right)$ is one -one onto function?

- Watch Video Solution

134. Show that the function $f: N \rightarrow N$ given by, $f(n)=n-(-1)^{n}$ for all $n \in N$ is a bijection.
135. Let $f: N \cup\{0\} \rightarrow N \cup\{0\}$ be defined by $f(n)=\{n+1, \quad$ if n is eve $\cap-1, \quad$ if n is odd Show that f is a bijection.

- Watch Video Solution

136. Let A be a finite set. If $f: A \rightarrow A$ is a one-one function, show that f is onto also.

- Watch Video Solution

137. Let A be a finite set. If $f: A \rightarrow A$ is an onto function, show that f is one-one also.

- Watch Video Solution

138. Give an example of a function which is one-one but not onto. which is not one-one but onto. (iii) which is neither one-one nor onto.

- Watch Video Solution

139. Which of the following functions from A to B are one-one and onto? $f_{1}=\{(1,3),(2,5),(3,7)\} ; A=\{1,2,3\}, B=\{3,5,7\}$ (ii) $f_{2}=\{(2, a),(3, b),(4, c)\} ; A=\{2,3,4\}, B=\{a, b, c\}$ (iii) $f_{3}=\{(a, x),(b, x),(c, z),(d, z)\} ; A=\{a, b, c, d\}, B=\{x, y$, $z\}$

- Watch Video Solution

140. Prove that the function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is one-one but not onto.
141. Let $A=\{-1,0,1\}$ and $f=\left\{\left(x, x^{2}\right): x \in A\right\}$. Show that $f: A \rightarrow A$ is neither one-one nor onto.

- Watch Video Solution

142. Classify $f: N \rightarrow N$ given by $f(x)=x^{2}$ as injection, surjection or bijection.

- Watch Video Solution

143. Classify $f: Z \rightarrow Z$ given by $f(x)=x^{2}$ as injection, surjection or bijection.

- Watch Video Solution

144. Classify $f: N \rightarrow N$ given by $f(x)=x^{3}$ as injection, surjection or bijection.

Watch Video Solution

145. Classify $f: Z \rightarrow Z$ given by $f(x)=x^{3}$ as injection, surjection or bijection.

(D) Watch Video Solution

146. Classify $f: R \rightarrow R$, defined by $f(x)=|x|$ as injection, surjection or bijection.

- Watch Video Solution

147. Classify $f: Z \rightarrow Z$, defined by $f(x)=x^{2}+x$ as injection, surjection or bijection.

- Watch Video Solution

148. Classify $f: Z \rightarrow Z$, defined by $f(x)=x-5$ as injection, surjection or bijection.

- Watch Video Solution

149. Classify $f: R \rightarrow R$, defined by $f(x)=\sin x$ as injection, surjection or bijection.

- Watch Video Solution

150. Classify $f: R \rightarrow R$, defined by $f(x)=x^{3}+1$ as injection, surjection or bijection.

- Watch Video Solution

151. Classify $f: R \rightarrow R$, defined by $f(x)=x^{3}-x$ as injection, surjection or bijection.

- Watch Video Solution

152. Classify $f: R \rightarrow R$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$ as injection, surjection or bijection.

- Watch Video Solution

153. Classify $f: Q-\{3\} \rightarrow Q$, defined by $f(x)=\frac{2 x+3}{x-3}$ as injection, surjection or bijection.

(D) Watch Video Solution

154. Find $\frac{d y}{d x}$ if $y^{7}=x$

(D) Watch Video Solution

155. Find $\frac{d y}{d x}$ if $y^{3}=x$

(D) Watch Video Solution

156. Classify $f: R \rightarrow R$, defined by $f(x)=3-4 x$ as injection, surjection or bijection.

- Watch Video Solution

157. Classify $f: R \rightarrow R$, defined by $f(x)=1+x^{2}$ as injection, surjection or bijection.

- Watch Video Solution

158. Classify $f: R \rightarrow R$, defined by $f(x)=\frac{x}{x^{2}+1}$ as injection, surjection or bijection.

- Watch Video Solution

159. If $f: A \rightarrow B$ is an injection such that range of $f=\{a\}$. Determine the number of elements in A.

- Watch Video Solution

160. Show that the function $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is a bijection.

- Watch Video Solution

161. Let $A=[-1,1]$. Then, discuss whether the following functions from A to itself are one-one, onto or bijective: $f(x)=\frac{x}{2}$
$g(x)=|x|$ (iii) $h(x)=x^{2}$

- Watch Video Solution

162. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective: $\{(x, y): x$ is a person, y is the mother of $x\}$ (ii) $\{(a, b): a$ is a person, b is an ancestor of $a\}$

- Watch Video Solution

163. Let $A=\{1,2,3\}$. Write all one-one from A to itself.

- Watch Video Solution

164. If $f: R \rightarrow R$ be the function defined by $f(x)=4 x^{3}+7$, show that f is a bijection.

- Watch Video Solution

165. Show that the exponential function $f: R \rightarrow R$, given by $f(x)=e^{x}$, is one-one but not onto. What happens if the co-domain is replaced by
$R 0+$ (set of all positive real numbers).

- Watch Video Solution

166. Show that the logarithmic function $f: R 0 \pm>R$ given by $f(x)=(\log)_{a} x, a>0$ is a bijection.

- Watch Video Solution

167. Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.

- Watch Video Solution

168. If $A=\{1,2,3\}$, show that an onto function $f: A \rightarrow A$ must be one-one
169. Find the number of all onto functions from the set $A=\{1,2,3, \quad n\}$ to itself.

- Watch Video Solution

170. Give examples of two one-one functions f_{1} and f_{2} from R to R such that $f_{1}+f_{2}: R \rightarrow R$, defined by $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$ is not one-one.

- Watch Video Solution

171. Give examples of two surjective function f_{1} and f_{2} from Z to Z such that $f_{1}+f_{2}$ is not surjective.

- Watch Video Solution

172. Show that if f_{1} and f_{2} are one-one maps from R to R, then the product $f_{1} \times f_{2}: R \rightarrow R$ defined by $\left(f_{1} \times f_{2}\right)(x)=f_{1}(x) f_{2}(x)$ need not be one-one.

- Watch Video Solution

173. Suppose f_{1} and f_{2} are non-zero one-one functions from R to R. Is $\frac{f_{1}}{f_{2}}$ necessarily one-one? Justify your answer. Here, $\frac{f_{1}}{f_{2}}: R \rightarrow R$ is given by $\left(\frac{f_{1}}{f_{2}}\right)(x)=\frac{f_{1}(x)}{f_{2}(x)}$ for all $x \in R$.

- Watch Video Solution

174. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of an injective map from A to B.

- Watch Video Solution

175. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of a mapping from A to B which is not injective

- Watch Video Solution

176. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of a mapping from A to B.

- Watch Video Solution

177. Show that $f: R \rightarrow R$, given by $f(x)=x-[x]$, is neither one-one nor onto.

- Watch Video Solution

178. Let $f: N \rightarrow N$ be defined by: $\mathrm{f}(\mathrm{n})=\{(\mathrm{n}+1) / 2$, if n is odd $(\mathrm{n}-1) / 2$, if n is even Show that f is a bijection.

- Watch Video Solution

179. Let R be the set of real numbers. If $f: R \rightarrow R: f(x)=x^{2}$ and $g: R \rightarrow R ; g(x)=2 x+1$. Then, find $f o g$ and $g o f$. Also, show that $f o g \neq g \circ f$.

- Watch Video Solution

180. Let $: R \rightarrow R ; f(x)=\sin x$ and $g: R \rightarrow R ; g(x)=x^{2}$ find $f o g$ and $g o f$.

- Watch Video Solution

181. Let $f:\{2,3,4,5\} \overrightarrow{3,4,5,9}$ andg $:\{3,4,5,9\} \overrightarrow{7,11,15}$ be functions defined at ${ }^{\prime} f(2)=3, f(3)=4, f(4)=f(5)=5, g(3)=g(4)=7, a n d g(5)=g(9)=11$.find gof

- Watch Video Solution

182. Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.

- Watch Video Solution

183. Find gof and fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=|5 x-2|$.

- Watch Video Solution

184. If the functions f and g are given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, find range of f and g. Also, write down $f o g$ and $g o f$ as sets of ordered pairs.

- Watch Video Solution

185. If the function $f: R \rightarrow R$ be given by $f(x)=x^{2}+2$ and $g: R \rightarrow R$ be given by $g(x)=\frac{x}{x-1}$. Find fog and $g \circ f$.

- Watch Video Solution

186. If $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\}$ be defined as $f(x)=\frac{3 x+4}{5 x-7}$ and $g: R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\}$ be defined as $g(x)=\frac{7 x+4}{5 x-3}$. Show that gof $=I_{A}$ and $f o g=I_{B}$, where $B=R-\left\{\frac{3}{5}\right\}$ and $A=R-\left\{\frac{7}{5}\right\}$.

- Watch Video Solution

187. Find the derivative of $f(x)=x^{2}-3 x+2$.

- Watch Video Solution

188. If $f, g: R-R$ are defined respectively by $f(x)=x^{2}+3 x+1, g(x)=2 x-3$, find fog (ii) gof (iii) fof (iv) gog.

- Watch Video Solution

189. Let $f: Z \rightarrow Z$ be defined by $f(x)=x+2$. Find $g: Z \rightarrow Z$ such that $g o f=I_{Z}$.

- Watch Video Solution

190. If $f: Z \rightarrow Z$ be defined by $f(x)=2 x$ for all $x \in Z$. Find $g: Z \rightarrow Z$ such that $g o f=I_{Z}$.

- Watch Video Solution

191. Let f, g and h be functions from R to R. Show that $(f+g) o h=f o h+g o h$

(D) Watch Video Solution

192. Let f, g and h be functions from R to R. Show that $(f o g) o h=(f o h)(g o h)$

- Watch Video Solution

193. Let $f: R \rightarrow R$ be the signum function defined as $f(x)=\{1, x>0, \quad 0, x=0, \quad-1, x<0$ and $g: R \rightarrow R$ be the greatest integer function given by $g(x)=[x]$. Then, prove that fog and gof coincide in $[-1,0)$.

- Watch Video Solution

194. Let $A=\{x \in R: 0 \leq x \leq 1\}$. If $f: A \vec{A}$ is defined by $f(x)=\{x, \quad$ if $x \in Q, 1-x, \quad$ if $x \notin Q$ then prove that $f o f(x)=x$ for all $x \in A$.

- Watch Video Solution

195. Let $f: R \vec{R}$ and $g: R^{\rightarrow}$ be two functions such that $f o g(x)=\sin x^{2} \operatorname{andgof}(\mathrm{x})=\sin ^{2} x$. Then, find $f(x) \operatorname{andg}(x)$.

- Watch Video Solution

196.

If
$f: R \rightarrow R$
be
given
by
$f(x)=\sin ^{2} x+\sin ^{2}(x+\pi / 3)+\cos x \cos (x+\pi / 3)$ for all $x \in R$, and $g: R \rightarrow R$ be such that $g(5 / 4)=1$, then prove that $g \circ f: R \rightarrow R$ is a constant function.

- Watch Video Solution

197. Let $f: Z \vec{Z}$ be defined by $f(n)=3 n$ for all $n \in Z$ and $g: Z^{\rightarrow}$ be defined
$f(n)=\left\{\frac{n}{3}\right.$, if nisaultipleof30, if nis $\neg \mu$ ltipleof $3 f$ or al $\ln \in Z$.
Show that $g \circ f=I_{Z}$ and $f \circ g \neq I_{Z}$

- Watch Video Solution

198. Let $f: R \rightarrow R$ be a function given by $f(x)=a x+b$ for all $x \in R$.

Find the constants a and b such that $f o f=I_{R}$.

- Watch Video Solution

199. Let $f: A \rightarrow A$ be a function such that $f o f=f$. Show that f is onto if and only if f is one-one. Describe f in this case.

- Watch Video Solution

200. Let $f, g: R-R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x$, for all x Then find fog and gof.
201. Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=2 x+3$ and $g(x)=x^{2}+5$

- Watch Video Solution

202. Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=2 x+x^{2}$ and $g(x)=x^{3}$

(D) Watch Video Solution

203. Find $f \circ g(2)$ and $g \circ f(1)$ when: $f: R \rightarrow R ; f(x)=x^{2}+8$ and $g: R \rightarrow R ; g(x)=3 x^{3}+1$.

- Watch Video Solution

204. Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by $f(x)=x$ and $g(x)=|x|$

- Watch Video Solution

205. Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by $f(x)=x^{2}+2 x-3$ and $g(x)=3 x-4$

- Watch Video Solution

206. Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

- Watch Video Solution

207. Let $f=\{(3,1),(9,3),(12,4)\} \quad$ and $=\{(1,3),(3,3),(4,9),(5,9)\}$ find fog and gof.

(D) Watch Video Solution

208. Let $f=\{(1,-1),(4,-2),(9,-3),(16,4)\} \quad$ and
$g=\{(-1,-2),(-2,-4),(-3,-6),(4,8)\}$. find $g \circ f$.

- Watch Video Solution

209. Let $A=\{a, b, c\}, B=\{u v, w\}$ and let f and g be two functions from A to B and from B to A respectively defined as: $f=\{(a, v),(b, u),(c, w)\}, g=\{(u, b),(v, a),(w, c)\}$. Show that f and g both are bijections and find $f o g$ and $g o f$.

- Watch Video Solution

210. Find $f o g(2)$ and $g o f(1)$ when: $f: R \rightarrow R ; f(x)=x^{2}+8$ and $g: R \rightarrow R ; g(x)=3 x^{3}+1$.
211. Let R^{+}be the set of all non-negative real numbers. If $f: R^{+} \rightarrow R^{+}$and $g: R^{+} \rightarrow R^{+}$are defined as $f(x)=x^{2}$ and $g(x)=+\sqrt{x}$. Find fog and gof. Are they equal functions.

- Watch Video Solution

212. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=x^{2}$ and $g(x)=x+1$. Show that $f o g \neq g \circ f$.

- Watch Video Solution

213. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=x+1$ and $g(x)=x-1$. Show that $f o g=g o f=I_{R}$.

- Watch Video Solution

214. Verify assoiativity for the following three mappings : $f: N \vec{Z}_{0}$ (the set of non zero integers), $g: Z_{0} \vec{Z}$ and $h: Q \vec{R}$ given by $f(x)=2 x, g(x)=\frac{1}{x}$ and $h(x)=e^{x}$.

- Watch Video Solution

215. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=s \in z, \forall \mathrm{x}, \mathrm{y}$ and z in N . Show that ho(gof) $=(\mathrm{hog})$ of.

- Watch Video Solution

216. Given examples of two functions $f: N \rightarrow N$ andg: $N \rightarrow N$ such that of is onto but f is not onto. (Hint: Consider ${ }^{〔} f(x)$ " " $=$ " " $x+1$ " "a n $d "$ """""" $" g(x)$ " " $=$ " "\{x-1 if $x>11$ if $x=1\}$

- Watch Video Solution

217. Give examples of two functions $f: \quad N \rightarrow Z$ andg: $\quad Z \rightarrow Z$ such that o f is injective but is not injective. (Hint: Consider $f(x)=x \quad \operatorname{andg}(x)=|x|)$

- Watch Video Solution

218. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one functions, show that gof is one-one function.

- Watch Video Solution

219. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto functions, show that $g o f$ is an onto function.

- Watch Video Solution

220. If $f: R \rightarrow R$ and $g: R \rightarrow R$ be functions defined by $f(x)=x^{2}+1$ and $g(x)=\sin x$, then find $f o g$ and $g \circ f$.

- Watch Video Solution

221. If $f:[0, \infty) \rightarrow R$ and $g: R \rightarrow R$ be defined as $f(x)=\sqrt{x}$ and $g(x)=-x^{2}-1$, then find $g \circ f$ and $f o g$

- Watch Video Solution

222. If $f(x)=e^{x}$ and $g(x)=(\log)_{e} x(x>0)$, find $f o g$ and $g o f$. Is $f o g=g o f ?$

- Watch Video Solution

223. If $f(x)=\sqrt{x}(x>0)$ and $g(x)=x^{2}-1$ are two real functions, find $f o g$ and $g o f$ is $f o g=g o f ?$

- Watch Video Solution

224. If $f(x)=\frac{1}{x}$ and $g(x)=0$ are two real functions, show that $f o g$ is not defined.

- Watch Video Solution

225. Let $f(x)=[x]$ and $g(x)=|x|$. Find (gof) $\left(\frac{5}{3}\right)$ fog $\left(\frac{5}{3}\right)$

- Watch Video Solution

226. Let $f(x)=[x]$ and $g(x)=|x|$. Find (gof) $\left(\frac{5}{3}\right)$ fog $\left(\frac{5}{3}\right)$

- Watch Video Solution

227. Let $f(x)=[x]$ and $g(x)=|x|$. Find $(f+2 g)(-1)$
228. Let fandg be real functions defined by $f(x)=\frac{x}{x+1} \operatorname{andg}(x)=\frac{1}{x+3}$. Describe the functions gofandfog (if they exist).

- Watch Video Solution

229. If $f(x)=\frac{3 x-2}{2 x-3}$, prove that $\left.f(f(x))\right)=x \quad$ for all $x \in R-\left\{\frac{3}{2}\right\}$.

- Watch Video Solution

230. If $f(x)=\frac{1}{2 x+1}, x \neq-\frac{1}{2}, \quad$ then show that $f(f(x))=\frac{2 x+1}{2 x+3}$, provided that $x \neq-\frac{3}{2}$.
231. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ then $\operatorname{fofof}(x)$

- Watch Video Solution

232. Let f be a real function defined by $f(x)=\sqrt{x-1}$. Find $(f o f o f)(x)$. Also, show that $f o f \neq f^{2}$.

(D) Watch Video Solution

233. If $f(x)=\frac{x-1}{x+1}, x \neq-1$, then show that $f(f(x))=-\frac{1}{x}$ provided that $x \neq 0,1$.

- Watch Video Solution

234. Find $f o g$ and $g \circ f$, if $f(x)=e^{x}, g(x)=(\log)_{e} x$

- Watch Video Solution

235. Find $f o g$ and $g \circ f$, if $f(x)=x^{2}, g(x)=\cos x$

- Watch Video Solution

236. Find $f o g$ and $g o f$, if $f(x)=|x|, g(x)=\sin x$

(D) Watch Video Solution

237. Find $f o g$ and $g o f$, if $f(x)=x+1, g(x)=e^{x}$

- Watch Video Solution

238. Find $f o g$ and $g \circ f$, if $f(x)=\sin ^{-1} x, g(x)=x^{2}$
239. Find $f o g$ and $g o f$, if $f(x)=x+1, g(x)=\sin x$

- Watch Video Solution

240. Find $f o g$ and $g \circ f$, if $f(x)=x+1, g(x)=2 x+3$

- Watch Video Solution

241. Find $f o g$ and $g \circ f$, if $f(x)=c, c \in R, g(x)=\sin x^{2}$

- Watch Video Solution

242. Find $f o g$ and $g \circ f$, if $f(x)=x^{2}+2, g(x)=1-\frac{1}{1-x}$

- Watch Video Solution

243. Let $f(x)=x^{2}+x+1$ and $g(x)=\sin x$. Show that $f o g \neq g o f$.

- Watch Video Solution

244. Letf: $R \rightarrow R: f(x)=|x|$, Prove that $f o f=f$

- Watch Video Solution

245. If $f(x)=2 x+5$ and $g(x)=x^{2}+1$ be two real functions, then describe f^{2}. Also, show that fof $\neq f^{2}$.

- Watch Video Solution

246. If $f(x)=2 x+5$ and $g(x)=x^{2}+1$ be two real functions, then describe f^{2}. Also, show that fof $\neq f^{2}$.
247. If $f(x)=2 x+5$ and $g(x)=x^{2}+1$ be two real functions, then describe f^{2}. Also, show that fof $\neq f^{2}$.

- Watch Video Solution

248. If $f(x)=2 x+5$ and $g(x)=x^{2}+1$ be two real functions, then describe f^{2}. Also, show that fof $\neq f^{2}$.

- Watch Video Solution

249. If $f(x)=\sin x$ and $g(x)=2 x$ be two real functions, then describe gof and fog. Are these equal functions?

- Watch Video Solution

250. Let f, g, h be real functions given by $f(x)=\sin x, g(x)=2 x$ and $h(x)=\cos x$. Prove that $f o g=g o(f h)$.

- Watch Video Solution

251. Let f be any real function and let g be a function given by $g(x)=2 x$. Prove that $g o f=f+f$.

- Watch Video Solution

252. If $f(x)=\sqrt{1-x}$ and $g(x)=(\log)_{e} x$ are two real functions, then describe functions fog and $g o f$.

- Watch Video Solution

253. If $f:(-\pi / 2, \pi / 2) \rightarrow R$ and $g:[-1,1] \rightarrow R$ be defined as $f(x)=\tan x$ and $g(x)=\sqrt{1-x^{2}}$ respectively. Describe fog and gof.

- Watch Video Solution

254. If $f(x)=\sqrt{x+3}$ and $g(x)=x^{2}+1$ be two real functions, then find $f o g$ and $g o f$.

- Watch Video Solution

255. Let f be a real function given by $f(x)=\sqrt{x-2}$. Find $f o f$. Also, show that oof $\neq f^{2}$

- Watch Video Solution

256. Let $f(x)=1+x, 0 \leq x \leq 2$ and $f(x)=3-x, 2<x \leq 3$. Find $f(f(x))$.

- Watch Video Solution

257. If $f, g,: R-R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x, \forall x R$, Then find fog and oof. Hence find
$f \circ g(-3), f o g(5)$ and $g \circ f(-2)$.

- Watch Video Solution

258. If $f: Q \rightarrow Q$ is given by $f(x)=x^{2}$, then find $f^{-1}(9)$

- Watch Video Solution

259. If $f: Q \rightarrow Q$ is given by $f(x)=x^{2}$, then find $f^{-1}(5)$

- Watch Video Solution

260. If $f: Q \rightarrow Q$ is given by $f(x)=x^{2}$, then find $f^{-1}(0)$

- Watch Video Solution

261. If the function $f: R \rightarrow R$ be defined by $f(x)=x^{2}+5 x+9$, find $f^{-1}(8)$ and $f^{-1}(9)$.

- Watch Video Solution

262. If the function $f: C \rightarrow C$ be defined by $f(x)=x^{2}-1$, find $f^{-1}(-5)$ and $f^{-1}(8)$.

- Watch Video Solution

263. Let $f: R \rightarrow R$ be defined as $f(x)=x^{2}+1$. Find: $f^{-1}(10)$

- Watch Video Solution

264. If $A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $f: A \rightarrow B$ is given by $f(x)=2 x$, then write f and f^{-1} as a set of ordered pairs.
265. Let $S=\{1,2,3\}$. Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find f^{-1}, if it exists.(a) $f=\{(1,1),(2,2),(3,3)\}(\mathrm{b})^{\prime} \mathrm{f}=\{(1,2),(2,1),(3,1)\}$

- Watch Video Solution

266. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.

- Watch Video Solution

267. If $f: R-R$ is defined by $f(x)=2 x+7$. Prove that f is a bijection. Also, find the inverse of f.

- Watch Video Solution

268. Let $f: R \rightarrow R$ be a function given by $f(x)=x^{2}+1$. Find: $f^{-1}\{26\}$

- Watch Video Solution

269. Let $f: R \rightarrow R$ be defined by $f(x)=3 x-7$. Show that f is invertible and hence find f^{-1}.

- Watch Video Solution

270. Show that $f: R-[0] \rightarrow R-[0]$ given by $f(x)=\frac{3}{x}$ is invertible and it is inverse of itself.

- Watch Video Solution

271. Let $f: N \cup\{0\} \rightarrow N \cup\{0\}$ be defined by
$f(n)=\{n+1, \quad$ if n is even, $n-1, \quad$ if n is odd Show that f is
invertible and $f=f^{-1}$.

- Watch Video Solution

272. Prove that the function $f: R \rightarrow R$ defined as $f(x)=2 x-3$ is invertible. Also, find f^{-1}.

- Watch Video Solution

273. Show that the function $f: R \rightarrow R$ is given by $f(x)=1+x^{2}$ is not invertible.

(D) Watch Video Solution

274. Show that $f: R-\{-1\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x}{x+1}$ is invertible. Also, find f^{-1}.
275. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{(x+2)}$ is one- one .

Find the inverse of the function $f:[-1,1]$

- Watch Video Solution

276. Let $f: R^{\rightarrow}$ be defined as $f(x)=10 x+7$. Find the function $g: R \vec{R}$ such that $g o f=f o g=I_{R}$.

- Watch Video Solution

277. If the function $f:[1, \infty) \rightarrow[1, \infty)$ is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is (A) $\left(\frac{1}{2}\right)^{x(x-1)} \quad$ (B) $\frac{1}{2} \sqrt{1+4 \log _{2} x}$
$\frac{1}{2}\left(1-\sqrt{1+4 \log _{2} x}\right)$ (D) not defined

- Watch Video Solution

278. The value of parameter α, for which the function $f(x)=1+\alpha x, \alpha \neq 0$ is the inverse of itself

- Watch Video Solution

279. Let $f: N \vec{Y}$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is (1) $g(y)=\frac{3 y+4}{3}$ (2) $g(y)=4+\frac{y+3}{4}$
$g(y)=\frac{y+3}{4}$ (4) $g(y)=\frac{y-3}{4}$

- Watch Video Solution

280. Let $Y=\left\{n^{2}: n \in N\right\} \in N$. Consider $f: N \rightarrow Y$ as $f(n)=n^{2}$. Show that f is invertible. Find the inverse of f.

- Watch Video Solution

281. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where, S is the range of f , is invertible. Find the inverse of f .

- Watch Video Solution

282. State with reason whether following functions have inverse (i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}(\mathrm{ii})$ 'g: $\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ wit h $g=\{(5,4),(6,3),(7,4),(8,2)\}$

- Watch Video Solution

283. State with reason whether following functions have inverse (i)
$f:\{1,2,3,4\}-\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}($ ii $) \quad$ 'g:
$\{5,6,7,8\}-\{1,2,3,4\}$ w it h g $=\{(5,4),(6,3),(7,4),(8,2)\}$

- Watch Video Solution

284. State with reasons whether $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$ have inverse or not

- Watch Video Solution

285. Find f^{-1} if it exists: $f: A \rightarrow B$ where $A=\{0,-1,-3,2\}$; $B=\{-9,-3,0,6\}$ and $f(x)=3 x$.

- Watch Video Solution

286. Find f^{-1} if it exists: $f: A \rightarrow B$ where $A=\{1,3,5,7,9\} ; B=$ $\{0,1,9,25,49,81\}$ and $f(x)=x^{2}$.

- Watch Video Solution

287. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow$ \{apple, ball, cat $\}$ defined as $f(1)=a, f(2)=b, f(3)=c, g(a)=$ apple,
$g(b)=$ ball and $g(c)=$ cat. Show that f, g and gof are invertible.
Find f^{-1}, g^{-1} and $(g \circ f)^{-1}$ and show that $(g \circ f)^{-1}=f^{-1} o g^{-1}$.

- Watch Video Solution

288. Let $A=\{1,2,3,4\} ; B=\{3,5,7,9\} ; C=\{7,23,47,79\}$ and $f: A \rightarrow B, g: B \rightarrow C$ be defined as $f(x)=2 x+1$ and $g(x)=x^{2}-2$. Express $(g o f)^{-1}$ and $f^{-1} o g^{-1}$ as the sets of ordered pairs and verify that $(g o f)^{-1}=f^{-1} o g^{-1}$.

- Watch Video Solution

289. Show that the function $f: Q \rightarrow Q$ defined by $f(x)=3 x+5$ is invertible. Also, find f^{-1}.

(D) Watch Video Solution

290. Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.

- Watch Video Solution

291. Consider $f: R_{+} \overrightarrow{4, \infty}$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of all non-negative real numbers.

- Watch Video Solution

292. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$.

What is the inverse of f ?

- Watch Video Solution

293. Consider $f: R_{ \pm}>[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$

- Watch Video Solution

294. If $f: R \rightarrow R$ be defined by $f(x)=x^{3}-3$, then prove that f^{-1} exists and find a formula for f^{-1}. Hence, find $f^{-1}(24)$ and $f^{-1}(5)$.

- Watch Video Solution

295. A function $f: R \rightarrow R$ is defined as $f(x)=x^{3}+4$. Is it a bijection or not? In case it is a bijection, find $f^{-1}(3)$.

- Watch Video Solution

296. If $f: Q \rightarrow Q, g: Q \rightarrow Q$ are two functions defined by $f(x)=2 x$ and $g(x)=x+2$, show that f and g are bijective maps. Verify that $(g \circ f)^{-1}=f^{-1} o g^{-1}$.

- Watch Video Solution

297. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A^{\rightarrow}$ defined by $f(x)=\frac{x-2}{x-3}$. Show that is one-one and onto and hence find f^{-1}

- Watch Video Solution

298. Consider f : $R_{ \pm}>\left[-9, \infty\left[\right.\right.$ given by $f(x)=5 x^{2}+6 x-9$. Prove that f is invertible with $f^{-1}(y)=\frac{\sqrt{54+5 y}-3}{5}$

- Watch Video Solution

299. Let $f: N^{\rightarrow}$ be a function defined as $f(x)=9 x^{2}+6 x-5$. Show that $f: N \vec{S}$, where S is the range of f, is invertible. Find the inverse of f and hence $f^{-1}(43)$ and $f^{-1}(163)$.

- Watch Video Solution

300. If $f: R-1,1$ defined by $f(x)=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is invertible, find f^{-1}

- Watch Video Solution

301. If $f: R \rightarrow(0,2)$ defined by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+1$ is invertible, find f^{-1}.

- Watch Video Solution

302. Let $f:[-1, \infty] \overrightarrow{-1}$, is given by $f(x)=(x+1)^{2}-1, x \geq-1$.

Show that f is invertible. Also, find the set $S=\left\{x: f(x)=f^{-1}(x)\right\}$.

- Watch Video Solution

303. Let $A=\{x \in R \mid-1 \leq x \leq 1\}$ and let $f: A \rightarrow A, g: A \rightarrow A$ be two functions defined by $f(x)=x^{2}$ and $g(x)=\frac{\sin (\pi x)}{2}$. Show that g^{-1} exists but f^{-1} does not exist. Also, find g^{-1}.

(D) Watch Video Solution

304. Let f be a function from R to R such that $f(x)=\cos (x+2)$. Is f invertible? Justify your answer.

- Watch Video Solution

305. If $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Define any four bijectives from A to B. Also, give their inverse functions.
306. Let A and B be two sets each with a finite number of elements.

Assume that there is an injective mapping from A to Band that there is an injective mapping from B to A Prove that there is a bijective mapping from A to B.

- Watch Video Solution

307. If $f: A \vec{A}, g: A^{\rightarrow}$ are two bijections, then prove that $f o g$ is an injection (ii) $f o g$ is a surjection.

- Watch Video Solution

308. If $f: A \rightarrow A, g: A \rightarrow A$ are two bijections, then prove that $f o g$ is an surjection.

- Watch Video Solution

309. Which one of the following graphs represent a function? (FIGURE)

- Watch Video Solution

310. Which one of the following graphs represent a one-one function?
(FIGURE)

(D) Watch Video Solution

311. Let $A=\{1,2\}$ and $B=\{a, b\}$ be two sets. Write total number of one-one functions from A to B.

- Watch Video Solution

312. Write total number of one-one functions from set $A=\{1,2,3,4\}$ to set $B=\{a, b, c\}$.
313. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}$, write $f^{-1}(25)$.

- Watch Video Solution

314. If $f: C \rightarrow C$ is defined by $f(x)=x^{2}$, write $f^{-1}(-4)$. Here, C denotes the set of all complex numbers.

- Watch Video Solution

315. If $f: R \rightarrow R$ is given by $f(x)=x^{3}$, write $f^{-1}(1)$.

- Watch Video Solution

316. Let C denote the set of all complex numbers. A function $f: C \rightarrow C$ is defined by $f(x)=x^{3}$. Write $f^{-1}(1)$.
317. Let f be a function from C (set of all complex numbers) to itself given by $f(x)=x^{3}$. Write $f^{-1}(1)$.

(D) Watch Video Solution

318. Let $f: R \rightarrow R$ be defined by $f(x)=x^{4}$, write $f^{-1}(1)$.

- Watch Video Solution

319. Find the derivative of $f(x)=x^{4}$

- Watch Video Solution

320. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}$, write $f^{-1}(25)$.
321. If $f: C \rightarrow C$ is defined by $f(x)=(x-2)^{3}$, write $f^{-1}(-1)$.

- Watch Video Solution

322. If $f: R \rightarrow R$ is defined by $f(x)=10 x-7$, then write $f^{-1}(x)$.

- Watch Video Solution

323. Let $f:\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\} \rightarrow R$ be a function defined by $f(x)=\cos [x]$. Write range (f).

- Watch Video Solution

324. If $f: R \rightarrow R$ defined by $f(x)=3 x-4$ is invertible then write $f^{-1}(x)$.
325. If $f: R \rightarrow R, g: R \rightarrow R$ are given by $f(x)=(x+1)^{2}$ and $g(x)=x^{2}+1$, then write the value of $f o g(-3)$.

- Watch Video Solution

326. Let $A=\{x \in R:-4 \leq x \leq 4$ and $x \neq 0\}$ and $f: A \rightarrow R$ be defined by $f(x)=\frac{|x|}{x}$. Write the range of f.

- Watch Video Solution

327. Let $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow A$ be defined by $f(x)=\sin x$. If f is a bijection, write set A.

- Watch Video Solution

328. Let $f: R \rightarrow R^{+}$be defined by $f(x)=a^{x}, a>0$ and $a \neq 1$. Write $f^{-1}(x)$.

- Watch Video Solution

329. Let $f: R-\{-1\} \rightarrow R-\{1\}$ be given by $f(x)=\frac{x}{x+1}$. Write $f^{-1}(x)$.

- Watch Video Solution

330. Let $f: R-\left\{-\frac{3}{5}\right\} \rightarrow R \quad$ be \quad a function defined as $f(x)=\frac{2 x}{5 x+3}$. Write f^{-1} : Range of $f \rightarrow R-\left\{-\frac{3}{5}\right\}$.

- Watch Video Solution

331. Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions defined by $f(x)=x^{2}+x+1$ and $g(x)=1-x^{2}$. Write $f o g(-2)$.

- Watch Video Solution

332. Let $f: R \rightarrow R$ be defined as $f(x)=\frac{2 x-3}{4}$. Write fof $^{-1}(1)$.

- Watch Video Solution

333. Let f be an invertible real function. Write $\left(f^{-1} \circ f\right)(1)+\left(f^{-1} o f\right)(2)++\left(f^{-1} o f\right)(100)$.

- Watch Video Solution

334. Let $A=\{1,2,3,4\}$ and $B=\{a, b\}$ be two sets. Write total number of onto functions from A to B.

(D) Watch Video Solution

335. Write the domain of the real function $f(x)=\sqrt{x-[x]}$.
336. Write the domain and range of function $f(x)$ given by $f(x)=\sqrt{[x]-x}$.

- Watch Video Solution

337. Write the domain of the real function $f(x)=\frac{1}{\sqrt{|x|-x}}$

D Watch Video Solution

338. Write whether $f: R \rightarrow R$ given by $f(x)=x+\sqrt{x^{2}}$ is one-one, many-one, onto or into.

- Watch Video Solution

339. If $\mathrm{f}(\mathrm{x})=x+7$ and $g(x)=x-7, x R$, find $(f o g)(7)$

- Watch Video Solution

340. What is the range of the function $f(x)=\frac{|x-1|}{x-1}$

- Watch Video Solution

341. If $f: R \div R$ be defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then find $f o f(x)$

- Watch Video Solution

342. If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$, find $f(f(x))$.

- Watch Video Solution

343. Let

$$
A=\{1,2,3\}, B=\{4,5,6,7\} \quad \text { and }
$$

$f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.

- Watch Video Solution

344. If $f:\{5,6\} \rightarrow\{2,3\}$ and $g:\{2,3\} \rightarrow\{5,6\}$ are given by $f=\{(5,2),(6,3)\}$ and $g=\{(2,5),(3,6)\}$, find $f o g$.

- Watch Video Solution

345. Let $f: R \rightarrow R$ be the function defined by $f(x)=4 x-3$ for all $x \in R$. Then write f^{-1}.

- Watch Video Solution

346. Which one the following relations on $A=\{1,2,3\}$ is a function?
$f=\{(1,3),(2,3),(3,2)\}, g=\{(1,2),(1,3),(3,1)\}$

- Watch Video Solution

347. Write the domain of the real function f defined by $f(x)=\sqrt{25-x^{2}}$.

- Watch Video Solution

348. Let $A=\{a, b, c, d\}$ and $f: A \vec{A}$ be given by
$f=\{(a, b),(b, d),(c, a),(d, c)\}$, write f^{-1}.

- Watch Video Solution

349. Let $f, g: R^{\rightarrow}$ be defined by $f(x)=2 x+\operatorname{andg}(x)=x^{2}-2$ for all $x \in R$, respectively. Then, find gof.

- Watch Video Solution

350. If the mapping $f:\{1,3,4\} \rightarrow\{1,2,5\} \quad$ and $g:\{1,2,5\} \rightarrow\{1,3\}$, given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, write fog.

- Watch Video Solution

351. If a function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by $g(x)=\alpha x+\beta$, find the values of $\alpha a n d \beta$.

- Watch Video Solution

352. If $f(x)=-4-(x-7)^{3}$, write $f^{-1}(x)$.

- Watch Video Solution

353. Let $A=\{x \in R:-1 \leq x \leq 1\}=B$ and $C=\{x \in R: x \geq 0\}$ and let $\quad S=\left\{(x, y) \in A \times B: x^{2}+y^{2}=1\right\} \quad$ and $S_{0}=\left\{(x, y) \in A \times C: x^{2}+y^{2}=1\right\}$. Then S defines a function from A to B (b) S_{0} defines a function from A to C (c) S_{0} defines a function from A to B (d) S defines a function from A to C

- Watch Video Solution

354. $f: R \rightarrow R$ given by $f(x)=x+\sqrt{x^{2}}$ is (a) injective (b) surjective
(c) bijective (d) none of these

- Watch Video Solution

355. If $f: A \rightarrow B$ given by $3^{f(x)}+2^{-x}=4$ is a bijection, then A

- Watch Video Solution

356. The function $f: R \rightarrow R$ defined by $f(x)=2^{x}+2^{|x|}$ is (a) one-one and onto (b) many-one and onto (c) one-one and into (d) many-one and into

- Watch Video Solution

357. Let the function $f: R-\{-b\} \rightarrow R-\{1\}$ be defined by $f(x)=\frac{x+a}{x+b}, a \neq b$, then (a) f is one-one but not onto (b) f is onto but not one-one (c) f is both one-one and onto (d) none of these

- Watch Video Solution

358. The function $f: A \rightarrow B$ defined by $f(x)=-x^{2}+6 x-8$ is a bijection, if $A=(-\infty, 3]$ and $B=(-\infty, 1]$ (b) $A=[-3, \infty)$ and $B=(-\infty, 1] \quad$ (c) $A=(-\infty, 3]$ and $B=[1, \infty)$
$A=[3, \infty)$ and $B=[1, \infty)$
359. Let $A=\{x \in R:-1 \leq x \leq 1\}=B$. Then, the mapping $f: A \rightarrow B$ given by $f(x)=x|x|$ is (a) injective but not surjective (b) surjective but not injective (c) bijective (d) none of these

- Watch Video Solution

360. Let $f: R \rightarrow R$ be given by $f(x)=[x]^{2}+[x+1]-3$, where $[x]$ denotes the greatest integer less than or equal to x. Then, $f(x)$ is (a) many-one and onto (b) many-one and into (c) one-one and into (d) oneone and onto

- Watch Video Solution

361. Let M be the set of all 2×2 matrices with entries from the set R of real numbers. Then the function $f: M \rightarrow R$ defined by $f(A)=|A|$
for every $A \in M$, is (a) one-one and onto (b) neither one-one nor onto (c) one-one but not onto (d) onto but not one-one

- Watch Video Solution

362. The function $f:[0, \infty) \rightarrow R$ given by $f(x)=\frac{x}{x+1}$ is (a) oneone and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

Watch Video Solution

363. The range of the function $f(x)={ }^{7-x} P_{x-3}$ is (a) $\{1,2,3,4,5\}$ (b) $\{1$, $2,3,4,5,6\}$ (c) $\{1,2,3,4\}$ (d) $\{1,2,3\}$

- Watch Video Solution

364. A function f from the set of natural numbers to integers is defined by n when n is odd $\mathrm{f}(\mathrm{n})=3$, when n is even Then f is (b) one-one but not
onto a) neither one-one nor onto (c) onto but not one-one (d) one-one and onto both

- Watch Video Solution

365. Let f be an injective map. with domain (x, y, z and range ($1,2,3$), such that exactly one following statements is correct and the remaining are false : $f(x)=1, f(y) \neq 1, f(z) \neq 2$ The value of $f^{-1}(1)$ is

Watch Video Solution

366. Which of the following function from Z to itself are bijections?
$f(x)=x^{3}$ (b) $f(x)=x+2 f(x)=2 x+1$ (d) $f(x)=x^{2}+x$

- Watch Video Solution

367. Let $A=[-1,1]$. Then, discuss whether the following functions from A to itself are one-one onto or bijective: $f(x)=\frac{x}{2}$ (ii) $g(x)=|x|$
(iii) $h(x)=x^{2}$

- Watch Video Solution

368. Let $A\{x:-1 \leq x \leq 1\}$ and $f: A^{\rightarrow}$ such that $f(x)=x|x|$, then f is (a) bijection (b) injective but not surjective (c)Surjective but not injective (d) neither injective nor surjective

- Watch Video Solution

369. If the function $f: R \vec{A}$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is surjection, then find A.

- Watch Video Solution

370. If a function $f:[2, \infty) \rightarrow R$ defined by
$f(x)=(x-1)(x-2)(x-3)$ is (a) one-one but not onto (b) onto but not one-one (c) both one and onto (d) neither one-one nor onto

(D) Watch Video Solution

371. The function $f:[-1 / 2,1 / 2] \rightarrow[-\pi / 2, \pi / 2]$ defined by $f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$ is (a) bijection (b) injection but not a surjection (c) surjection but not an injection (d) neither an injection nor a surjection

- Watch Video Solution

372. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$ then -(1) f is bijection (2) f is an injection only (3) f is a surjection (4) f is neither injection nor a surjection

Watch Video Solution

373. Let $f: R-\{n\} \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$ such that $m \neq n 1$) f is one one into function2) f is one one onto
function3) f is many one into funciton4) f is many one onto function then

- Watch Video Solution

374. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x^{2}-8}{x^{2}+2}$. Then, f is
(a) one-one but not onto (b) one-one and onto (c) onto but not one-one
(d) neither one-one nor onto

(D) Watch Video Solution

375. $f: R \rightarrow R$ is defined by $f(x)=\frac{e^{x \wedge} 2-e^{-x \wedge} 2}{e^{x \wedge} 2+e^{-x \wedge} 2}$ is (a) one-one but not onto (b) many-one but onto (c) one-one and onto (d) neither one-one nor onto

- Watch Video Solution

376. The function $f: R \rightarrow R, f(x)=x^{2}$ is (a) injective but not surjective (b) surjective but not injective (c) injective as well as surjective (d) neither injective nor surjective

- Watch Video Solution

377. A function f from the set of natural numbers to integers defined by $f(n)=\left\{\frac{n-1}{2}\right.$, when n is odd $-\frac{n}{2}$, when n is even is (a) neither one-one nor onto (b) one-one but not onto (c) onto but not one-one (d) one-one and onto both

- Watch Video Solution

378. Which of the following functions from
$A=\{x \in R:-1 \leq x \leq 1\}$ to itself are bijections? $f(x)=|x|$ (b) $f(x)=\sin \left(\frac{\pi x}{2}\right)$ (c) $f(x)=\sin \left(\frac{\pi x}{4}\right)$ (d) none of these
379.

$f(x)=\left\{\begin{array}{lll}\frac{x}{2}, & \text { if } \quad x \text { is even, } 0, & \text { if } \quad x \text { is odd. Then, } \mathrm{f} \text { is (a) onto but }\end{array}\right.$ not one-one (b) one-one but not onto (c) one-one and onto (d) neither one-one nor onto

- Watch Video Solution

380. The function $f: R \rightarrow R$ defined by $f(x)=6^{x}+6^{|x|}$ is (a) oneone and onto (b) many one and onto (c) one-one and into (d) many one and into

- Watch Video Solution

381. Let $f(x)=x^{2}$ and $g(x)=2^{x}$. Then the solution set of the equation $\operatorname{fog}(x)=\operatorname{gof}(x)$ is $(a) R(b)\{0\}$ (c) $\{0,2\}$ (d) none of these
382. If $f(x)=3 x-5$, then $f^{-1}(x)$ (a) is given by $\frac{1}{(3 x-5)}$ (b) is given by $\frac{(x+5)}{3}$ (c) does not exist because f is not one-one (d) does not exist because f is not onto

- Watch Video Solution

383. If $g(f(x))=|\sin x| \operatorname{and} f(g(x))=(\sin \sqrt{x})^{2} \quad$, then
(a). $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
(b). $f(x)=\sin x, g(x)=|x|$
(c) $f\left(x=x^{2}, g(x)=\sin \sqrt{x}(d)\right.$. f and g cannot be determined

- Watch Video Solution

384. The inverse of the function $f: R \overline{x \in R: x<1}$ given by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$, is $\frac{1}{2} \frac{\log (1+x)}{1-x}$ (b) $\frac{1}{2} \frac{\log (2+x)}{2-x} \frac{1}{2} \frac{\log (1-x)}{1+x}$
(d) None of these
385. If the function $f:(1, \infty) \rightarrow(1, \infty)$ is defined by $f(x)=2^{x(x-1)}$, thenf $^{-1}(x) \quad$ is $\left(\frac{1}{2}\right)^{x(x-1)}$
$\frac{1}{2}\left(1+\sqrt{1+4(\log)_{2} x}\right)$$\frac{1}{2}\left(1-\sqrt{1+(\log)_{2} x}\right.$ (d) not defined

- Watch Video Solution

386. Let $A=\{x \in R: x \leq 1\}$ and $f: A \rightarrow A$ be defined as $f(x)=x(2-x)$. Then, $f^{-1}(x)$ is: (a) $1+\sqrt{1-x}$ (b) $1-\sqrt{1-x}$ (c) $\sqrt{1-x}$ (d) $1 \pm \sqrt{1-x}$

Watch Video Solution

387. Let $f(x)=\frac{1}{1-x}$. Then, $\{f o(f o f)\}(x)=(a) x$ for all $x \in R$ (b) x for all $x \in R-\{1\}$ (c) x for all $x \in R-\{0,1\}$ (d) none of these

- Watch Video Solution

388. If the function $f: R \rightarrow R$ be such that $f(x)=x-[x]$, where $[x]$ denotes the greatest integer less than or equal to x, then $f^{-1}(x)$ is

- Watch Video Solution

389. If $F:[1, \infty) \overrightarrow{2, \infty}$ is given by $f(x)=x+\frac{1}{x}$, thenf $f^{-1}(x)$ equals.
$\frac{x+\sqrt{x^{2}-4}}{2}$ (b) $\frac{x}{1+x^{2}}$ (c) $\frac{x-\sqrt{x^{2}-4}}{2} 1+\sqrt{x^{2}-4}$

(D) Watch Video Solution

390.

Let
$g(x)=1+x-[x] \operatorname{and} f(x)=\{-1, x<0 ; 0, \quad$ if $x=0 ; 1, \quad$ if $\quad x>0$
. Then for all $x, f(g(x))$ is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) $f(x)$ (d) $g(x)$

- Watch Video Solution

391. Let $f(x)=\frac{\alpha x}{(x+1)}, x \neq-1$. for what value of α is $f(f(x))=x ?$ (a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d) -1

- Watch Video Solution

392. The distinct linear functions which map $[-1,1]$ onto $[0,2]$ are $f(x)=x+1, g(x)=-x+1$ (b) $f(x)=x-1, g(x)=x+1$ (c) $f(x)=-x-1, g(x)=x-1$ (d) none of these

- Watch Video Solution

393. If $f:[2, \infty) \rightarrow(-\infty, 4]$, where $f(x)=x(4-x)$ then find $f^{-1}(x)$

- Watch Video Solution

394. If $f: R-1,1$ is defined by $f(x)=-\frac{x|x|}{1+x^{2}}$, then $f^{-1}(x)$ equals $\sqrt{\frac{|x|}{1-|x|}}$ (b) $-\operatorname{sgn}(x) \sqrt{\frac{|x|}{1-|x|}}-\sqrt{\frac{x}{1-x}}$ (d) none of these

D Watch Video Solution

395. Let $[x]$ denote the greatest integer less than or equal to x. If $f(x)=\sin ^{-1} x, g(x)=\left[x^{2}\right]$ and $h(x)=2 x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}$, then fogoh $(x)=\pi / 2$ (b) fogoh $(x)=\pi$ (c) hofog $=$ hogof hofog \neq hogof

- Watch Video Solution

396. If $g(x)=x^{2}+x-2 \operatorname{and} \frac{1}{2} g o f(x)=2 x^{2}-5 x+2$, then which is not a possible $f(x) ?$ (a) $2 x-3$ (b) $-2 x+2$ (c) $x-3$ (d) None of these

- Watch Video Solution

397. If $f(x)=\sin ^{2} x$ and the composite function $g(f(x))=|\sin x|$, then $g(x)$ is equal to (a) $\sqrt{x-1}$ (b) \sqrt{x} (c) $\sqrt{x+1}$ (d) $-\sqrt{x}$

(D) Watch Video Solution

398. Let $f: R \rightarrow R$ be given by $f(x)=x^{2}-3$. Then, f^{-1} is given by $\sqrt{x+3}$ (b) $\sqrt{x}+3$ (c) $x+\sqrt{3}$ (d) none of these

- Watch Video Solution

399. Let $f(x)=x^{3}$ be a function with domain $\{0,1,2,3\}$. Then domain of f^{-1} is (a) $\{3,2,1,0\}$ (b) $\{0,-1,-2,-3\}$ (c) $\{0,1,8,27\}$ (d) $\{0,-1,-8,-27\}$

- Watch Video Solution

400. Let $f: R \rightarrow R$ be given by $f(x)=x^{2}-3$. Then, f^{-1} is given by (a) $\sqrt{x+3}$ (b) $\sqrt{x}+3$ (c) $x+\sqrt{3}$ (d) none of these
401. Let $f: R \rightarrow R$ be given by $f(x)=\tan x$. Then, $f^{-1}(1)$ is $\frac{\pi}{4}$
$\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$ (c) does not exist (d) none of these

- Watch Video Solution

402. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=\left\{2 \mathrm{x}\right.$, if $\mathrm{x}>3, \mathrm{x}^{\wedge} 2$ if x is less than 1 .

FInd value of $f(-1)+f(4)$

- Watch Video Solution

403. Let $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$. Then number of subjections from A into B is $n_{P} \quad 2$ (b) $2^{n}-2$ (c) $2^{n}-1$ (d) nC2

- Watch Video Solution

404. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is (a) 720 (b) 120 (c) 0 (d) none of these

- Watch Video Solution

405. If the set A contains 7 elements and the set B contains 10 elements, then the number of one-one functions from A to B is (a) 10C7
(b) $10 C 7 \times 7!$ (c) 7^{10}
(d) 10^{7}

- Watch Video Solution

406. Let $f: R-\left\{\frac{3}{5}\right\} \rightarrow R$ be defined by $f(x)=\frac{3 x+2}{5 x-3}$. Then (a). $f^{\wedge}-1(x)=f(x) \cdot(b) \cdot f-1(x)=-f(x)$. (c). (fof) $=x(d) \cdot f-1(x)=(1 / 19) f(x)$

- Watch Video Solution

