

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

INCREASING AND DECREASING FUNCTION

1. Show that $f(x)=(x-1)e^x+1$ is an

increasing function for all x > 0.

2. Find the intervals in which f(x) is increasing or decreasing: (1). $f(x) = x|x|, x \in R$

(2). $f(x) = \sin x + |\sin x|, 0 < x \le 2\pi$

Watch Video Solution

3. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is

an increasing function for all $x \in R$

4. Show that
$$f(x) = \cos^2 x$$
 is decreasing function on $\left(0, \frac{\pi}{2}\right)$.

Watch Video Solution

5. Show that
$$f(x) = x^2 - x \sin x$$
 is an increasing function on $\left(0, \frac{\pi}{2}\right)$.

6. Show that $f(x) = \cos x$ is decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor decreasing in $(-\pi, \pi)$.

7. Show that
$$f(x) = an^{-1}(\sin x + \cos x)$$
 is decreasing function on the interval $\left(rac{\pi}{4}, rac{\pi}{2}
ight)$.

8. Show that function $f(x) = \sin\left(2x + \frac{\pi}{4}\right)$ is decreasing on $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$.

Watch Video Solution

9. Show that $f(x) = x - \sin x$ is increasing for

all x in R

10. Find the value(s) of a for which $f(x) = x^3 - ax$ is an increasing function on R. Watch Video Solution

11. Find the intervals in which function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$ is (i) increasing, (ii) decreasing.

12. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing, or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

Watch Video Solution

13. Find the intervals in which the following function are increasing or decreasing. $f(x) = 10 - 6x - 2x^2$

14. Show that $f(x) = e^{\frac{1}{x}}, x \neq 0$ is decreasing function for all $x \neq 0$.

15. Show that
$$f(x)=e^{2x}$$
 is increasing on R_{\cdot}

16. Show that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in R$.

Watch Video Solution

17. State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function $f(x) = x^2 - 6x + 3$ is increasing on the interval [4, 6].

f(x) = x - [x] us increasing in (0,1).

22. Show that the function f given by

 $f(x) = 10^x$ is increasing for all x.

23. Without using the derivative, show that the function f(x) = |x| is strictly increasing in $(0,\infty)$ strictly decreasing in $(-\infty,0)$.

24. Without using the derivative show that the function f(x) = 7x - 3 is strictly increasing function on R.

Watch Video Solution

25. Prove that the function $f(x) = (\log)_a x$ is increasing on $(0,\infty)$ if a>1 and decreasing on $(0,\infty)$, if 0 < a < 1

Watch Video Solution

26. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

27. Prove that the function $f(x) = (\log)_e x$ is

increasing on $(0,\infty)$.

Watch Video Solution

28. Show that
$$f(x)=rac{1}{1+x^2}$$
 decreases in the interval $[0,\infty)$ and increases in the interval $(-\infty,0].$

29. Show that $f(x) = \frac{1}{x}$ is decreasing function on $(0,\infty)$. Watch Video Solution 30. $Solve: rac{1-x^2}{5x-6-r^2} < 0$ Watch Video Solution 31.

$$solve: rac{1}{x+1} - rac{4}{\left(2+x
ight)^2} > 0, x
eq -1, \ -2$$

32. Find
$$rac{dy}{dx}$$
 if $x^2 = \sin y$

33. Find the intervals in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is (i) increasing

(ii) decreasing

34. Find the intervals in which $f(x) = -x^2 - 2x + 15$ is increasing or decreasing.

Watch Video Solution

35.
$$Solve: rac{x^2-4x+7}{x^2-7x+12} \leq rac{2}{3}$$

36.
$$Solverac{8x^2+16x-51}{2x^2+5x-12}>3$$

Watch Video Solution

39. Find the intervals in which the function
$$f(x) = x^4 - \frac{x^3}{3}$$
 is increasing or decreasing. Watch Video Solution

40. Find the intervals in which $f(x) = rac{x}{\log x}$ is

increasing or decreasing.

41. Show that $f(x) = \cos\left(2x + \frac{\pi}{4}\right)$ is an

increasing function on $(3\pi/8, 7\pi/8)$.

43. Find the values of a for which the function

$$f(x) = (a+2)x^3 - 3ax^2 + 9ax - 1$$

decreasing for all real values of x.

Watch Video Solution

47. Determine the intervals in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is decreasing or increasing.

49. Determine the values of
$$x$$
 for which $f(x) = rac{x-2}{x+1} x
eq -1$ is increasing or

decreasing

50. Find the intervals in which $f(x) = rac{x}{2} + rac{2}{x}, x
eq 0$ is increasing or

decreasing.

51. For which values of x, the function $f(x) = rac{x}{x^2+1}$ is increasing and for which value of x, it is decreasing. Watch Video Solution **52.** Find the intervals in which $f(x) = \frac{4x^2 + 1}{x}$ is increasing or decreasing. Watch Video Solution

53. Separate the interval $\left[0, \frac{\pi}{2}\right]$ into sub intervals in which function $f(x) = \sin^4(x) + \cos^4(x)$ is strictly increasing or decreasing.

55. Prove that the function $f(x) = \tan x - 4x$

is strictly decreasing on $(\,-\pi/3,\,\pi/3)$.

Watch Video Solution

56. Solve: $4x^3 - 24x^2 + 44x - 24 > 0$.

57. Solve:

$$\frac{1}{x+1} - \frac{4}{(2+x)^2} > 0, \ x \neq -1, \ -2.$$
Multiply Watch Video Solution
$$58. \text{ Solve:} \ \frac{1-x^2}{5x-6-x^2} < 0$$
Multiply Watch Video Solution

59.
$$Solve rac{8x^2+16x-51}{2x^2+5x-12} > 3$$

60. Solve:
$$rac{x^2-2x+5}{3x^2-2x-5} > rac{1}{2}$$

Watch Video Solution

61. Solve:
$$rac{x^2-2x+24}{x^2-3x+4} \leq 4$$
 .

62. Solve:
$$rac{x^2-4x+7}{x^2-7x+12} \leq rac{2}{3}$$

63. Show that the function f(x) = 2x + 3 is strictly increasing function on R.

Watch Video Solution

64. Show that the function $f(x) = x^2$ is strictly

increasing function on $(0, \infty)$.

65. Show that the function $f(x) = a^x, \ a > 1$ is

strictly increasing on R_{\cdot}

Watch Video Solution

66. Show that the function f(x) = -3x + 12

is strictly decreasing function on ${old R}$.

67. Find the derivative of the function $f(x) = a^x$ with respect to x. Watch Video Solution

68. Show that the function $f(x) = x^2$ is a

strictly decreasing function on $(-\infty, 0)$.

69. Show that the function $f(x) = x^2$ is neither

strictly increasing nor strictly decreasing on R .

71. Find the second order derivative of the function $f(x) = \log x$ with respect to x. Watch Video Solution

72. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

73. Prove that f(x) = ax + b , where a, b are constants and a < 0 is a decreasing function on R .

74. Show that
$$f(x)=rac{1}{x}$$
 is a decreasing function on $(0, \ \infty)$.

Watch Video Solution

75. Show that $f(x)=rac{1}{1+x^2}$ decreases in the interval $[0,\ \infty)$ and increases in the interval $(-\infty,\ 0]$.

77. Without using the derivative, show that the function f(x)=|x| is (a) strictly increasing in $(0, \infty)$ (b) strictly decreasing in $(-\infty, 0)$

Watch Video Solution

80. Find the intervals in which the function $f(x) = 2x^3 - 9x^2 + 12x + 15$ is increasing

and decreasing.

81. Find the intervals in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is increasing and decreasing.

Watch Video Solution

82. Find the intervals in which $f(x) = (x+1)^3 (x-1)^3$ is increasing or

decreasing.

83. Find the intervals in which $f(x) = (x-1)^3(x-2)^2$ is increasing or decreasing.

Watch Video Solution

84. Find the intervals in which the function $f(x) = x^4 - \frac{x^3}{3}$ is increasing or decreasing.

85. Find the intervals in which the function $f(x) = \log(1+x) - \frac{2x}{2+x}$ is increasing or

decreasing.

87. Determine the intervals in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is decreasing or increasing.

89. Determine the values of x for which $f(x)=rac{x-2}{x+2}, \ x
eq -1$ is increasing or

decreasing.

90. Find the intervals in which $f(x) = rac{x}{2} + rac{2}{x}, \ x
eq 0$ is increasing or

decreasing.

91. Find the intervals in which the function f given by $f(x) = x^3 + rac{1}{x^3}$, x
eq 0 is (i)

increasing (ii) decreasing.

Watch Video Solution

92. For which values of x , the function $f(x)=rac{x}{x^2+1}$ is increasing and for which values of x , it is decreasing.

93. Find the intervals in which $f(x) = 2\log(x-2) - x^2 + 4x + 1$ is

increasing or decreasing.

 $f(x) = \sin 3x$ is increasing or decreasing.

96. Separate the interval $[0, \pi/2]$ into subintervals in which $f(x) = \sin^4 x + \cos^4 x$ is increasing or decreasing.

97. Find the intervals in which the function f

given

 $f(x) = \sin x + \cos x,$

 $0 \leq x \; \leq 2\pi$ is

by

strictly increasing or strictly decreasing.

98. Find f'(x) if $f(x) = \sin 3x \cos 3x$

99. Prove that the function $f(x) = x^3 - 3x^2 + 3x - 100$ is increasing on R .

103. Find the second order derivative of function

 $f(x) = \sin x + \cos x$ with respect to x .

104. Prove that
$$f(\theta) = \frac{4\sin\theta}{2+\cos\theta} - \theta$$
 is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

Watch Video Solution

105. Prove that the function $f(x) = \tan x - 4x$

is strictly decreasing on $(\,-\pi/3,\,\pi/3)$.

106. Show that
$$f(x) = 2x + \cot^{-1}x + \log(\sqrt{1+x^2}-x)$$
 is increasing on R .
• Watch Video Solution
107. Test whether the function $f(x) = x^3 - 8$ is increasing on $[1, 2]$.
• Watch Video Solution

108. Which of the following functions are decreasing on $(0, \pi/2)$? (i) $\cos x$ (ii) $\cos 2x$ (iii) $\tan x$ (iv) $\cos 3x$

110. On which of the following intervals, the function $x^{100} + \sin x - 1$ is strictly increasing. (-1, 1) (b) (0,1) $\left(\frac{\pi}{2}, \pi\right)$ (d) $\left(0, \frac{\pi}{2}\right)$

Watch Video Solution

111. Determine the values of x for which

 $f(x) = x^x, \; x > 0$ is increasing or decreasing.

112. Find the intervals in which $f(x) = rac{x}{\log x}$ is

increasing or decreasing

Watch Video Solution

113. If a, b, c are real numbers, then find the

intervals

in

which

or decreasing.

116. Find the least value of 'a' such that the function $f(x) = x^2 + ax + 1$ is increasing on [1, 2]. Also, find the greatest value of 'a' for which f(x) is decreasing on [1, 2].

Watch Video Solution

117. Find the values a' for which the function

$$f(x) = (a+2)x^3 - 3ax^2 + 9ax - 1$$

decreases for all real values of x .

118. Find the values of k for which $f(x) = kx^3 - 9kx^2 + 9x + 3$ is increasing on R .

119. Find the intervals in which $f(x) = 10 - 6x - 2x^2$ is increasing or

decreasing.

122. Find the intervals in which $f(x) = 2x^3 - 12x^2 + 18x + 15$ is increasing or decreasing.

Watch Video Solution

123. Find the intervals in which $f(x) = 5 + 36x + 3x^2 - 2x^3$ is increasing or

decreasing.

decreasing.

126. Find the intervals in which $f(x) = x^3 - 6x^2 - 36x + 2$ is increasing or decreasing.

127. Find the intervals in which $f(x) = 2x^3 - 15x^2 + 36x + 1$ is increasing or

decreasing.

decreasing.

130. Find the intervals in which $f(x) = 6 + 12x + 3x^2 - 2x^3$ is increasing or decreasing.

131. Find the intervals in which $f(x) = 2x^3 - 24x + 107$ is increasing or

decreasing.

Watch Video Solution

decreasing.

134. Find the intervals in which $f(x) = x^3 - 12x^2 + 36x + 17$ is increasing or decreasing.

decreasing.

136. Find the derivative of the function $f(x) = rac{3}{10} x^4$ with respect to x

Watch Video Solution

137. Find the intervals in which $f(x) = x^4 - 4x$

is increasing or decreasing.

increasing or decreasing.

140. Find the intervals in which $f(x) = 5x^{3/2} - 3x^{5/2}, \ x > 0$ is increasing or

144. Find the intervals in which $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing or

decreasing.

145. Find the intervals in which $f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$ is increasing or decreasing.

Watch Video Solution

147. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

148. Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing.

151. Find the derivative of tan(x + y) = x with

respect to x.

.
152. Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

Watch Video Solution

153. Show that $f(x) = \log \sin x$ is increasing on

 $(0,\;\pi\,/\,2)$ and decreasing on $(\pi\,/\,2,\;\pi)$.

154. Show that $f(x) = x - \sin x$ is increasing for all $x \in R$.

155. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is

an increasing function for all $x \in R$.

Watch Video Solution

156. Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \pi/2)$.

157. Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Watch Video Solution

158. Show that $f(x) = \cos x$ is a decreasing function on $(0, \pi)$, increasing in $(\pi, 0)$ and neither increasing nor decreasing in (π, π) .

159. Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Watch Video Solution

160. Show that $f(x) = \tan^{-1}(\sin x + \cos x)$ is

a decreasing function on the interval on $(\pi/4, \pi/2)$.

Watch Video Solution

increasing function for all $x \in R$.

167. State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function $f(x) = x^2 - 6x + 3$ is increasing on the interval [4, 6].

168. Show that $f(x) = \sin x - \cos x$ is an increasing function on $(-\pi/4, \pi/4)$.

Watch Video Solution

169. Show that $f(x) = \tan^{-1} x - x$ is

decreasing function on R.

170. Determine whether $f(x) = -x/2 + \sin x$ is increasing or decreasing on $(-\pi/3, \pi/3)$. Watch Video Solution

172. Find the intervals in which $f(x) = (x+2)e^{-x}$ is increasing or decreasing. **Watch Video Solution**

173. Show that the function f given by

 $f(x) = 10^x$ is increasing for all x .

174. Prove that the function f given by f(x) = x - [x] is increasing in (0, 1).

176. Prove that the function f given by $f(x) = \log \cos x$ is strictly increasing on $(-\pi/2, 0)$ and strictly decreasing on $(0, \pi/2)$.

Watch Video Solution

177. Show that the function f given by $f(x)=x^3-3x^2+4x, x\in R$ is strictly

increasing on R.

178. Prove that the function $f(x) = \cos x$ is strictly decreasing in $(0, \pi)$ Watch Video Solution

179. Prove that the function $f(x) = \cos x$ is

strictly increasing in $(\pi, 2\pi)$

180. Prove that the function $f(x) = \cos x$ is neither increasing nor decreasing in $(0, 2\pi)$ **Vatch Video Solution**

181. Show that $f(x) = x^2 - x \sin x$ is an

increasing function on $(0, \ \pi/2)$.

182. Find the value(s) of a for which $f(x) = x^3 - ax$ is an increasing function on R

183. Find the values of b for which the function $f(x) = \sin x - bx + c$ is a decreasing function on R .

189. What are the values of 'a' for which $f(x) = a^x$ is increasing on RWatch Video Solution

190. What are the values of 'a' for which $f(x) = a^x$ is decreasing on R

Watch Video Solution

191. Write the set of values of 'a' for which $f(x) = (\log)_a x$ is increasing in its domain.

 $f(x) = a \ (x + \sin x) + a$ is increasing on R .

194. Find the values of 'a' for which the function $f(x) = \sin x - ax + 4$ is increasing function on R.

195. Find the set of values of 'b' for which $f(x) = b(x + \cos x) + 4$ is decreasing on R .

196. Find the set of values of 'a' for which $f(x) = x + \cos x + ax + b$ is increasing on R.

Watch Video Solution

197. Write the set of values of k for which

 $f(x) = kx - \sin x$ is increasing on R .

198. If g(x) is a decreasing function on R and $f(x) = \tan^{-1}\{g(x)\}$. State whether f(x) is increasing or decreasing on R.

199. Write the set of values of a for which the function f(x) = ax + b is decreasing for all $x \in R$.

Watch Video Solution

201. State whether $f(x) = \tan x - x$ is

increasing or decreasing its domain.

202. Write the set of values of a for which $f(x) = \cos x + a^2 x + b$ is strictly increasing on R .

203. The interval of increase of the function $f(x)=x-e^x+ an(2\pi/7)$ is (a) $(0,\infty)$ (b) $(-\infty,0)$ (c) $(1,\infty)$ (d) $(-\infty,1)$

Watch Video Solution

204. The function $f(x) = \cot^{-1} x + x$ increases in the interval (a) $(1, \infty)$ (b) $(-1, \infty)$ (c) $(-\infty, \infty)$ (d) $(0, \infty)$

Watch Video Solution

205. The function $f(x)=x^x$ decreases on the interval (a) $(0,\ e)$ (b) $(0,\ 1)$ (c) $(0,\ 1/e)$ (d) $(1/e,\ e)$

206. The function $f(x) = 2\log(x-2) - x^2 + 4x + 1$ increases on the interval (a) (1, 2) (b) (2, 3) (c) (1, 3) (d) (2, 4)

207. If the function $f(x)=2x^2-kx+5$ is increasing on [1, 2], then k lies in the interval (a) $(-\infty, 4)$ (b) $(4, \infty)$ (c) $(-\infty, 8)$ (d) $(8, \infty)$

Watch Video Solution

208. If $f(x) = x^3 + ax^2 + bx + 5\sin^2 x$ is a strictly increasing function on the set of real numbers then a and b must satisfy the relation:

A. (a)
$$a^2 - 3b + 15 \ < 0$$

B. (b)
$$a^2 - 3b + 20 \ < 0$$

C. (c)
$$a^2 - 3b + 25 \ < 0$$

D. (d)
$$a^2 - 3b + 30 \ < 0$$

Answer: null

 $f(x) = 2 \tan x + (2a+1) (\log)_e |\sec x| + (a-2)x$

is increasing on R , then (a) $a \in (1/2, \infty)$ (b) $a \in (-1/2, 1/2)$ (c) a = 1/2 (d) $a \in R$

212. Let $f(x)=x^3-6x^2+15x+3$. Then, (a) f(x)>0 for all $x\in R$ (b) f(x)>f(x+1) for

all $x \in R$ (c) f(x) is invertible (d) f(x) < 0 for

 $\mathsf{all}\ x \in R$

$$\lambda < 1/2$$
 (c) $\lambda < 2$ (d) $\lambda > 2$

215. In the interval (1, 2) , function f(x) = 2|x-1| + 3|x-2| is (a) monotonically increasing (b) monotonically decreasing (c) not monotonic (d) constant

216. Function $f(x) = x^3 - 27x + 5$ is monotonically increasing when (a) x < -3 (b)

$$|x|>3$$
 (c) $x\leq~-3$ (d) $|x|\geq 3$

Watch Video Solution

217. Function $f(x)=2x^3-9x^2+12x+29$ is monotonically decreasing when (a) x<2 (b) x>2 (c) x>3 (d) $x\in(1,2)$

218. If $f(x)=kx^3-9x^2+9x+3$ monotonically increasing in $R,\,\,$ then (a) k<3 (b) $k\leq 2$ (c) $k\geq 3$ (d) none of these

Watch Video Solution

219.

$$f(x)=2x- an^{-1}x-\log\Bigl\{x+\sqrt{x^2+1}\Bigr\}$$
 is

monotonically increasing when (a) x>0 (b)

x < 0 (c) $x \in R$ (d) $x \in R - \{0\}$

220. Function f(x)=|x|-|x-1| is monotonically increasing when (a) x<0 (b) x>1 (c) x<1 (d) $x\in(0,1)$

Watch Video Solution

221. Every invertible function is (a) monotonicfunction(b) constant function (c) identityfunction(d) not necessarily monotonic

function

222. In the interval (1, 2) , function f(x) = 2|x - 1| + 3|x - 2| is (a) increasing (b) decreasing (c) constant (d) none of these Watch Video Solution

223. If the function $f(x) = \cos|x| - 2ax + b$ increases along the entire number scale, then (a) a = b (b) $a = \frac{1}{2}b$ (c) $a \le -\frac{1}{2}$ (d) $a \succ \frac{3}{2}$

224. The function $f(x) = \frac{x}{1+|x|}$ is (a) strictly increasing (b) strictly decreasing (c) neither increasing nor decreasing (d) none of these

Watch Video Solution

225. The function $f(x)=rac{\lambda\sin x+2\cos x}{\sin x+\cos x}$ is increasing, if (a) $\lambda<1$ (b) $\lambda>1$ (c) $\lambda<2$ (d)

 $\lambda > 2$
226. Function $f(x) = a^x$ is increasing on R , if (a) a > 0 (b) a < 0 (c) a<1 (d) a > 1

Watch Video Solution

227. Function $f(x) = (\log)_a x$ is increasing on R

, if (a) a < 0 (b) a > 1 (c) a < 1 (d) a > 0

Watch Video Solution

228. Let arphi(x)=f(x)+f(2a-x) and f(x)>0 for all $x\in [0,\ a]$. Then, arphi(x) (a)

increases on [0, a] (b) decreases on [0, a] (c) increases on [-a, 0] (d) decreases on [a, 2a]

Watch Video Solution

229. If the function $f(x)=x^2-kx+5$ is increasing on $[2,\ 4]$, then (a) $k\in(2,\ \infty)$ (b) $k\in(-\infty,\ 2)$ (c) $k\in(4,\ \infty)$ (d) $k\in(-\infty,\ 4)$

Watch Video Solution

230. The function $f(x) = -x/2 + \sin x$ defined on $[-\pi/3, \pi/3]$ is (a) increasing (b) decreasing (c) constant (d) none of these

Watch Video Solution

232. The function $f(x)=x^9+3x^7+64$ is increasing on (a) R (b) $(-\infty,\ 0)$ (c) $(0,\ \infty)$ (d) R_0

Vatch Video Solution