

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA 2016

Mathematics

1. The set A has 4 element and the set B has 5 elements then the number of injective mappings that can be deifned from A to B is

A. 144

B. 72

C. 60

D. 120

Answer: d

2. Let
$$f\!:\!R o R$$
 be deifned by $f(X)=2x+6$ which is a bijective mapping then $f^{-1}(x)$ is given by

A.
$$\frac{x}{2}-3$$

B. 2x + 6

C. associated but not commutative

D. 6x + 2

Answer: a

3. Let
$$*$$
 be a binaray operation deifned on R by $a*b=\frac{a+b}{4} \, \forall$ a, b εR then the operation $*$ is

- A. commutative and Associative
- B. commutative but not Associative
- C. Associative but not communative
- D. Neither Associtive nor commutative

Answer: b

4. The value of
$$1 \sin^{-1} \left(\frac{\cos(53\pi)}{5} \right)$$
 is

A.
$$\frac{3\pi}{5}$$

$$B. \frac{-3\pi}{5}$$

$$\mathsf{C.}\;\frac{\pi}{10}$$

D.
$$\frac{-\pi}{10}$$

Answer: d

Watch Video Solution

5. If 3
$$\tan^{-1}x + \cot^{-1}x \equiv \pi$$
 then x equal to

A. 0

B. 1

D.
$$\frac{1}{2}$$

Answer: b

Watch Video Solution

6.
$$\tan^{-1} \left(\frac{x}{y} \right) - \tan^{-1} \left(\frac{x-y}{x+y} \right)$$
 is

A. 0

B. $\frac{\pi}{4}$

C. $\frac{\pi}{2}$

D.
$$\pi$$

Answer: b

Watch Video Solution

7. If x, y, z are all different and not equal to zero and

$$egin{array}{c|cccc} 1+x&1&&1\\ 1&&1+y&1\\ 1&&1&1+z \end{array} = 0 ext{ then the value}$$

of $x^{-1}+y^{-1}+z^{-1}$ is equal to

A. xyz

B.
$$x^{-1}y^{-1}z^{-1}$$

$$\mathsf{C.}-x-y-z$$

D.
$$-1$$

Answer: d

Watch Video Solution

8. If A is any aquare matrix of order 3 imes 3 then

 $\left| 3A
ight|$ is equal to

A. 3|A|

B.
$$rac{1}{3}|A|$$

C.
$$27|A|$$

D.
$$9|A|$$

Answer: c

9. If
$$y=e^{\sin^{-1}\left(t^2-1
ight)}$$
 & $x=e^{\sec-1\left(rac{1}{t^2-1}
ight)}$ then $rac{dy}{dx}$ is equal to

$$\frac{1}{y}$$

B.
$$\frac{-y}{x}$$

C.
$$\frac{y}{x}$$

D.
$$\frac{-x}{y}$$

Watch Video Solution

10. If
$$A=rac{1}{\pi}egin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}(rac{x}{\pi}) \ \sin^{-1}(rac{x}{\pi}) & \cot^{-1}(rac{x}{\pi}) \end{bmatrix}$$

$$B = rac{1}{\pi} egin{bmatrix} -\cos^{-1}(\pi x) & an^{-1}(rac{x}{\pi}) \ \sin^{-1}(rac{x}{\pi}) & - an^{-1}(rac{x}{\pi}) \end{bmatrix}$$

then A - B is equal to

B. 0

C. 21

D.
$$\frac{1}{2}I$$

Answer: D

11. If
$$x^y=e^{x-y}$$
 then $\dfrac{dy}{dx}$ is equal to

A.
$$\frac{\log x}{\log(x-y)}$$

B.
$$\frac{e^x}{x^{x-y}}$$

$$\mathsf{C.}\,\frac{\log x}{\left(1+\log x\right)^2}$$

D.
$$\frac{1}{y}-\frac{1}{x-y}$$

Answer: C

Watch Video Solution

12. If A is matrix of order $m \times n$ and B is a matrix such that AB' and B'A are both defined, the order of the matrix B is

A.
$$m imes m$$

B.
$$n \times n$$

$$\mathsf{C}.\,n imes m$$

$$\mathsf{D}.\,m imes n$$

Answer: D

Watch Video Solution

13. The value of $\dfrac{f(e^x(1+x)dx)}{\cos^2(e^xx)}$ is equal to

$$\mathsf{A.}-\cot\left(ex^2\right)+c$$

$$B. \tan(e^x - x) + c$$

$$\mathsf{C}. an(e^xx)+c$$

$$\mathsf{D}.\cot(e^x)+c$$

Answer: C

Watch Video Solution

14. IF x yz are not equal to $\neq 0, \neq 1$ the value of $\begin{vmatrix} \log x & \log y & \log z \\ \log 2x & \log 2y & \log 2z \\ \log 3x & \log 3y & \log 3z \end{vmatrix}$ is equal

to

A.
$$\log(xyz)$$

$$\mathsf{B.}\log(6xyz)$$

$\mathsf{C}.0$

$$\mathsf{D.}\log(x+y+z)$$

Answer: C

Watch Video Solution

15. The function f(x) = [x] where [x] is the greatest integer function is continous at

B. 4

C. 1

D.-2

Answer: A

16. The value of
$$fe^x rac{x^2 an^{-1} x + an^{-1} x + 1}{x^2 + 1} dx$$
 is equal to

A.
$$e^x \tan^{-1} x + C$$

B.
$$\tan^{-1}(e^x) + c$$

$$\mathsf{C}.\tan^{-1}(x^e)+c$$

D.
$$e^{ an^{-1}}+c$$

Answer: A

17. If
$$2\overrightarrow{a}\cdot\overrightarrow{b}=\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|$$
 then the angle between \overrightarrow{a} & \overrightarrow{b} is

A. 30°

B. 0°

C. 90°

D. 60°

Answer: D

Watch Video Solution

18. If $x^my^n=(x+y)^{m+n}$ then $\frac{dy}{dx}$ is equal to

$$\frac{x+y}{xy}$$

B. xy

C. 0

D.
$$\frac{y}{x}$$

Answer: D

19. The general solution of
$$\cot heta + an heta = 2$$
 is

A.
$$heta=rac{n\pi}{2}+(\,-1)^nrac{\pi}{8}$$

B.
$$rac{n\pi}{2}+(-1)^nrac{\pi}{4}$$
C. $heta=rac{n\pi}{2}+(-1)^nrac{\pi}{4}$

$$\mathsf{C.}\,\theta = \frac{n\pi}{2} + (\,-1)^n \frac{\pi}{6}$$

D.
$$heta=n\pi+(\,-1)^nrac{\pi}{8}$$

20. The value of
$$\int_{-\pi/4}^{\pi/4} \sin^{103} x \cdot \cos^{101} x dx$$
 is

A.
$$\left(\frac{\pi}{4}\right)^{103}$$

B.
$$\left(\frac{\pi}{4}\right)^{101}$$

C. 2

D. 0

Answer: D

Watch Video Solution

21. The length of latus rectum of the parabola

$$4y^2 + 3x + 3y + 1 = 0$$
 is

A. $\frac{4}{3}$

B. 7

$$\mathsf{D.}\;\frac{3}{4}$$

Answer: D

Watch Video Solution

22. The value of $\dfrac{f(e^{6ogx}-e^{5\log x})}{e^{4\log x}-e^{3\log x}}dx$ is equal to

A. 0

B. $\frac{x^3}{3}$

C.
$$\frac{3}{x^3}$$

D.
$$\frac{1}{x}$$

Watch Video Solution

23. The differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is

A. 1

 $\mathsf{B.} - (\log_{10} x)^2$

$$\mathsf{C.} \left(\log_x 10\right)^2$$

D.
$$\frac{x^2}{100}$$

$$x = t^2 + 3t - 8, y = 2t^2 - 2t - 5$$
 at the

point
$$(2, -1)$$
 is

A.
$$\frac{22}{7}$$

$$\mathsf{B.}\;\frac{6}{7}$$

C.
$$\frac{7}{6}$$
D. $\frac{-6}{7}$

25. The real part of
$$(1-\cos heta+I\sin heta)^{-1}$$
 is

A.
$$\frac{1}{2}$$

$$\cos \theta$$

D.
$$\frac{\cot(heta)}{2}$$

C. $\frac{\tan(\theta)}{2}$

Watch Video Solution

26.
$$\int_0^{\pi/2} rac{\sin^{1000} x dx}{\sin^{1000} x + \cos^{1000} x}$$
 is equal to

A. 1000

B. 1

C. $\frac{\pi}{2}$

D.
$$\frac{\pi}{4}$$

Answer: D

27. If
$$1+\sin heta + \sin^2 heta + \dots$$
 upto $\infty 2\sqrt{3} + 4$,

then
$$\theta$$
 = _____

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{3\pi}{4}$$

Answer: C

Watch Video Solution

28. $\lim_{x \to 0} \frac{xe^x - \sin x}{x}$ is equal to

A. 3

B. 1

C. 0

D. 2

Answer: C

Watch Video Solution

29. If
$$an^{-1}ig(x^2+y^2ig)=lpha$$
 then $rac{dy}{dx}$ is equal to

A.
$$\frac{-x}{y}$$

B. xy

$$\mathsf{C}.\,rac{x}{y}$$

D. -xy

Answer: A

Watch Video Solution

 $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is

30. The simplified form of

B. 1

C. -1

D. i

Answer: A

Watch Video Solution

31. The two curves $x^3 - 3xy^2 + 2 = 0$ and

$$3x^2y - y^3 = 2$$

- A. Touch each other
- B. Cut each other at right angle
- C. Cut at an angle $\frac{\pi}{3}$
- D. Cut at an angle $\frac{\pi}{4}$

Watch Video Solution

32. The equation of the normal to the curve $yig(1+x^2ig)=2-x$ where the tangent crosses x -axis is

A.
$$5x - y - 10 = 0$$

B.
$$x - 5y - 10 = 0$$

C.
$$5x + y + 10 = 0$$

D.
$$x + 5y + 10 = 0$$

Answer: A

Watch Video Solution

33. The maximum value of $\left(\frac{1}{x}\right)^x$ is

A. e

B. e^x

 $\mathsf{C.}\,e^{rac{1}{x}}$

 $\mathrm{D.}\left(\frac{1}{e}\right)^e$

Answer: C

34. The solution for the differential equation

$$rac{dy}{y}+rac{dx}{x}=0$$
 is

A.
$$rac{1}{y}+rac{1}{x}=C$$

B. $\log x \cdot \log y = c$

 $\mathsf{C}.\,xy=c$

D. x + y = c

Answer: C

35. The order and degree of the differential equation

$$\left\lceil 1 + \left(rac{dy}{dx}
ight)^2 + \sin\!\left(rac{dy}{dx}
ight)
ight
ceil^{3/4} = rac{d^2y}{dx^2}$$

A. order = 2, degree = 3

B. order = 2, degree = 4

C. order = 2, degree = $\frac{3}{4}$

D. order = 2, degree = not defined

Answer: D

36. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then angle between \overrightarrow{a} and \overrightarrow{b} for $\sqrt{3}\overrightarrow{a}-\overrightarrow{b}$ to be unit vector is

A.
$$30^{\circ}$$

B.
$$45^{\circ}$$

C.
$$60^{\circ}$$

D.
$$90^{\circ}$$

Answer: A

Watch Video Solution

37. The sum of 1^{st} n terms of the series

$$\frac{1^2}{1} + \frac{1^2 + 2^2}{1 + 2} + \frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} + ...$$

A.
$$\frac{n+2}{3}$$

$$\operatorname{B.}\frac{n(n+2)}{3}$$

$$\mathsf{C.}\,\frac{n(n-2)}{3}$$

D.
$$\frac{n(n-2)}{6}$$

Answer: B

Watch Video Solution

38. The 11th term in the expansion of

$$\left(x+rac{1}{\sqrt{x}}
ight)^{14}$$
 is

$$\frac{99}{x}$$

$$\mathsf{B.} \; \frac{1000}{x}$$

C. i

D.
$$\frac{x}{1001}$$

Answer: B

39.

Suppose

$$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0,\left|\overrightarrow{a}
ight|=3,\left|\overrightarrow{b}
ight|=5,\left|\overrightarrow{c}
ight|=7$$

, then the angle between $\overrightarrow{a} \,\&\, \overrightarrow{b}$ is

Α. π

B. $\frac{\pi}{2}$

 $\operatorname{C.}\frac{\pi}{3}$

D. $\frac{\pi}{4}$

Answer: C

then $\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right|$ is equal to

40. If a = 3, b = 4, c = 5 each one of
$$\overrightarrow{a}$$
, \overrightarrow{b} & \overrightarrow{c}

is perpendicular to the sum of the remaining

A.
$$\frac{5}{\sqrt{2}}$$

$$\mathrm{B.}\;\frac{2}{\sqrt{5}}$$

C.
$$5\sqrt{2}$$

D.
$$\sqrt{5}$$

Answer: C

41. If the straight lines 2x+3y-3=0 and x+ky+7=0 are perpendicular then the value of k is

A.
$$\frac{2}{3}$$

$$\mathsf{B.}\;\frac{3}{2}$$

$$\mathsf{C.}-\frac{2}{3}$$

D.
$$-\frac{3}{2}$$

42. The rate of change of area of a circle with respect to its radius at r = 2 cms is

A. 4

B. 2π

C. 2

D. 4π

Answer: D

Watch Video Solution

43. Find the value of
$$\tan\left(\frac{\pi}{8}\right)$$
 ?

A.
$$\frac{1}{2}$$

B.
$$\sqrt{2} + 1$$

$$\mathsf{C.}\,\frac{1}{\sqrt{2}+1}$$

D.
$$1 - \sqrt{2}$$

Answer: C

44. Area lying between the curves y^2-2x and

$$y = x$$
 is

- A. $\frac{2}{3}$ sq.units
- B. $\frac{1}{3}$ sq. units
- C. $\frac{1}{4}$ sq. units
- D. $\frac{3}{4}$ sq. units

Answer: A

45. If $P(A \cap B) = \frac{7}{10}$ and $P(B) = \frac{17}{20}$,

where P stands for probability then P (A/B) is equal to

A.
$$\frac{7}{8}$$

B.
$$\frac{17}{20}$$

c.
$$\frac{14}{17}$$

D.
$$\frac{1}{8}$$

Answer: C

46. The coefficient of variation of two distributions are 60 and 70. The standard deviation are 2t and 16 respectively. Then their mean is

- A. 35
- B. 23
- C. 28.25
- D. 22.85

Answer: A::D

47. Two cards are drawn at randrom from a pack of 52 cards. The probability of these two being "Aces" is

A.
$$\frac{1}{26}$$

3.
$$\frac{1}{221}$$

$$\mathsf{C.}\ \frac{1}{2}$$

D.
$$\frac{1}{13}$$

Answer: B

48. IF $\sin^{-1}x+\sin^{-1}y=\frac{\pi}{2}$, then x^2 is equal to

A.
$$1 - y^2$$

$$B. y^2$$

D.
$$\sqrt{1-y}$$

Answer: A

49. The value of $\int_2^8 rac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10}-x} dx$ is

A. 10

B. 0

C. 8

D. 3

Answer: D

50. Write the converse and contrapositive of the statement " If x is a prime number then x is odd "

A. If x is not a prime number then x is odd.

B. If x is not and odd number then x is not a prime number.

C. If x is a prime number then it is not odd.

D. If x is not a prime number then x is not odd.

Answer: D

51. Two dice are thrown simultaneously, the probability of obtaining a total score of 5 is

A.
$$\frac{1}{18}$$

B.
$$\frac{1}{12}$$

C.
$$\frac{1}{9}$$

D.
$$\frac{1}{6}$$

Answer: C

52. If
$$A = \begin{bmatrix} \cos x \\ \sin x \end{bmatrix}$$

52. If
$$A=egin{bmatrix} \cos 2thet & -\sin 2 heta \ \sin 2 heta & \cos 2 heta \end{bmatrix}$$
 and

 $A + A^T = 1$, where I is the unit matrix of 2 imes 2 & A^T is the transpose of A. then the value of θ is equia to

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C}.\,\pi$$

D.
$$\frac{3\pi}{2}$$

Answer: A

Watch Video Solution

53. IF
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then $A^2 - 5A$ is equal to

A. I

 $\mathsf{B.}-I$

 $\mathsf{C}.\,7I$

D.-7I

Answer: D

Watch Video Solution

54. Find a value of x for which $x\Big(\hat{i}+\hat{j}+\hat{k}\Big)$ is a unit vector.

A.
$$\pm \frac{1}{\sqrt{2}}$$

B.
$$\pm\sqrt{3}$$

$$\mathsf{C}.\pm3$$

$$D.\pm \frac{1}{3}$$

Answer: A

Watch Video Solution

55. If $x=2+3\cos\theta$ and $y=1-3\sin\theta$ represent a circle then the centre and radius is

A.
$$(2, 1)9$$

C.
$$(1, 2), \frac{1}{3}$$

D.
$$(-2, -1), 3$$

Answer: B

Watch Video Solution

56. The vector equation of the plane which is at a distance $\frac{3}{\sqrt{14}}$ from the origin and the normal from the origin is $2\hat{i} + -3\hat{j} + \hat{k}$ is

A.
$$\overrightarrow{r}\cdot\left(2\hat{i}+3\hat{j}+\hat{k}
ight)=3$$

B.
$$\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}
ight)=9$$

C.
$$\overrightarrow{r}\cdot\left(\hat{i}+2\hat{j}
ight)=3$$

D.
$$\overrightarrow{r}\cdot\left(2\hat{i}+\hat{k}
ight)=3$$

Answer: A

Watch Video Solution

57. Find the co-ordinates of the foot fo the perpendicular drawn from the origin to the plane 5y+8=0

A.
$$\left(0, -\frac{18}{5}, 2\right)$$

$$\mathsf{B.}\left(0,\frac{8}{5},2\right)$$

C.
$$\left(\frac{8}{25},0,0\right)$$
D. $\left(0,-\frac{8}{5},0\right)$

Answer: D

A. 2

58. If
$$\cos \alpha, \cos \beta, \cos \gamma$$
 are the direction cosines fo a vector \overrightarrow{a} , then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ is equal to

B. 3

C. -1

D. 0

Answer: C

Watch Video Solution

59. The value of the $\sin 1^\circ + \sin 2^\circ + \ldots + \sin 359^\circ$ is equal to

A. 0

B. 1

C. -1

D. 180

Answer: A

Watch Video Solution

60. Integrating factor of $x \frac{dy}{dx} - y = x^4 - 3x$

is

A. x

- $B.\log x$
- $\mathsf{C.}\,\frac{1}{x}$
- D.-x

Answer: C

