

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2002

Mathematics Mcq S

1. If
$$\left(x_i, \frac{1}{x_i}\right)$$
, $i=1,2,3,4$ are four distinct points on a circle, then $x_1 \cdot x_2 \cdot x_3 \cdot x_4 =$

A. 4

B. - 1

C. 1

D. 0

Answer:

Watch Video Solution

2. If two circle
$$(x-1)^2 + (y-3)^2 = r^2 \text{ and } x^2 + y^2 - 8x + 2y + 8 = 0$$

intersect in two distinct points, then

A. r < 2

B. 8 < r < 10

C. r=2

D.
$$2 < r < 8$$

Watch Video Solution

3. Orbit of the earth around the sun is an ellipse with sun at one of its foci. If the semi-major axis is 150 million kilometers and the eccentricity is $\frac{1}{60}$, the difference between the maximum and the minimum distance between the earth and the sun is

- A. 20 million km
- B. 5 million km
- C. 50 million km

D. 2.5 million km

Answer:

Watch Video Solution

4. If $\cos^{-1}\sqrt{p}+\cos^{-1}\sqrt{1-p}+\cos^{-1}\sqrt{1-q}=\frac{3\pi}{4}$ then the value of q is

A.
$$1/\sqrt{2}$$

- C.1/2

B. 1

D. 1/3

Answer:

5. If
$$\tan^{-1}\frac{x+1}{x-1} + \tan^{-1}\frac{x-1}{x} = \tan^{-1}(-7)$$
 then the value of x is

A. 0

 $\mathsf{B.}-2$

C. 1

D. 2

Answer:

6. If $\log_2 7 = x$, then x is

A. a rotational number such that 0 < x < 2

B. an irrational number

C. a rotational number

D. a rotational number such that 2 < x < 3

Answer: A::B

Watch Video Solution

7. Which of the following linear congruences has no solution?

A.
$$3x\equiv 2$$
 (mod 6)

B.
$$4x \equiv 1 \pmod{3}$$

C.
$$2x\equiv 1$$
 (mod 3)

D.
$$5x \equiv 3 \pmod{4}$$

Watch Video Solution

8. The value of $\lim_{x o \pi} rac{\sqrt{2 + \cos x} - 1}{\left(\pi - x ight)^2}$ is

A.
$$1/4$$

$$\mathsf{C.}\,1/2$$

- **9.** Let $n\geq 5$ and $b\neq 0$. In the binomial expansion of $(a-b)^n$, the sum of the 5^{th} and 6^{th} terms is zero. Then a/b equals
 - A. $\frac{5}{n-4}$
 - $\mathsf{B.}\,\frac{1}{5(n-4)}$
 - $\mathsf{C.}\,\frac{n-5}{6}$
 - D. $\frac{n-4}{5}$

Watch Video Solution

10. The digit in the unit place of the number 183! $+3^{183}$ is

- A. 6
- B. 7
- C. 0
- D. 3

Answer:

11. If $3x^2+xy-y^2-3x+6y+K=0$ represents a pair of lines , then K=

- A. 9
- B. 1
- C. -9
- D. 0

Answer:

Watch Video Solution

12. The value of $\cos^2\frac{\pi}{12}+\cos^2\frac{\pi}{4}+\cos^2\frac{5\pi}{12}$ is

A.
$$\frac{2}{3}$$

$$\mathsf{B.}\; \frac{2}{3+\sqrt{3}}$$

$$\mathsf{C.}\,\frac{3}{2}$$

$$D. \frac{3+\sqrt{3}}{2}$$

Watch Video Solution

13. If $0 < x < \frac{\pi}{2}$, then the largest angle of a triangle whose sides are 1, sinx, cosx is

A.
$$\pi/3$$

B.
$$\pi/2$$

 $\mathsf{C}.\,x$

D.
$$(\pi/2) - x$$

Answer:

Watch Video Solution

14. The general solution of the equation $\sin heta + \cos heta = 1$ is

A.
$$heta=2n\pi+rac{\pi}{2},$$
 $n=0,~\pm1,~\pm2$

B.
$$heta=n\pi+\left\{ \left(\,-\,1
ight)^{n}+1
ight\} rac{\pi}{4},$$
 $n=0,\;\pm\,1,\;\pm\,2$

C.
$$heta=n\pi+\left\{ \left(\,-\,1
ight)^{n}-1
ight\} rac{\pi}{4},$$
 $n=0,\;\pm\,1,\;\pm\,2$

D.
$$heta=2n\pi,\,n=0,\,\pm 1,\,\pm 2$$

Watch Video Solution

15. The value of
$$\sum_{k=1}^6 \left(\sin \frac{2\pi k}{7} - I \cos \frac{2\pi k}{7} \right)$$
 is

- A. i
- B. 0
- $\mathsf{C}.-i$
- D. -1

Answer:

16. If
$$f(x)=\left\{egin{array}{ll} x\sin\Bigl(rac{1}{x}\Bigr), ext{if} & x
eq 0 \\ 0 & , ext{if} & x=0 \end{array}
ight.$$
 then at x=0 the

function f is

A. continuous but not differentiable

B. differentiable but not continuous

C. continuous and differentiable

D. not continuous

Answer:

17. If
$$y= an^{-1}igg(rac{\cos x-\sin x}{\cos x+\sin x}igg)$$
 , then $rac{dy}{dx}=$

- A. -1
- B. $\sin 2x$
- $\mathsf{C}.\cos 2x$
- D. 0

- **18.** The differential of e^{x^3} with respect to $\log x$ is
 - A. e^{x^3}
 - B. $3x^2e^{x^3} + 3x^2$
 - $\mathsf{C.}\,3x^2e^{x^3}$

D. $3x^3e^{x^3}$

Answer:

Watch Video Solution

19. If p o (q ee r) is false, then the truth values of p,q,r are respectively

A. F,T

B. F,F

C. T,T

D. T,F

Answer:

20. If 5 is one root of the equation
$$\begin{vmatrix} x & 3 & 7 \\ 2 & x & -2 \\ 7 & 8 & x \end{vmatrix} = 0$$

then the other two roots of the equation are:

A.
$$-2, -7$$

$$B. -2, 7$$

$$C. 2, -7$$

Answer:

21. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular unit vectors then $\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|$ is equal to

- A. 3
- B. $\sqrt{3}$
- C. 0
- D. 1

Answer:

Watch Video Solution

22. If
$$x=2\cos t+\cos 2t,\,y=2\sin t-\sin 2t$$
, then $\frac{dy}{dx}$

at $t = \frac{\pi}{4}$ is

A.
$$1-\sqrt{2}$$

$$\mathsf{B.} - \left(1 + \sqrt{2}\right)$$

C.
$$\sqrt{2}$$

D.
$$1/\sqrt{2}$$

Watch Video Solution

23. The value of $\int \frac{dx}{\sqrt{2x-x^2}}$ is:

$$\mathsf{A.}\sin^{-1}(1+x)+c$$

$$\mathsf{B.}\sin^{-1}(x-1)+c$$

C.
$$\sinh^{-1}(1+x) + c$$

$$\mathsf{D.} - \sqrt{2x - x^2} + c$$

Watch Video Solution

24. Which of the following functions is a solution of the differential equation $\left(\frac{dy}{dx}\right)^2-x\left(\frac{dy}{dx}\right)+y=0$?

A.
$$y = 2x - 4$$

$$\mathsf{B.}\,y=2x^2-4$$

C.
$$y = 2$$

$$\mathsf{D}.\,y=2x$$

Watch Video Solution

25. $y = ae^{mx} + be^{-mx}$ satisfies which of the following differential equations?

A.
$$\frac{dy}{dx} + my = 0$$

B.
$$\frac{dy}{dx} - my = 0$$

C.
$$rac{d^2y}{dx^2}-m^2y=0$$

D. $rac{d^2y}{dx^2}+m^2y=0$

D.
$$\frac{d^2y}{dx^2} + m^2y = 0$$

Answer:

26. Solution of the differential equation $\dfrac{dx}{x}+\dfrac{dy}{y}=0$

is

A.
$$\dfrac{1}{x}+\dfrac{1}{y}=c$$

 $\mathsf{B.}\log x\log y=c$

 $\mathsf{C}.\,xy=c$

D. x + y = c

Answer:

27. Let the function $\mathsf{f}{:}R o R$ be defined by

$$f(x) = 2x + \cos x$$
. Then f

- A. has maximum at x=0
- B. has minimum at $x=\pi$
- C. is an increasing function
- D. is a decreasing function

Answer:

Watch Video Solution

28. The perimeter of a sector is p. the area of the sector is maximum when it radius is

A.
$$1/\sqrt{p}$$

B.
$$p/2$$

$$\mathsf{C}.\,p/4$$

D.
$$\sqrt{p}$$

Watch Video Solution

29. The equation to the tangent to the curve $y=be^{x\,/\,a}$

at the point where x=0 is

A.
$$ax + by = 1$$

$$\operatorname{B.}\frac{x}{a}-\frac{y}{b}=1$$

$$\mathsf{C.}\,\frac{x}{a} + \frac{y}{b} = 1$$

$$D. ax - by = 1$$

Watch Video Solution

30. The value of $\int x^3 \log x dx$ is:

A.
$$\frac{1}{16} (4x^4 \log x - x^4 + c)$$

B.
$$\frac{1}{8} (x^4 \log x - 4x^4 + c)$$

C.
$$\frac{1}{16} (4x^4 \log x + x^4 + c)$$

$$D. \frac{x^4 \log x}{4} + c$$

Watch Video Solution

31. The value of $\int_0^\pi \frac{dx}{5+3\cos x}$ is

A.
$$\pi/4$$

B.
$$\pi/8$$

$$\mathsf{C}.\,\pi/2$$

Answer:

32. The false statement in the following is

A. $p \wedge ({\mbox{\ensuremath{^{\sim}}}} p)$ is a contradiction

B. $(p
ightarrow q) \leftrightarrow ({ extstyle extstyle p}
ightarrow { extstyle exts$

C. ${ ilde{\hspace{1pt} ext{-}}}({ ilde{\hspace{1pt} ext{-}}} p) \leftrightarrow p$ is a tautology

D. $p \lor (\ensuremath{^{\sim}} p)$ is a tautology

Answer:

Watch Video Solution

33. If the vectors

 $3\hat{i}+\hat{j}-2\hat{k},\,\hat{i}+2\hat{j}-3\hat{k},3\hat{i}+\lambda\hat{j}+5\hat{k}$ are co-planar,

the value of λ is

- A.-4
- B. 4
- C. 8
- D. 8

Watch Video Solution

34. Equations of the tangent and the normal drawn at the point (6,0) on the ellipse $\frac{x^2}{36}+\frac{y^2}{9}=1$ respectively are:

C.
$$x=0, y=3$$

Watch Video Solution

35. The equation to the parabola whose focus is (1, -1) and the directrix is x+y+7=0 is

A.
$$x^2 + y^2 - 2xy - 18x - 10y = 0$$

$$B. x^2 - 18x - 10y - 45 = 0$$

$$\mathsf{C.}\,x^2+y^2-18x-10y-45=0$$

D.
$$x^2 + y^2 - 2xy - 18x - 10y - 45 = 0$$

Watch Video Solution

36. If
$$\omega=-rac{1}{2}+irac{\sqrt{3}}{2}$$
, the value of $egin{bmatrix}1&\omega&\omega^2\\\omega&\omega^2&1\\\omega^2&1&\omega\end{bmatrix}$ is

A. 0

B. 3

C. -1

D. 1

Answer:

37. Two intersecting circles have their radii 1 and $\sqrt{3}$ meters. The distance between their centres is 2 meters. Then the overlapping area in sq. meters is

A.
$$\dfrac{19\pi+6\sqrt{3}}{6}$$

B.
$$\frac{5\pi+6\sqrt{3}}{6}$$

$$\operatorname{C.}\frac{\pi}{6}$$

D.
$$\frac{5\pi-6\sqrt{3}}{6}$$

Answer:

38. The height of the cylinder of maximum volume inscribed in a sphere of radius 'a' is

A.
$$\frac{3a}{2}$$

B.
$$\frac{\sqrt{2}a}{3}$$

C.
$$\frac{a}{\sqrt{3}}$$

D.
$$\frac{2a}{\sqrt{3}}$$

Answer:

Watch Video Solution

39. For all positive values of x and y, the value of $(1+x+x^2) \left(1+y+y^2\right)$

- A. ≤ 9
- B. < 9
- $\text{C. }\geq 9$
- D. > 9

Watch Video Solution

40. How many nine digit numbers can be formed using the digit 2,2,3,3,5,58,8,8, so that the odd digits occupy even positions?

A. 180

- B. 7560
- C. 60
- D. 16

Watch Video Solution

41. There are n points in a plane of which p points are collinear. How many lines can be formed from these points?

A.
$$^{n}C_{2}-{}^{p}C_{2}$$

B.
$${}^{n}C_{2} - {}^{p}C_{2} + 1$$

C.
$$^nC_2-^pC_2-1$$

D.
$$^{n-p}C_2$$

42. If
$$f(x)=egin{array}{c|c} \sin x & \cos x & \tan x \ x^3 & x^2 & x \ 2x & 1 & x \end{array}$$
 , then $Lt_{x o 0}rac{f(x)}{x^2}=$

$$Lt_{x\,
ightarrow\,0}rac{f(x)}{x^2}=$$

$$A. - 1$$

D. 0

Answer:

Watch Video Solution

- **43.** The value of $\int_0^{\pi/2}$ logtanxdx is
 - A. 1
 - B.1/2
 - **C**. 0
 - D. 1

Answer:

44. The value of
$$\int_{-1/2}^{1/2} (\cos x) iggl[\log iggl(rac{1-x}{1+x} iggr) iggr] dx$$
 is

A.
$$2e^{1/2}$$

C.
$$e^{1/2}$$

45. The area of the figure bounded by the curves y=cosx and y=sinx and the coordinates x=0 and x= $\pi/4$ is

A.
$$\sqrt{2} + 1$$

B.
$$\sqrt{2} - 1$$

c.
$$1/\sqrt{2}$$

D.
$$\frac{1}{\sqrt{2}} \left(\sqrt{2}-1\right)$$

Answer:

$$\mathsf{B.}-1024$$

$$D.1 + i$$

Watch Video Solution

47. Let
$$f(x)=\left\{egin{array}{ll} rac{\sin\pi x}{5x} & x
eq 0 \\ k & x=0 \end{array}
ight.$$
 If f(x) is continuous at x

=0, then the value of k is

A.
$$5/\pi$$

B.
$$\pi/5$$

C. 0

D. 1

Answer:

Watch Video Solution

48. In the set of integers Z, which of the following relation R is not an equivalence relation?

A. xRy: if $x \leq y$

B. xRy: if x=y

C. xRy: if x-y is an even integer

D. xRy: if $x \equiv y \pmod{3}$

Watch Video Solution

49. For how many values of x in the closed interval

$$egin{bmatrix} [-4,\,-1] ext{ the matrix } egin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix} ext{ is }$$

singular?

A. 0

B. 2

C. 1

D. 3

$$\textbf{50.}\,G = \left\{ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \colon \theta \in R \right\} \text{ is a group under}$$
 matrix multiplication. then which one of the following statements in respect of G is true?}

A.
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 is the inverse of itself

B. G is a finite group

C.
$$\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$
 is not an element of G

D.
$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 is an element of G.

Answer:

