

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2003

Mathematics

1. In Z the set of all integers, the inverse of -7

w.r.t. ' st ' defined by ast b=a+b+7 for all

a, $b \in Z$ is

A. - 14

B. 7

C. 14

D. -7

Answer: D

View Text Solution

2. Which of the following is a subgroup of

 $G=\{0,1,2,3,4,5\}$ under addition modulo 6

?

- A. $\{0, 2\}$
- B. $\{0, 1\}$
- $\mathsf{C}.\,\{0,4\}$
- D. $\{0, 3\}$

Answer: D

Watch Video Solution

3. In the three element group {e,a,b} where e is the identity , a^5b^4 is equal to

- A. a
- B. e
- C. ab
- D.b

Answer: A

View Text Solution

- **4.** Which of the following is a group?
 - A. {1,2,4,8} under multiplication

B. $\{0, \ \pm 2, \ \pm 4, \ \pm 6, \dots \}$ under addition

C. $\{1, -1\}$ under addition

D. {0,1,2,3,4} under multiplication module 5

Answer: B

View Text Solution

5. If the circles $x^2+y^2+2gx+2fy=0$ and $x^2+y^2+2g'x+2f'y=0$ touch each other, then

A.
$$ff'=gg'$$

B.
$$fg=f'g'$$

$$\mathsf{C.}\left(fg\right)^{2}=\left(f'g'\right)^{2}$$

D.
$$fg'=f'g$$

Answer: D

Watch Video Solution

6. The relation $R = \{(1,1), (2,2), (3,3)\}$ on the set {1,2,3} is

A. symmetric only

B. reflexive only

C. an equivalence relation

D. transitive only

Answer: C

Watch Video Solution

7. $(p \wedge { ilde{\hspace{1pt}\hbox{-}}\hspace{1pt}} q) \wedge ({ ilde{\hspace{1pt}\hbox{-}}\hspace{1pt}} p \wedge q)$ is

A. a tautology

- B. a contradiction
- C. both a tautology and a contradiction
- D. neither a tautology nor a contradiction

Answer: B

- 8. Which of the following is not a proposition?
 - A. 3 is a prime
 - B. $\sqrt{2}$ is irrational

C. Mathematics is interesting

D. 5 is an even integer

Answer: C

Watch Video Solution

9. Assuming that the sums and products given below are defined, which of the following is not true for matrices ?

A. AB=AC does not imply B=C

B.A+B=B+A

$$C.(AB)' = B'A'$$

D. AB=0
$$\Rightarrow$$
 A=0 or B=0

Answer: A

10. In a
$$\Delta ABC$$
 if $egin{array}{c|c} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{array} = 0$ then

$$\sin^2 A + \sin^2 B + \sin^2 C =$$

A.
$$\frac{4}{9}$$

$$\mathsf{B.}\;\frac{9}{4}$$

$$\mathsf{C.}\,3\sqrt{3}$$

D. 1

Answer: B

Watch Video Solution

11. 7th term of an A.P. is 40. then the sum of the first 13 terms is

- A. 520
- B. 53
- C. 2080
- D. 1040

Answer: A

Watch Video Solution

12. The number of words that can be formed out of the letters of the word "ARTICLE" so that the vowels occupy even places is

- A. 574
- B. 36
- C. 754
- D. 144

Answer: D

Watch Video Solution

13. The sum of the coefficients in the expansion of $\left(1+x-3x^2\right)^{3148}$

- A. 8
- B. 7
- C. 1
- D. -1

Answer: C

Watch Video Solution

14. The leat remainder when 17^{30} is divided by

5

Answer: C

View Text Solution

15. The coefficient of x^{32} in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$ is

A.
$$^{-15}C_3$$

B.
$$^{15}C_4$$

C.
$$^{-15}C_5$$

D.
$$^{15}C_2$$

Answer: B

16. The line
$$3x-2y=k$$
 meets the circle $x^2+y^2=4r^2$ at only one point if $k^2=$

A.
$$52r^2$$

B. $20r^{2}$

$$\mathsf{C.}\,\frac{20}{9}r^2$$

D.
$$\frac{52}{9}r^2$$

Answer: A

Watch Video Solution

17. The limiting points of the coaxial system of circles $x^2+y^2+2\lambda x+4=0$ are

A.
$$(0, \pm 4)$$

B. (
$$\pm~2,\,0)$$

C.
$$(0, \pm 1)$$

D.
$$(0, \pm 2)$$

Answer: B

Watch Video Solution

18. Which of the following is a point on the common chord of the circle

 $x^2 + y^2 + x - 8y - 13 = 0$?

and

 $x^2 + y^2 + 2x - 3y + 6 = 0$

B.
$$(1, -2)$$

C. (1, -4)

D.(1,2)

Answer: C

Match Video Solu

19. The directrix of the parabola

$$x^2 - 4x - 8y + 12 = 0$$

$$B. x=1$$

$$C. y = -1$$

D.
$$x = -1$$

Answer: C

20. The locus of the point of intersection of

the perpendicular tangents to the ellipse

$$rac{x^2}{9}+rac{y^2}{4}=1$$
 is

A.
$$x^2 + y^2 = 4$$

$$\mathtt{B.}\,x^2+y^2=9$$

$$\mathsf{C.}\,x^2+y^2=5$$

D.
$$x^2 + y^2 = 13$$

Answer: D

21. Inverse of the matrix of $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is

A.
$$\frac{1}{10}\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$$

$$\mathsf{B.} \; \frac{1}{10} \left(\begin{array}{cc} 4 & 2 \\ -3 & 1 \end{array} \right)$$

$$\mathsf{C.} \left(\begin{array}{cc} 4 & 2 \\ -3 & 1 \end{array} \right)$$

D.
$$\frac{1}{10}\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$

Answer: B

View Text Solution

22.
$$\begin{vmatrix} b^2c^2 & bc & b+c \ c^2a^2 & ca & c+a \ a^2+b^2 & ab & a+b \ \end{vmatrix} =$$

A.
$$\dfrac{1}{abc}(ab+bc+ca)$$

$$B. ab + bc + ca$$

Answer: C

23.

If

the

 $4\hat{i} + 11\hat{j} + m\hat{k}, 7\hat{i} + 2\hat{j} + 6\hat{k} \text{ and } \hat{i} + 5\hat{j} + 4\hat{k}$

vectors

are complanar then m=

A. 0

B. 38

C. -10

D. 10

Answer: D

24. The angle between the vectors

$$\overrightarrow{a} + \overrightarrow{b}$$
 and $\overrightarrow{a} - \overrightarrow{b}$ when

$$\overrightarrow{a}=(1,1,4) \ \ ext{and} \ \ \overrightarrow{b}=(1,\,-1,4)$$
 is

- A. 45°
- B. 90°
- C. 15°
- D. 30°

Answer: B

25. If
$$\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 4$$
 and $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right| = 2$ then $\left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 =$

Answer: C

26. In a $\Delta ABCV$ if $\dfrac{b+c}{11}=\dfrac{c+a}{12}=\dfrac{a+b}{13}$

then cos C=

A.
$$\frac{5}{7}$$

$$\mathsf{B.}\;\frac{7}{5}$$

c.
$$\frac{16}{17}$$

D.
$$\frac{17}{36}$$

Answer: A

27. $\cos 1^0 + \cos 2^0 + \cos 3^0 + \dots + \cos 180^0 =$

A. 1

B. 0

C. 2

D. -1

Answer: D

28. The value of $\frac{\tan 70^{0} - \tan 20^{0}}{\tan 50^{0}}$ =

A. 2

B. 1

C. 0

D. 3

Answer: A

29.
$$\lim_{x \to 0} (1 - ax)^{\frac{1}{x}} =$$

A.
$$e^{-a}$$

B. e

 $\mathsf{C.}\,e^a$

D. 1

Answer: A

30.
$$\lim_{n\to\infty} (3^n + 4^n)^{\frac{1}{n}} =$$

A. 4

B. 3

C. e

 $D. \infty$

Answer: A

31. The locus of a point which moves such that the difference of its distances from two fixed points is always of its distances from two fixed points is always a constant is

- A. a circle
- B. a straight line
- C. a hyperbola
- D. an ellipse

Answer: C

Watch video Solution

32. The distance between the directrices of the

hyperbola $x=8\sec\theta,y=8\tan\theta$, is

A.
$$8\sqrt{2}$$

B.
$$16\sqrt{2}$$

$$\mathsf{C.}\,4\sqrt{2}$$

D.
$$6\sqrt{2}$$

Answer: A

33. If $\cos^{-1}x + \cos y^{-1} + \cos^{-1}x = 3\pi$ then

$$xy + yz + zx =$$

- **A.** 1
- B. 0
- $\mathsf{C.}-3$
- D. 3

Answer: D

$$\mathbf{34.}\sin\!\left(\frac{1}{2}\!\cos^{-1}\frac{4}{5}\right) =$$

$$A. - \frac{1}{\sqrt{10}}$$

$$\mathsf{B.} \; \frac{1}{\sqrt{10}}$$

$$C. - \frac{1}{10}$$

D.
$$\frac{1}{10}$$

Answer: B

35. The general solution of the equation

an 2 heta an heta = 1 for $n\in Z$ is, heta =

A.
$$(2n+1)rac{\pi}{4}$$

B.
$$(2n+1)\frac{\pi}{6}$$

$$\mathsf{C.}\,(2n+1)\frac{\pi}{2}$$

D.
$$(2n+1)\frac{\pi}{3}$$

Answer: B

36. The angle between the lines in

$$x^2 - xy - 6y^2 - 7x + 31y - 18 = 0$$
 is

A. 60°

B. 45°

C. 30°

D. 90°

Answer: B

37. If p is the length of the perpendicular from the origin on the line whose intercepts on the axes are a and b, then

A.
$$p^2=a^2+b^2$$

B.
$$p^2 = a^2 - b^2$$

$$\mathsf{C.}\,\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

D.
$$\frac{1}{p^2} = \frac{1}{a^2} - \frac{1}{b^2}$$

Answer: C

38. The equation of the line bisecting perpendicularly the segment joining the points (-4,6) and (8,8) is

B.
$$6x+y-19=0$$

C.
$$x+2y-7=0$$

D.
$$6x+2y-19=0$$

Answer: B

39. If the slope of one of the lines gives by $ax^2+2hxy+by^2=0$ is 5 times the other, then

A.
$$5h^2=9ab$$

$$\mathsf{B.}\,5h^2=ab$$

$$\mathsf{C}.\,h^2=ab$$

$$\mathsf{D}.\,9h^2=5ab$$

Answer: A

40. The locus of a point which is equidistant

from (a + b, a - b) and (a - b, a + b) is

- A. ax+by=0
- B. x-y=0
- C. x+y=0
- D. bx-ay=0

Answer: B

41. Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$

and hence evaluate the following:

(f)
$$\int_0^\pi rac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$

A.
$$\frac{\pi}{2ab}$$

B.
$$\frac{\pi}{ab}$$

C.
$$\frac{\pi^2}{2ab}$$

D.
$$\frac{\pi^2}{ab}$$

Answer: C

42.
$$\int_0^{2\pi} (\sin x + |\sin x|) dx =$$

A. 4

B. 0

C. 1

D. 8

Answer: A

View Text Solution

43. If
$$n \in N$$
 and $I_n = \int \!\! (\log x)^n \; \mathsf{d} \mathsf{x}$, then

$$I_n + nI_{n-1}$$
=

A.
$$(x \log x)^n$$

$$\mathsf{B}.\,x(\log x)^n$$

$$\mathsf{C}.\,n(\log x)^n$$

$$\mathsf{D.} \left(\log x\right)^{n-1}$$

Answer: B

44. The area included between the parabolas

 $x^2 = 4y$ and $y^2 = 4x$ is, (in square units)

- A. $\frac{4}{3}$
- B. $\frac{1}{3}$
- c. $\frac{16}{3}$
- D. $\frac{8}{3}$

Answer: C

45. The differential equation for which $\sin^{-1} x + \sin^{-1} y = C$ is given by

A.
$$\sqrt{1-x}^2 dy + \sqrt{1-y^2} dx = 0$$

B.
$$\sqrt{1-x^2}dx+\sqrt{1-y^2}dy=0$$

C.
$$\sqrt{1-x^2}dx-\sqrt{1-y^2}dy=0$$

D.
$$\sqrt{1-x^2}dy-\sqrt{1-y^2}dx=0$$

Answer: A

46. The derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ w.r.t. $\cot^{-1}igg(rac{1-3x^2}{3x-x^3}igg)$ is

A.
$$3/2$$

B. 1

C.1/2

D.2/3

Answer: D

47. If $x=a(\theta-\sin\theta), y=a(1-\cos\theta)$ then

$$\frac{dy}{dx} =$$

A.
$$\cot \frac{\theta}{2}$$

B.
$$\tan \frac{\theta}{2}$$

C.
$$\frac{1}{2}$$
cosec² $\frac{\theta}{2}$

$$D. - \frac{1}{2} \csc^2 \frac{\theta}{2}$$

Answer: A

48. If $y=1-x+rac{x^2}{2!}-rac{x^3}{3!}+rac{x^4}{4!}-\ldots$

then
$$\dfrac{d^2y}{dx^2}=$$

$$A.-x$$

$$\mathsf{D}.-y$$

Answer: C

49. The slope of the tangent to the curve

$$x = 3t^2 + 1, y = t^3 - 1$$
 at x=1 is

- A. $\frac{1}{2}$
- B. 0
- $\mathsf{C}.-2$
- $D. \infty$

Answer: B

50. For the curve $xy=c^2$ the subnormal at any point varies as

- A. x^3
- $B. x^2$
- $\mathsf{C}.\,y^3$
- D. y^2

Answer: C

51. The amplitude of $\sin \frac{\pi}{5} + i \Big(1 - \cos \frac{\pi}{5} \Big)$ is

A.
$$\frac{2\pi}{5}$$

B.
$$\frac{\pi}{5}$$

$$\mathsf{C.} \; \frac{\pi}{15}$$

D.
$$\frac{\pi}{10}$$

Answer: D

52. If
$$\sqrt{x}+rac{1}{\sqrt{x}}=2\cos heta$$
 then $x^6+x^{-6}=$

A.
$$2\cos 12\theta$$

B.
$$2\cos 6\theta$$

C.
$$2\sin 3\theta$$

D.
$$2\cos 3\theta$$

Answer: A

53. Which of the following is a fourth root of

$$rac{1}{2}+irac{\sqrt{3}}{2}$$
 ?

A.
$$cis\frac{\pi}{12}$$

B.
$$cis\frac{\pi}{2}$$

$$\mathsf{C.}\, cis\frac{\pi}{3}$$

$$\mathrm{D.}\,cis\frac{\pi}{6}$$

Answer: A

View Text Solution

54. The function
$$f(x) = |x| + \frac{|x|}{x}$$
 is

A. discontinuous at the origin because |x| is discontinuous there

B. continuous at the origin

C. discontinuous at the origin because $|x| \text{ and } \frac{|x|}{x} \text{ are discontinuous there }$

D. discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there

Answer: D

Watch Video Solution

55. If
$$f(a)=2, f'(a)=1, g(a)=-3, g'(a)=-1$$
 then $\lim_{x o a}rac{f(a)g(x)-f(x)g(a)}{x-a}=$

A. 6

Α. .

B. 1

C. – 1

Answer: B

D.-5

56. The maximum of $4\sin^2 x + 3\cos^2 x$ is

A. 4

B. 3

C. 7

D. 5

Answer: A

57. The rate of change of the surface area of a sphere of radius r when the radius is increasing at the rate of 2cm/sec is proportional to

A.
$$\frac{1}{r^2}$$

B. $\frac{1}{r}$

 $\mathsf{C}.\,r^2$

D. r

Answer: D

58.
$$\int \sqrt{1+\sin{x\over 4}}dx=$$

A.
$$8\left(\sin\frac{x}{8} + \cos\frac{x}{8}\right) + C$$

$$\mathsf{B.8}\Big(\sin\frac{x}{8}-\cos\frac{x}{8}\Big)+C$$

$$\mathsf{C.8}\!\left(\cos\!\frac{x}{8}-\sin\!\frac{x}{8}\right)+C$$

D.
$$\frac{1}{8}\left(\sin\frac{x}{8}-\cos\frac{x}{8}\right)+C$$

Answer: B

59.
$$\int e^x \left(\frac{1+\sin x}{1+\cos x} \right) dx =$$

A.
$$e^x \sec^2 rac{x}{2} + C$$

$$\mathsf{B.}\,e^x\!\tan\!\frac{x}{2}+C$$

C.
$$e^x \sec rac{x}{2} + C$$

$$D. e^x \tan x + C$$

Answer: B

60.
$$\int_0^\infty rac{xdx}{(1+x)(1+x^2)} =$$

A.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{4}$$

Answer: D

