

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2009

Mathematics

1. The function $f(x)=rac{\log(1+ax)-\log(1-bx)}{x}$ is not defined at x=0. The value which should be assigned to f at x=0 so that it is continuous at x=0 is

A.
$$\log a + \log b$$

B. 0

$$\mathsf{C}.\,a-b$$

$$D.a+b$$

Answer: D

Watch Video Solution

If

$$f(x) = 1 + nx + rac{n(n-1)}{2}x^2 + rac{n(n-1)(n-2)}{6}x^3 + \ldots$$

then
$$f(1)=$$

A.
$$n(n-1)2^{n-2}$$

B.
$$n(n-1)2^n$$
C. $n(n-1)2^{n-1}$

D.
$$(n-1)2^{n-1}$$

Answer: A

Watch Video Solution

3. If $f(x) = \log_{x^2}(\log_e x)$, then f'(x) at x=e is

C. 1

A. $\frac{1}{2e}$

B. 0

D. $\frac{1}{e}$

Answer: A

Watch Video Solution

- **4.** If $y = \sin^n x \cos nx$, then $\frac{dy}{dx}$ is
 - A. $n\sin^{n-1}x\cos nx$
 - $B. n \sin^{n-1} x \cos(n+1)x$
 - C. $n\sin^{n-1}x\sin(n+1)x$

 $\mathsf{D.}\, n \sin^{n-1} x \cos(n-1) x$

Answer: B

5. If
$$f(x)=(g(x))+rac{g(-x)}{2}+rac{2}{\left[h(x)+h(-x)
ight]^{-1}}$$
 where g and h are differentiable functions then `f'(0)

A.
$$3/2$$

В. О

C. 1

D. 43832

Answer: B

Watch Video Solution

6. The tangent to a given curve y=f(x) is perpendicular to the x-axis if

A.
$$\frac{dx}{dy} = 1$$

B.
$$\frac{dy}{dx} = 0$$

C.
$$\dfrac{dy}{dX}=1$$

D.
$$rac{dx}{dy}=0$$

Answer: D

7. The minimum value of $26^{\cos 2x} 81^{\sin 2x}$ is

A.
$$\frac{1}{243}$$

B.
$$\frac{1}{27}$$

$$\mathsf{C.}-5$$

D.1/5

Answer: A

8. A stone is thrown vertically upwards from the top of a tower 64 metres high according to the law $s=48tg-16t^\circ$. The greatest height attained by the stone above the ground is

A. 100 metre

B. 64 metre

C. 36 metre

D. 32 metre

Answer: A

Watch Video Solution

 $x=a(t+\sin t),y=a(1-\cos t)$ is

length of the

subtangent

at

the

curve

A. $2a\sin\frac{t}{2}$

The

9.

 $\mathsf{B.}\,2a\sin^3\!\left(\frac{t}{2}\right)\!\sec\!\left(\frac{t}{2}\right)$

$$\mathsf{C}.\,a\sin t$$

D.
$$2a\sin\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right)$$

Answer: C

Watch Video Solution

10. $\int \!\! e^{ an^{-1}x} igg(1+rac{x}{1+x^2}igg) dx$ is equal to

A.
$$\frac{1}{2}e^{\tan^{-1}x} + c$$

B.
$$\frac{1}{2}xe^{\tan^{-1}x} + c$$

C.
$$xe^{ an^{-1}x}+c$$

D.
$$e^{ an^{-1}x}+c$$

Answer: C

11.
$$\int \cos ec(x-a)\cos ecxdx =$$

A.
$$\frac{1}{\sin a} \log[\sin(x-ax)\cos ecx] + C$$

B.
$$\frac{1}{\sin a} \log[\sin(x-a)\sin x] + C$$

C.
$$\frac{-1}{\sin a} \log |\sin x \cos ec(x-a)| + C$$

D.
$$\frac{-1}{\sin a} \log[\sin(x-a)\sin x] + C$$

Answer: A

12. If
$$f(x) = \int_{-1}^{x} |t| dt$$
, then for any $x \geq 0, f(x) =$

A.
$$1 + x^2$$

B.
$$\frac{1}{2}(1-x^2)$$

$$C.1 - x^2$$

D.
$$\frac{1}{2}(1+x^2)$$

Answer: D

Watch Video Solution

- 13. $\int_1^3 rac{\sqrt{4-x}}{\sqrt{x}+\sqrt{4-x}} dx =$
 - A. 2
 - B. 0
 - C. 1
 - D. 3

Answer: C

Watch Video Solution

y = 2x - 4 is equal to

14. The area bounded betwene the parabola $y^2=4x$ s and the line

B. 15 sq. units

C.
$$\frac{17}{3}$$
 sq. units

D. $\frac{19}{3}$ sq. units

Answer: A

Watch Video Solution

15. The differential equation of the family of circles passing through the origin and having their centres on the x-axis is

A.
$$x^2 = y^2 + xy \frac{dy}{dx}$$

B.
$$x^2=y^2+3xyrac{dy}{dx}$$

C.
$$y^2=x^2+2xyrac{dy}{dx}$$

D.
$$y^2=x^2-2xyrac{dy}{dx}$$

Answer: C

16. A population grows at the rate of 10% of the population per year. How logn does it take for the population to double?

- A. 5 log 2 years
- B. 2 log 10 years
- C. 20 log 2 years
- D. 10 log 2 years

Answer: D

Watch Video Solution

17. On the set of all natural number N, which one of the following * is a binary operation?

A.
$$a \cdot b = a + 3b$$

 $B. a \cdot b = 3a - 4b$

C.
$$a\cdot b=\sqrt{ab}$$

D.
$$a \cdot b = \frac{a-b}{a+b}$$

Answer: A

18.

Watch Video Solution

If
$$\int_0^1 f(x) dx = 5$$
, then the value $+ 100 \int_0^1 x^9 f(x^{10}) dx$ is equal to

of

$$\dots \dots \dots \dots \dots + 100 {\int_0^1 x^9 f(x^{10}) dx}$$
 is equal to

A. 275

Answer: C

View Text Solution

19. If ax+by=1, where a,b,x and y are integers, then which one of the following is not true?

A.
$$(b, y) = 1$$

$$B.(a, b) = 1$$

$$C.(a, y) = 1$$

D.
$$(x, y) = 1$$

Answer: D

20. The digit in the unit place of the number $\lfloor (2009) + 3^{7886}$ is

A. 1

B. 9

C. 7

Answer: B

Watch Video Solution

21. If
$$\left| egin{array}{cccc} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}
ight|=0$$
 then a,b,c are

A. equal

B. in A.P

C. in G.P

D. in H.P

Answer: B

22. The value of
$$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & lo_z y & 1 \end{vmatrix} =$$

A. xyz

B. log xyz

C. 0

D. 1

Answer: C

Watch Video Solution

23. If
$$egin{bmatrix} 2&1&0\0&2&1\1&0&2 \end{bmatrix}$$
 then $|adjA|=$

A. 43839

B. 81

C. 0

Answer: B

Watch Video Solution

- **24.** If A and B are square matrices of the same order such that $(A+B)(A-B)=A^2-B^2$, then $(ABA)^2=$
 - A. A^2B^2
 - $\mathsf{B.}\,A^2$
 - $\mathsf{C}.\,B^2$
 - D. I

Answer: C

25. If
$$ar{a}$$
. $ar{b}=-\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|$, then the angle between $ar{a}$ and $ar{b}$ is

A.
$$90^{\circ}$$

B.
$$60^{\circ}$$

C.
$$45^{\circ}$$

D.
$$180^{\circ}$$

Answer: D

26. If
$$\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{O}$$
, then $\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c}+\overrightarrow{c}\times\overrightarrow{a}=$

A.
$$\overset{\displaystyle \rightarrow}{O}$$

B.
$$6\Big(\overrightarrow{b} imes\overrightarrow{c}\Big)$$

C.
$$2 \left(\overrightarrow{b} imes \overrightarrow{c}
ight)$$

$$\operatorname{D.3}\!\left(\overrightarrow{c}\times\overrightarrow{a}\right)$$

Answer: B

Watch Video Solution

27. If the volume of the parallelopiped with \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} as coterminous edges is 40 cubic units, then the volume of he parallelopiped having $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$ and $\overrightarrow{a} + \overrightarrow{b}$ as coterminous edges in cubic units is

- A. 160
- B. 40
- C. 80
- D. 120

Answer: C

$$\left(2\oplus_6 e^{-1}\oplus_6 4\right)^{-1}=$$

28. In the group G={0,1,2,3,4,5} under

addition moduel

6,

- A. 5
- B. 0
- C. 2

D. 3

Answer: D

- **29.** Which one of the following is not true?
 - A. Cancellation laws hold in a group.
 - B. Identity element in a group in unique.
 - C. Inverse of an element in a group is unique.
 - D. Fourth roots of unity form an additive abelian group.

Answer: D

View Text Solution

- **30.** the number of subgroups of the group $(Z_5, \; \oplus_5)$ is
 - A. 4
 - B. 2
 - C. 1
 - D. 3

Answer: B

- **31.** The negation of $p \wedge (1
 ightarrow au r)$ is
 - A. $pee (q\wedge r)$

D. $p \lor (q \lor r)$

B. $\neg p \lor (q \land r)$

C. ~ $p \wedge (q \wedge r)$

Answer: B

Watch Video Solution

32. If $n=\lfloor (2020)$, then

$$rac{1}{\log_2 n} + rac{1}{\log_3 n} + rac{1}{\log_4 n} + \dots + rac{1}{\log_{2020} n} =$$

B. 0

Answer: D

33. If n is a positive integer, then n^3+2n is divisible

A. 15

B. 3

C. 2

D. 6

Answer: B

Watch Video Solution

34. Let $f \colon N o N$ defined by

$$f(n) = \left\{ egin{array}{ll} rac{n+1}{2} & ext{if n is odd} \ rac{n}{2} & ext{if n is even} \end{array}
ight.$$
 then f is

A. surjective but not injective

B. bijective

C. injective but not surjective

D. neither injective nor surjective

Answer: A

Watch Video Solution

- **35.** If lpha and eta are the roots of $x^2+x+1=0$, then $lpha^{16}+eta^{16}=$
 - A. 2
 - B. 0
 - C. 1
 - D.-1

Answer: D

36. The total number of terms in the expansion
$$\left(x+y
ight)^{100}+\left(x-y
ight)^{100}$$
 after simplification

of

Answer: C

Watch Video Solution

37. $\cot^{-1}(2.1^2) + \cot^{1}(2.2^2) + \cot^{-1}(2.3)^2 + \dots$ up to ∞ =

A.
$$\pi/2$$

B.
$$\pi/5$$

C.
$$\pi/4$$

D.
$$\pi/3$$

Answer: C

Watch Video Solution

38. If x takes negative permissible value, then $\sin^{-1} x$ is equal to

A.
$$\pi-\cos^{-1}\sqrt{1-x^2}$$

B.
$$\cos^{-1}\sqrt{1-x^2}$$

C.
$$-\cos^{-1}\sqrt{1-x^2}$$

D.
$$\cos^{-1}\sqrt{x^2-1}$$

Answer: C

Watch Video Solution

39. If
$$1 + \sin x + \sin^2 x + \dots$$

upto

 $\infty = 4 + 2\sqrt{3}, 0 < x < \pi$ and $x
eq rac{\pi}{2}$, then x=

Answer: C

A. $\frac{\pi}{3}$, $\frac{2\pi}{3}$

B. $\frac{\pi}{6}$, $\frac{\pi}{3}$

 $\mathsf{C.}\,\frac{\pi}{3},\,\frac{5\pi}{6}$

D. $\frac{2\pi}{3}, \frac{\pi}{6}$

Watch Video Solution

40. The complex number $\frac{1+2i}{1-i}$ lies in

Answer: A

C. second quadrant

D. third quadrant

41. If P is the point in the Argand diagrma correspoinding to the complex number $\sqrt{3}+i$ and if OPQ is an isosceles right angled triangle, right angled at O, then Q represents the complex number

A.
$$\sqrt{3}-i$$
 or $1-i\sqrt{3}$

B.
$$-1 \pm i\sqrt{3}$$

C.
$$-1+i\sqrt{3}$$
 or $1-i\sqrt{3}$

D.
$$1 \pm i\sqrt{3}$$

Answer: C

Watch Video Solution

42. The smallest positive integral value of n such that

$$\left[rac{1+\sinrac{\pi}{8}+i\cosrac{\pi}{8}}{1+\sinrac{\pi}{8}-i\cosrac{\pi}{8}}
ight]^n$$
 is purely imaginary is n=

B. 8

C. 4

D. 3

Answer: C

Watch Video Solution

43. Which one of the following is possible?

A. $\tan \theta = 45$

B. $\cos heta = rac{7}{3}$

C. $\sin heta = rac{a^2+b^2}{a^2-b^2}, (a
eq b)$

D. $\sec \theta = \frac{4}{5}$

Answer: A

44. If one side of a triangle is double the other and the angles opposite to these sides differ by 60° , then the triangle is

- A. isosceles
- B. right angled
- C. obtuse angled
- D. acute angled

Answer: B

- **45.** $3(\sin x \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) =$
 - A. 14
 - B. 11
 - C. 12
 - D. 13

Answer: D

Watch Video Solution

46. A cow is tied to a post by a rope. The cow moves along the circular path always keepign the rope tight. If it describes 44 metre, when it has traced ut $72^{\circ}k$ at the centre, the length of the rope is

- A. 45 metres
- B. 35 metres
- C. 22 metres
- D. 56 metres

Answer: B

47. If
$$\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 2\theta \\ \sin^2\theta & 1+\cos^2\theta & 4\sin 2\theta \\ \sin^2\theta & \cos^2\theta & 4\sin 2\theta - 1 \end{vmatrix} = 0 \text{ and } 0 < \theta < \frac{\pi}{2} \text{ then}$$

$$\cos 4\theta =$$

A.
$$\frac{-1}{2}$$

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{3}}{2}$$

D. 0

Answer: B

Watch Video Solution

48. The locus of the midpoint of a chord of the circle $x^2+y^2=4$ which subtends a right angle at the origin is

A.
$$x + y = 1$$

$$B. x + y = 2$$

C.
$$x^2 + y^2 = 1$$

$$\mathsf{D}.\,x^2+y^2=2$$

Answer: D

Watch Video Solution

- **49.** The length of the chord joining the points $(4\cos\theta, 4\sin\theta)$ and $\left(4\cos\left(heta+60^2
 ight),4\sin(heta+60^\circ)
 ight)$ of the circle $x^2+y^2=16$ is
 - A. 16

 - B. 2
 - C. 4
 - D. 8

Answer: C

50. The number of common tangents to the circles $x^2 + y^2 - y = 0$ and

$$x^2+y^2+y=0$$
 is

A. 0

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

51. The co ordinates of the cenre of the smallest circle passing through the origin and having y=x+1 as a diameter are

A.
$$(-1,0)$$

$$\mathsf{B.}\left(\frac{-1}{2},\frac{1}{2}\right)$$

$$\mathsf{C.}\left(\frac{1}{2},\frac{-1}{2}\right)$$

D.
$$\left(\frac{1}{2}, \frac{1}{3}\right)$$

Answer: B

Watch Video Solution

52. The length of the diameter of the circle which cuts three circles

$$x^2 + y^2 - xy - 14 = 0$$

$$x^2 + y^2 + 3x - 5y - 10 = 0$$

 $x^2 + y^2 - 2x + 3y - 27 = 0 \text{ M}$

- - A. 4

orthogonally, is

- B. 2
- C. 8
- D. 6

Answer: A

53. For the parabola $y^2=4x$ the point P whose focal distance is 17 is

- A. (2,8) or (2,-8)
- B. (16,8) or (16,-8)
- C. (8,8) or (8,-8)
- D. (4,8) or (4,-8)

Answer: B

Watch Video Solution

54. The angle between the tangents drawn to the parabola $y^2=12x$

from the point (-3,2) is

- A. 30°
- B. 45°

C. 90°

D. $60\,^\circ$

Answer: C

Watch Video Solution

55. The number of values oif c such that the line y=4x+c touches the

curve
$$rac{x^2}{4}+y^2=1$$
 is

A. infinite

В. О

C. 1

D. 2

Answer: D

56. If the circle $x^2+y^2=a^2$ intersects the hyperbola $xy=c^2$ in four points $P(x_1,y_1),\,Q(x_2,y_2),\,R(x_3,y_3)$ and $S(x_4,y_4)$ then

A.
$$y_1y_2y_3y_4=2c^4$$

$$\mathsf{B.}\,x_1 + x_2 + x_3 + x_4 = 0$$

C.
$$y_1 + y_2 + y_3 + y_4 = 2$$

D.
$$x_1x_2x_3x_4=2c^4$$

Answer: B

Watch Video Solution

57. The foot of the perpendicular from the point (2,4) upon x+y=4 is

- A. (1,3)
- B. (3,-1)
- C. (2,2)
- D. (4,0)

Answer: A

Watch Video Solution

58. The vertices of triangle ar (6,0),(0,6) and (6,6). The distance between its circumcentre and cenroid is

- **A.** 1
- B. $2\sqrt{2}$
- C. 2
- D. $\sqrt{2}$

Answer: D

Watch Video Solution

59. The angle between the pair of lines $x^2 + 2xy - y^2 = 0$ is

B. $\pi/3$

C. $\pi/6$

D. $\pi/2$

Answer: D

Watch Video Solution

- **60.** $\lim_{n \to \infty} \frac{3.2^{n+1} 4.5^{n+1}}{5.2^n + 7.5^n} =$

 - B. 0
 - $\operatorname{C.}\frac{3}{5}$ D. $\frac{-4}{7}$

Answer: A