©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER - 8

Mathematics

1. A survey shows that 63% of the Americans like cheese whereas
76% like apples. If $x \%$ of the Americans like both these and apples, then
A. $x=39$
B. $x=63$
C. $39 \leq x \leq 63$
D. none of these

Answer: C

- Watch Video Solution

2. Let Z be the set of integers and o be a bonary operation of z defined $a s a o b=a+b-a b$ for $a l l a, b \in Z$. The inverse of $a n$ element $a(\neq 1) \in Z$ is
A. $a /(a-1)$
B. $a /(1-a)$
C. $(a-1) / a$
D. none of these
3. The product of cube root of -1 is equal to
A. 0
B. 1
C. -1
D. none of these

Answer: C

D Watch Video Solution

4. Let z be a complex number such that $|z|=4$ and $\arg (z)$
$=5 \pi / 6$, then $\mathrm{z}=$
A. $-2 \sqrt{3}+2 i$
B. $2 \sqrt{3}+2 i$
C. $2 \sqrt{3}-2 i$
D. $-\sqrt{3}+i$.

Answer: A

D Watch Video Solution

5. POO is a straight line through the origin $\mathrm{O} . \mathrm{P}$ and O represent the complex numbers $\mathrm{a}+\mathrm{ib}$ and $\mathrm{c}+\mathrm{id}$ respectively and $\mathrm{OP}=0 \mathrm{O}$.

Then
A. $|a+i b|=|c+i d|$
B. $a+c=b+d$
C. both (a) and (b)
D. none of these.

Answer: C

- Watch Video Solution

6. If the complex numbers $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other, then x is equal to
A. $n \pi$
B. $\left(n+\frac{1}{2}\right) \pi$
C. 0
D. none of these

Answer: D

7. In the Argand plane, the vector $z=4-3 i$ is turned in the clockwise sense through 180° and stretched 3 times. The complex number represented by new vector is
A. $-6+9 i$
B. $-12+9 i$
C. $12+9 i$
D. $12-9 i$

Answer: C

- Watch Video Solution

8. If a, b, c are in A.P., p, q, r are in HP and $a p, b q$, cr are in GP, then

$$
\frac{P}{r}+\frac{r}{P} \text { is equal to }
$$

A. $\frac{a}{c}-\frac{c}{a}$
B. $\frac{a}{c}+\frac{c}{a}$
C. $\frac{b}{q}+\frac{q}{b}$
D. $\frac{b}{q}-\frac{q}{b}$.

Answer: B

D Watch Video Solution

9. The sum of n terms of the series

$$
1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots \text { is }
$$

A. $-n \frac{(n+1)}{2}$
B. $n \frac{(n+1)}{2}$
C. $-n(n+1)$
D. both a and b

Answer: d

- Watch Video Solution

10. If a, b, c are in GP and $a+x, b+x, c+x$ are in
$H P$, then the value of x is (a, b, c are distinct numbers)
A. C
B. b
C. a
D. none of these.

Answer: B
11. $I f^{12} P,={ }^{11} P_{6}+6 .{ }^{11} P_{5}$, then r is equal to
A. 6
B. 5
C. 7
D. none of these

Answer: A

- Watch Video Solution

12. The number of ways in which any four letters can be selected from the word CORGOO is
A. 15
B. 11
C. 7
D. none of these.

Answer: C

- Watch Video Solution

13. A library has a copies of one Book, b copies of each of two books, c copies of each of three books, and single copies of d books. The total number of ways in which these books can be distributed is
A. $\frac{(a+b+c+d)}{a, b, c,}$
B. $\frac{(a+2 b+3 c+d)}{a,(b,)^{2}(c,)^{5}}$
c. $\frac{(a+2 b+3 c+d),}{a, b, c,}$
D. none of these

Answer: B

- Watch Video Solution

14. If the $4^{t h}$ term in the expansion of $\left(a x+\frac{1}{x}\right)^{\prime \prime}$ is $\frac{5}{2}$ then the values of a and n are
A. $1 / 2,6$
B. 1,3
C. $1 / 2,3$
D. cannot be found.

Answer: A

15. A matrix A satisfying the equation
$\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] A=\left[\begin{array}{ll}1 & 1 \\ 0 & -1\end{array}\right]$ is
A. $\left[\begin{array}{ll}1 & 4 \\ -1 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}1 & -4 \\ 1 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 4 \\ 0 & -1\end{array}\right]$
D. none of these

Answer: C

D Watch Video Solution

16. If A, B, C are invertible matrices, then
$(A B C)^{-1}$ is equal to
A. $A^{-1} B^{-1} C^{-1}$
B. $B^{-1} C^{-1} A^{-1}$
C. $C^{-1} A^{-1} B^{-1}$
D. $C^{-1} B^{-1} A^{-1}$

Answer: D

D Watch Video Solution

17. If a, b, c are different, then value of x satisfying the equation
$\left|\begin{array}{lll}0 & x^{2}-a & x^{3}-b \\ x^{2}+a & 0 & x^{2}+c \\ x^{4}+b & x-c & 0\end{array}\right|=0$ is
A. a
B. b
C. c
D. 0

Answer: D

- Watch Video Solution

18. Let P and Q be points on the line joining
$A(-2,5)$ and $B(3,1)$ such that $A P=P Q=Q B$. Then the mid-point of $P Q$ is
A. $(1 / 2,3)$
B. $(-1 / 2,4)$
C. $(2,3)$
D. $(-1,4)$.
19. The equation of the line passing through the intersection of the lines $x-3 y+1=0$ and $2 x+5 y-9=0$ and at distance $\sqrt{5}$ from the origin is
A. $2 x-3 y=5$
B. $x+2 y=5$
C. $2 x+y=5$
D. $x+2 y=1$.

Answer: C

- Watch Video Solution

20. If the angle between the two lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0 . i s \tan ^{-1}(\mathrm{~m})$, then m is equal to
A. $1 / 5$
B. -1
C. $-2 / 3$
D. none of these.

Answer: A

- Watch Video Solution

21. The value of a for which the lines represented by $a x^{2}+5 x y+2 y^{2}=0$ are mutually perpendicular is
A. 2
B. -2
C. $25 / 8$
D. none of these.

Answer: B

D Watch Video Solution

22. The equation of the straight line which passes through the point (1, -2) and cuts off equal intercepts from the axes will be
A. $x+y=1$
B. $x-y=1$
C. $x+y+1=0$
D. $x-y-2=0$.

Answer: C

- Watch Video Solution

23. The joint equation of the straight lines $x+y=1$ and $x-y=4$ is
A. $x^{2}-y^{2}=-4$
B. $x^{2}-y^{2}=4$
C. $(x+y-1)(x-y-4)=0$
D. $(x+y+1)(x-y+4)=0$

Answer: C

24. The equation of the circle having radius 3 and touching the circle $x^{2}+y^{2}-4 x-6 y-12=0$ at $(-1,-1)$ is
A. $5 x^{2}+5 y^{2}+8 x-14 y-16=0$
B. $5 x^{2}+5 y^{2}-8 x-14 y-32=0$
C. $5 x^{2}+5 y^{2}-8 x+14 y-4=0$
D. $5 x^{2}+5 y^{2}-8 x+14 y+12=0$

Answer: B

- Watch Video Solution

25. The locus of the midpoint of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origin is
A. $x+y=2$
B. $x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=2$
D. $x+y=1$.

Answer: C

- Watch Video Solution

26. The circles $x^{2}+y^{2}+x+y=0$ and $x^{2}+y^{2}+x-y=0$ intersect at an angle of
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$.

Answer: D

- Watch Video Solution

27. If the radical axis of the circles
$x^{2}+y^{2}+2 g x+2 f y+c=0$ and $2 x^{2}+2 y^{2}+3 x+8 y+2 c=0$ touches the circle $x^{2}+y^{2}+2 x+2 y+1=0$, then
A. $g=3 / 4$ and $f \neq 2$
B. $g \neq 3 / 4$ and $f=2$
C. $g=3 / 4$ or $f=2$
D. none of these
28. The slope of the tangent at the point (h, h) of the circle $x^{2}+y^{2}=a^{2}$ is
A. 0
B. 1
C. -1
D. depends on h.

Answer: C

- Watch Video Solution

29. If the vertex of a parabola is the point $(-3,0)$ and the directrix
is the line $x+5=0$, then its equation is
A. $y^{2}=8(x+3)$
B. $x^{2}=8(y+3)$
C. $y^{2}=-8(x+3)$
D. $y^{2}=8(x+5)$.

Answer: A

D Watch Video Solution

30. The vertex of a parabola is the point (a, b) and latus-rectum is of length I. If the axis of the parabola is along the positive direction of y-axis, then its equation is
A. $(x+a)^{2}=\frac{l}{2}(2 y-2 b)$
B. $(x-a)^{2}=\frac{l}{2}(2 y-2 b)$
C. $(x+a)^{2}=\frac{l}{4}(2 y-2 b)$
D. $(x-a)^{2}=\frac{l}{8}(2 y-2 b)$

Answer: B

- Watch Video Solution

31. The equation to the ellipse (referred to its axes as the axes of x and y respectively) whose foci are $(\pm 2,0)$ and eccentricity $1 / 2$, is
A. $\frac{x^{2}}{12}+\frac{y^{2}}{16}=1$
B. $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
c. $\frac{x^{2}}{16}+\frac{y^{2}}{8}=1$
D. none of these
32. The locus of the middle point of the portion of a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ included between the axes is the curve
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=4$
B. $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$
C. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=4$
D. none of these

Answer: B

- Watch Video Solution

33. The equations to the common tangents to the two hyperbolas $\frac{x^{2}}{a^{2}}-\frac{v^{2}}{b^{2}}=1$ and $\frac{v^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ are
A. $y= \pm x \pm \sqrt{b^{2}-a^{2}}$
B. $y= \pm x \pm \sqrt{a^{2}-b^{2}}$
C. $y= \pm x \pm\left(a^{2}-b^{2}\right)$
D. $y= \pm x \pm \sqrt{a^{2}+b^{2}}$

Answer: B

D Watch Video Solution

34. The vectors $2 i+3 j-4 k$ and $a i+b j-c k$ are perpendicular if
A. $a=2, b=3, c=4$
B. $a=4, b=4, c=5$
C. $a=4, b=4, c=-5$
D. none of these

Answer: B

D Watch Video Solution

35. If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$, then
A. $\equiv \vec{c}$
B. $(\vec{b}-\vec{c})|\mid \vec{a}$
C. $\vec{b}-\vec{c} \perp \vec{a}$
D. none of these

- Watch Video Solution

36. If $\vec{p}=\vec{a}-\vec{b}, \vec{q}=\vec{a}+\vec{b}$ and $|\vec{a}|=|\vec{b}|=2$, then the value of $|\vec{p} \times \vec{q}|$ is equal to
A. $2 \sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
B. $2 \sqrt{4-(\vec{a} \cdot V e c b)^{2}}$
C. $\sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
D. $\sqrt{4-(\vec{a} \cdot V e c b)^{2}}$

Answer: A

37. Let $a=\hat{I}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and c be a unit vector \perp to \vec{a} and coplanar with \vec{a} and \vec{b}, then it is given by
A. $\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
C. $-\frac{1}{\sqrt{6}}(\hat{i}-2 \hat{j}-\hat{k})$
D. $\frac{1}{2}(\hat{j}-\hat{k})$

Answer: A

- View Text Solution

38. The value of $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}$ is
A. 1
B. -1
C. 0
D. none of these

Answer: D

- Watch Video Solution

39. If $\mathrm{f}(\mathrm{x})=\left(\frac{x^{2}+5 x+3^{x}}{x^{2}+x+2}\right)$ then $\lim _{x \rightarrow \infty} f(x)$ is equal to
A. e^{4}
B. e^{3}
C. e^{2}
D. 2^{4}

(-) Watch Video Solution

40. If $\mathrm{y}=\cos ^{-1}\left(\frac{2 \cos x-3 \sin x}{\sqrt{13}}\right)$, then $\frac{d y}{d x}$ is
A. zero
B. constant =1
C. constant $\neq 1$
D. none of these

Answer: B

(D) Watch Video Solution

41. The derivative of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ with respect to $\sqrt{1-x^{2}} a t x=\frac{1}{2}$ is
A. 2
B. 4
C. 1
D. -2

Answer: B

D Watch Video Solution

42. The abscissa of the point on the curve $a y^{2}=x^{3}$, the normal at which cuts off equal intercepts from the coordinate axes is
A. $2 a / 9$
B. $4 a / 9$
C. $-4 a / 9$
D. $-2 a / 9$

Answer: B

- Watch Video Solution

43. If $\mathrm{y}=a \log x+b x^{2}+x$ has its extremum value at

$$
x=-1 \text { and } x=2, \text { then }
$$

A. $a=2, b=-1$
B. $a=2, b=-\frac{1}{2}$
C. $a=-\frac{1}{2}, b=\frac{1}{2}$
D. none of these

Answer: B

44. $\int \frac{1}{\left(1+x^{2}\right) \sqrt{1-x^{2}}} d x$ is equal to
A. $\frac{1}{2} \tan ^{-1}\left(\frac{\sqrt{2} x}{\sqrt{1+x^{2}}}\right)+c$
B. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sqrt{2} s x}{\sqrt{1+x^{2}}}\right)+c$
C. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sqrt{2} s x}{\sqrt{-x^{2}}}\right)+c$
D. none of these

Answer: C

D Watch Video Solution

45. $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$ is equal to
A. $2 \sqrt{\tan x+C}$
B. $2 \sqrt{\cot x}+C$
C. $\frac{\sqrt{\tan x}}{2}+C$
D. nonwe of these

Answer: A

- Watch Video Solution

46. The value of the integral $\int_{0}^{1} \frac{1}{x^{2}+2 x \cos \alpha+1} d x$ is equal to
A. $\sin \alpha$
B. $\alpha \sin \alpha$
C. $\alpha / \sin \alpha$
D. $\alpha / 2 \sin \alpha$
47. The order and degree of the differential equation
$\rho=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}$ are respectively
A. 2, 2
B. 2, 3
C. 2, 1
D. none of these

Answer: A

Watch Video Solution
48. The equation of a curve passing through $(2,7 / 2)$ and having gradient $1-\frac{1}{x^{2}} a t(x, y)$ is
A. $y=x^{2}+x+1$
B. $x y=x^{2}+x+1$
C. $x y=x+1$
D. none of these

Answer: B

- Watch Video Solution

49. In the group $G=\{2,4,6,8\}$ under multiplication modulo 10 , the identy element is
A. 6
B. 8
C. 4
D. 2

Answer: A

D Watch Video Solution

50. If a, b are positive integers, define $a^{*} b=\alpha$ where $a b \equiv \alpha$ (modulo 7), with this * operation, the inverse of 3 in group $\mathrm{G}=$ $\{1,2,3,4,5,6\}$
A. 3
B. 1
C. 5
D. 4

Answer: C

- View Text Solution

51. Z is the set of integers, $\left(Z,{ }^{* *}\right)$ is a group with $a{ }^{* *} b$
$=1+b+1,, b, \in \mathrm{G}$. Then inverse of a is
A. $-a$
B. $a+1$
C. $-2-a$
D. none of these

Answer: C

52. Let G denote the set of all $n \times n$ non-singular matrices with rational numbers as entries. Then under multiplication
A. G is a subgroup
B. G is a finite abelian group
C. G is an infinite, non-abelian group
D. G is infinite, abelian

Answer: C

- View Text Solution

53. In the group $G=\{1,2,3,4,5\}$ under addition modulo 6 , $\left(3+5^{-1}\right)^{-1}$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

D View Text Solution

54. If $\left(G,{ }^{*}\right)$ is a group such that $a^{*} b=b^{*} a$ for two element a and b, then
A. $a^{-1 *} b^{-1}=b^{-1 *} a^{-1}$
B. $a^{*} b=a^{-1 *} b^{-1}$
C. $a^{-1 *} b=a^{*} b^{-1}$
D. none of these

- View Text Solution

55. The value of $\theta\left(0<\theta<360^{\circ}\right)$ satisfying $\operatorname{cosec} \theta+2=0$ are
A. $210^{\circ}, 300^{\circ}$
B. $240^{\circ}, 300^{\circ}$
C. $210^{\circ}, 240^{\circ}$
D. $210^{\circ}, 330^{\circ}$

Answer: D

56. If $\sin A=\sin B, \cos A=\cos B$, then the value of A in terms of B is
A. $n \pi+B$
B. $n \pi+(-1)^{n} B$
C. $2 n \pi+B$
D. $2 n \pi-B$

Answer: C

- Watch Video Solution

57. If $(1+\tan \theta)(1+\tan \phi)=2$, then $\theta+\phi=$
A. 30°
B. 45°
C. 60°
D. 75°

Answer: B

- Watch Video Solution

58. $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)$ is
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 4$ or $-3 \pi / 4$

Answer: C

59. $\cot \left[\cos ^{-1}\left(\frac{7}{25}\right)\right]=$
A. $25 / 24$
B. $25 / 7$
C. $24 / 25$
D. none of these

Answer: D

- Watch Video Solution

60. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then x equals
A. $1 / 2$
B. $\sqrt{3} / 2$
C. $-1 / 2$
D. none of these

Answer: A

- Watch Video Solution

