

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER - 8

Mathematics

1. A survey shows that 63% of the Americans like cheese whereas 76% like apples. If x % of the Americans like both these and apples, then

A. x = 39

B. x = 63

C. $39 \leq x \leq 63$

D. none of these

Answer: C

Watch Video Solution

2. Let Z be the set of integers and o be a bonary operation of z defined as aob = a + b - ab for all a, b \in Z. The inverse of an element a (eq 1) \in Z is

A.
$$a/(a-1)$$

B. a / (1 - a)

$$C.(a - 1)/a$$

D. none of these

3. The product of cube root of -1 is equal to

A. 0

B. 1

C. -1

D. none of these

Answer: C

Watch Video Solution

4. Let z be a complex number such that |z| = 4 and arg (z) $= 5\pi/6$, then z =

A.
$$-2\sqrt{3}+2i$$

B. $2\sqrt{3}+2i$
C. $2\sqrt{3}-2i$
D. $-\sqrt{3}+i$.

Answer: A

O Watch Video Solution

5. POO is a straight line through the origin O. P and O represent the complex numbers a + ib and c + id respectively and OP = OO.

Then

$$\mathsf{A}.\left|a+ib\right|=\left|c+id\right|$$

B. a + c = b + d

C. both (a) and (b)

D. none of these.

Answer: C

6. If the complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other, then x is equal to

A.
$$n\pi$$

$$\mathsf{B.}\left(n+\frac{1}{2}\right)\pi$$

C. 0

D. none of these

Answer: D

7. In the Argand plane, the vector z = 4 - 3i is turned in the clockwise sense through 180° and stretched 3 times. The complex number represented by new vector is

 $\mathsf{A.}-6+9i$

B. -12 + 9i

C. 12 + 9i

 $\mathsf{D}.\,12-9i$

Answer: C

8. If a, b, c are in A.P., p, q, r are in HP and ap, bq, cr are in GP, then $\frac{P}{r} + \frac{r}{P}$ is equal to

A.
$$rac{a}{c} - rac{c}{a}$$

B. $rac{a}{c} + rac{c}{a}$
C. $rac{b}{q} + rac{q}{b}$
D. $rac{b}{q} - rac{q}{b}$.

Answer: B

Watch Video Solution

9. The sum of n terms of the series

 $1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$ is

A.
$$-nrac{(n+1)}{2}$$

B. $nrac{(n+1)}{2}$
C. $-n(n+1)$

D. both a and b

Answer: d

10. If a, b, c are in GP and a + x, b + x, c + x are in

HP, then the value of x is (a, b, c are distinct numbers)

A. c

B.b

C. a

D. none of these.

Answer: B

Watch Video Solution

11. $If^{12}P$, $=^{11}P_6 + 6.^{11}P_5$, then r is equal to

A. 6

B. 5

C. 7

D. none of these

Answer: A

O Watch Video Solution

12. The number of ways in which any four letters can be selected

from the word CORGOO is

B. 11

C. 7

D. none of these.

Answer: C

13. A library has a copies of one Book, b copies of each of two books, c copies of each of three books, and single copies of d books. The total number of ways in which these books can be distributed is

A.
$$rac{(a+b+c+d)}{a, b, c,}$$

B. $rac{(a+2b+3c+d)}{a, (b,)^2(c,)^5}$
C. $rac{(a+2b+3c+d),}{a, b, c,}$

D. none of these

Answer: B

Watch Video Solution

14. If the 4^{th} term in the expansion of $\left(ax + \frac{1}{x}\right)^{r}$ is $\frac{5}{2}$ then the values of a and n are

A. 1/2, 6

B. 1, 3

C.1/2, 3

D. cannot be found.

15. A matrix A satisfying the equation

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
 is
A.
$$\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 & -4 \\ 1 & 0 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$$

D. none of these

Answer: C

Watch Video Solution

16. If A, B, C are invertible matrices, then

 $\left(ABC
ight)^{-1}$ is equal to

A.
$$A^{-1}B^{-1}C^{-1}$$

B. $B^{-1}C^{-1}A^{-1}$
C. $C^{-1}A^{-1}B^{-1}$
D. $C^{-1}B^{-1}A^{-1}$

Answer: D

Watch Video Solution

17. If a, b, c are different, then value of x satisfying the equation

$$egin{array}{ccccc} 0 & x^2-a & x^3-b \ x^2+a & 0 & x^2+c \ x^4+b & x-c & 0 \end{array} igg| = 0$$
 is

A. a

B.b

C. c

Answer: D

18. Let P and Q be points on the line joining

A (-2, 5) and B (3, 1) such that AP = PQ = QB. Then the mid-point of PQ is

A. (1/2, 3)B. (-1/2, 4)C. (2, 3)D. (-1, 4).

19. The equation of the line passing through the intersection of the lines x - 3y + 1 = 0 and 2x + 5y - 9 = 0 and at distance $\sqrt{5}$

from the origin is

A. 2x - 3y = 5

B. x + 2y = 5

C. 2x + y = 5

D.
$$x + 2y = 1$$
.

Answer: C

20. If the angle between the two lines represented by $2x^2+5xy+3y^2+6x+7y+4=0.\ is an^{-1}$ (m), then m is equal to

A. 1/5

 $\mathsf{B.}-1$

C. - 2/3

D. none of these.

Answer: A

Watch Video Solution

21. The value of a for which the lines represented by $ax^2 + 5xy + 2y^2 = 0$ are mutually perpendicular is

A. 2

 $\mathsf{B.}-2$

C.25/8

D. none of these.

Answer: B

Watch Video Solution

22. The equation of the straight line which passes through the point (1, -2) and cuts off equal intercepts from the axes will be

A.
$$x+y=1$$

B. $x-y=1$
C. $x+y+1=0$

D.
$$x - y - 2 = 0$$

Answer: C

Watch Video Solution

23. The joint equation of the straight lines x + y = 1 and x - y = 4

is

A.
$$x^2 - y^2 = -4$$

B. $x^2 - y^2 = 4$
C. $(x + y - 1)(x - y - 1)$

C.
$$(x+y-1)(x-y-4) = 0$$

D.
$$(x+y+1)(x-y+4)=0$$

Answer: C

24. The equation of the circle having radius 3 and touching the circle $x^2 + y^2 - 4x - 6y - 12 = 0$ at (-1,-1) is A. $5x^2 + 5y^2 + 8x - 14y - 16 = 0$ B. $5x^2 + 5y^2 - 8x - 14y - 32 = 0$ C. $5x^2 + 5y^2 - 8x + 14y - 4 = 0$ D. $5x^2 + 5y^2 - 8x + 14y + 12 = 0$

Answer: B

Watch Video Solution

25. The locus of the midpoint of a chord of the circle $x^2 + y^2 = 4$ which subtends a right angle at the origin is

A.
$$x + y = 2$$

B. $x^2 + y^2 = 1$
C. $x^2 + y^2 = 2$
D. $x + y = 1$.

0

Answer: C

Watch Video Solution

26. The circles
$$x^2 + y^2 + x + y = 0$$
 and $x^2 + y^2 + x - y = 0$

intersect at an angle of

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi / 2$.

Answer: D

Watch Video Solution

27. If the radical axis of the circles $x^2+y^2+2gx+2fy+c=0$ and $2x^2+2y^2+3x+8y+2c=0$ touches the circle $x^2+y^2+2x+2y+1=0,$ then A. g=3/4 and $f\neq 2$

B.
$$g
eq 3/4 \, ext{ and } f = 2$$

C.
$$g = 3/4$$
 or $f = 2$

D. none of these

Answer: C

28. The slope of the tangent at the point (h, h) of the circle $x^2 + y^2 = a^2$ is

A. 0

B. 1

C. -1

D. depends on h.

Answer: C

29. If the vertex of a parabola is the point (-3, 0) and the directrix

is the line x + 5 = 0, then its equation is

A.
$$y^2 = 8(x+3)$$

B. $x^2 = 8(y+3)$
C. $y^2 = -8(x+3)$
D. $y^2 = 8(x+5)$.

Answer: A

Watch Video Solution

30. The vertex of a parabola is the point (a, b) and latus-rectum is of length I. If the axis of the parabola is along the positive direction of y-axis, then its equation is

A.
$$(x+a)^2 = rac{l}{2}(2y-2b)$$

B. $(x-a)^2 = rac{l}{2}(2y-2b)$
C. $(x+a)^2 = rac{l}{4}(2y-2b)$

D.
$$(x-a)^2=rac{l}{8}(2y-2b)$$

Answer: B

Watch Video Solution

31. The equation to the ellipse (referred to its axes as the axes of x and y respectively) whose foci are $(\pm 2, 0)$ and eccentricity 1/2, is

A.
$$rac{x^2}{12}+rac{y^2}{16}=1$$

B. $rac{x^2}{16}+rac{y^2}{12}=1$
C. $rac{x^2}{16}+rac{y^2}{8}=1$

D. none of these

Answer: B

32. The locus of the middle point of the portion of a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ included between the axes is the curve

A.
$$rac{x^2}{a^2}+rac{y^2}{b^2}=4$$

B. $rac{a^2}{x^2}+rac{b^2}{y^2}=4$
C. $rac{x^2}{a^2}-rac{y^2}{b^2}=4$

D. none of these

Answer: B

33. The equations to the common tangents to the two

hyperbolas
$$rac{x^2}{a^2}-rac{v^2}{b^2}=1 ext{ and } rac{v^2}{a^2}-rac{x^2}{b^2}=1$$
 are

A.
$$y=~\pm x\pm \sqrt{b^2-a^2}$$

B.
$$y=~\pm~x\pm\sqrt{a^2-b^2}$$

$$\mathsf{C}.\,y=~\pm~x\pm\left(a^2-b^2\right)$$

D.
$$y=~\pm x\pm \sqrt{a^2+b^2}$$

Watch Video Solution

Answer: B

34. The vectors 2i+3j-4k and ai+bj-ck are

perpendicular if

B.
$$a = 4, b = 4, c = 5$$

C. a = 4, b = 4, c = -5

D. none of these

Answer: B

Watch Video Solution

35. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, $\overrightarrow{a} \neq 0$, then

$$A. \stackrel{\longrightarrow}{=} \stackrel{\rightarrow}{c} B. \left(\stackrel{\rightarrow}{b} - \stackrel{\rightarrow}{c} \right) | | \stackrel{\rightarrow}{a} G. \stackrel{\rightarrow}{b} - \stackrel{\rightarrow}{c} \perp \stackrel{\rightarrow}{a}$$

D. none of these

Watch Video Solution

36. If
$$\overrightarrow{p} = \overrightarrow{a} - \overrightarrow{b}$$
, $\overrightarrow{q} = \overrightarrow{a} + \overrightarrow{b}$ and $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 2$, then the value of $\left|\overrightarrow{p} \times \overrightarrow{q}\right|$ is equal to

A.
$$2\sqrt{16 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2}$$

B. $2\sqrt{4 - \left(\overrightarrow{a} \cdot Vecb\right)^2}$
C. $\sqrt{16 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2}$
D. $\sqrt{4 - \left(\overrightarrow{a} \cdot Vecb\right)^2}$

37. Let $a = \hat{I} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and c be a unit vector \perp to \overrightarrow{a} and coplanar with \overrightarrow{a} and \overrightarrow{b} , then it is given by

A.
$$rac{1}{\sqrt{6}} \Big(2 \hat{i} - \hat{j} + \hat{k} \Big)$$

B. $rac{1}{\sqrt{2}} \Big(\hat{j} + \hat{k} \Big)$
C. $-rac{1}{\sqrt{6}} \Big(\hat{i} - 2 \hat{j} - \hat{k} \Big)$
D. $rac{1}{2} \Big(\hat{j} - \hat{k} \Big)$

View Text Solution

B. -1

C. 0

D. none of these

Answer: D

Watch Video Solution

39. If f (x)
$$=$$
 $\left(\frac{x^2 + 5x + 3^x}{x^2 + x + 2} \right)$ then $\lim_{x \to \infty} f(x)$ is equal to
A. e^4
B. e^3
C. e^2
D. 2^4

40. If
$$y = \cos^{-1}\left(\frac{2\cos x - 3\sin x}{\sqrt{13}}\right)$$
, $then \frac{dy}{dx}$ is

A. zero

B. constant =1

C. constant $\
eq 1$

D. none of these

Answer: B

41. The derivative of
$$\sec^{-1}\left(rac{1}{2x^2-1}
ight)$$
 with respect to $\sqrt{1-x^2}atx=rac{1}{2}$ is

A. 2

B. 4

C. 1

D. -2

Answer: B

Watch Video Solution

42. The abscissa of the point on the curve $ay^2 = x^3$, the normal at which cuts off equal intercepts from the coordinate axes is

A. 2a/9B. 4a/9

 $\mathsf{C.}-4a\,/\,9$

D.
$$-2a/9$$

Answer: B

Watch Video Solution

43. If
$$y = a \log x + bx^2 + x$$
 has its extremum value at $x = -1$ and $x = 2$, then

A.
$$a=2, b=-1$$

B. $a=2, b=-rac{1}{2}$
C. $a=-rac{1}{2}, b=rac{1}{2}$

D. none of these

Answer: B

44.
$$\int rac{1}{(1+x^2)\sqrt{1-x^2}} dx$$
 is equal to

A.
$$\frac{1}{2} \tan^{-1} \left(\frac{\sqrt{2}x}{\sqrt{1+x^2}} \right) + c$$

B.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{2}sx}{\sqrt{1+x^2}} \right) + c$$

C.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{2}sx}{\sqrt{-x^2}} \right) + c$$

D. none of these

Answer: C

45.
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$
 is equal to

A.
$$2\sqrt{\tan x + C}$$

$$\mathsf{B.}\,2\sqrt{\cot x}+C$$

$$\mathsf{C}.\frac{\sqrt{\tan x}}{2}+C$$

D. nonwe of these

Answer: A

Watch Video Solution

46. The value of the integral
$$\int\limits_{0}^{1} rac{1}{x^2+2x\coslpha+1} dx$$
 is equal to

A. $\sin lpha$

B. $\alpha \sin \alpha$

 $C. \alpha / \sin \alpha$

D. $lpha \,/ \, 2 \sin lpha$

Answer: D

47. The order and degree of the differential equation

 $ho=rac{\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{3/2}}{rac{d^2y}{dx^2}}$ are respectively

A. 2, 2

B. 2, 3

C. 2, 1

D. none of these

48. The equation of a curve passing through (2,7/2) and having gradient $1-rac{1}{x^2}at(x,y)$ is

A.
$$y=x^2+x+1$$

B.
$$xy = x^2 + x + 1$$

C. xy = x + 1

D. none of these

Answer: B

49. In the group $G = \{2, 4, 6, 8\}$ under multiplication modulo 10,

the identy element is

B. 8

C. 4

D. 2

Answer: A

50. If a, b are positive integers, define $a^*b = \alpha$ where $ab \equiv \alpha$ (modulo 7), with this * operation, the inverse of 3 in group G = { 1, 2, 3, 4, 5, 6}

A. 3

B. 1

C. 5

D. 4

Answer: C

51. Z is the set of integers, (Z, **) is a group with a ** b

 $a_{a}=1+b+1,\,,b,\,\,\in\,\,$ G. Then inverse of a is

A. -a

B.a + 1

 $\mathsf{C}.-2-a$

D. none of these

Answer: C

View Text Solution

52. Let G denote the set of all $n \times n$ non-singular matrices with rational numbers as entries. Then under multiplication

A. G is a subgroup

B. G is a finite abelian group

C. G is an infinite, non-abelian group

D. G is infinite, abelian

Answer: C

View Text Solution

53. In the group G = $\{1, 2, 3, 4, 5\}$ under addition modulo 6,

 $\left(3+5^{-1}
ight)^{-1}$ is

B. 1

C. 2

D. 3

Answer: C

54. If $(G, {}^{*})$ is a group such that $a^{*}b = b^{*}a$ for two element a and b, then

A.
$$a^{-1*}b^{-1} = b^{-1*}a^{-1}$$

B.
$$a^*b=a^{-1*}b^{-1}$$

C.
$$a^{-1*}b = a^*b^{-1}$$

D. none of these

Answer: A

55. The value of $heta(0 < heta < 360^\circ)$ satisfying cosec heta + 2 = 0 are

A. 210° , 300°

B. 240° , 300°

C. 210° , 240°

D. 210° , 330°

Answer: D

56. If sin A = sin B, cos A = cos B, then the value of A in terms of B

is

A. $n\pi + B$

- B. $n\pi + (-1)^n B$
- $\mathsf{C.}\,2n\pi+B$
- D. $2n\pi B$

Answer: C

Watch Video Solution

57. If $(1+ an heta)(1+ an\phi)=2,\,$ then $heta+\phi=$

A. 30°

B. 45°

 ${\rm C.\,60^{\,\circ}}$

D. 75°

Answer: B

Watch Video Solution

58.
$$an^{-1}igg(rac{x}{y}igg) - an^{-1}igg(rac{x-y}{x+y}igg)$$
 is

A. $\pi/2$

B. $\pi/3$

C. $\pi/4$

D. $\pi/4 \,\, {
m or} \,\, - 3\pi/4$

Answer: C

$$59. \cot\left[\cos^{-1}\left(\frac{7}{25}\right)\right] =$$

A. 25/24

B. 25/7

C. 24/25

D. none of these

Answer: D

Watch Video Solution

60. If $4\sin^{-1}x + \cos^{-1}x = \pi$, then x equals

A. 1/2

B. $\sqrt{3}/2$

 $\mathsf{C.}-1/2$

D. none of these

Answer: A

Watch Video Solution