

India's Number 1 Education App

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER 3

Mathematics

1. If the equation $x^2+2(k+3)x+12k=0$ has equal roots, then k=

A. 1 or 3

B. 3

C. 2 or 3

D. 2

Answer: B

was all wilders of least and

2. If
$$f\!:\!R o R, f(x)=rac{3x-5}{4}$$
 , then $f^{-1}(x)$ is equal to

A.
$$\frac{5x-3}{4}$$

$$B. \frac{3x+5}{4}$$

c.
$$\frac{4x-5}{3}$$

D. $\frac{4x + 5}{3}$

Answer: D

View Text Solution

3. If the sum of $1^2+\left(1^2+2^2\right)\ldots m$ terms $=rac{m(m+1)}{6}k$ then k is equal to

A.
$$(m+2)$$

$$\mathsf{B.}\;\frac{2m+1}{2}$$

C.
$$\frac{(m+1)(m+2)}{2}$$
D. $\frac{m+2}{2}$

Answer: C

View Text Solution

4. The value of $\sqrt{\frac{1}{3}} \left(\sqrt{27} + \sqrt{15} \right)$ is

A.
$$\pm 3^{-1/4} \left(\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}} \right)$$

B.
$$\pm\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)$$
C. $\pm2^{1/4}\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)$

D.
$$\pm 3^{-1/4} \left(\sqrt{\frac{3}{2}} + \sqrt{\frac{1}{2}}\right)$$

Answer: A

5. The sum of all numbers formed taking all the digits $\{1,2,3,4\}$ is

A. 151338

B. 155518

C. 153318

D. 153138

Answer: C

- **6.** In the expansion of $(1+x)^{40}$, the coefficient of $(3r+1)^{th}$ term is equal to coefficient of $(7r+11)^{th}$ term, then r=
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: C

View Text Solution

- **7.** The coefficient of x^{10} in $\frac{x}{(x-2)(x-1)}$ is
 - A. 15/16
 - $\mathsf{B.}\,65\,/\,1296$
 - C. 16/15
 - D. 56/65

Answer: A

- **8.** If $A = \left[egin{array}{cc} 4 & 2 \ -1 & 1 \end{array}
 ight]$, the (2I-A)(A-3I) is
 - A. 1

$$B. - 1$$

 $\mathsf{C}.\,O_2$

D. A^{-1}

Answer: C

View Text Solution

9. If $\begin{vmatrix} x-4 & 2x-6 & 3x-8 \\ x-8 & 2x-18 & 3x-32 \\ x-16 & 2x-54 & 3x-128 \end{vmatrix} = 0$, then $x^2 =$

A. 16

B. 36

C. 49

D. 64

Answer: D

10. If
$$\begin{bmatrix} 1 & x & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = 0$$
 then $x =$

A. 2 or 14

B.
$$-2$$
 or $x=\,-1/2$

$$\mathrm{D.}-2 \ \mathrm{or} \ 16.$$

Answer: B

Watch Video Solution

11. The value of $\lim_{x \to 0} e^{-4} \left(\frac{1-x}{1-x} \right)^{1/x}$ is equal to

A. e^2

$$\mathsf{B.}\,e^4$$

D. e^{-4}

Answer: C

View Text Solution

- **12.** $\lim_{x \to 0} \frac{5^x + 4^x 2^x 1}{5x}$ is equal to
 - A. $\log 10/5$
 - B. 1
 - **C**. 0
 - D. logx.

Answer: A

13.
$$f(x) = rac{2x^2 + 3}{5}$$
 , for $\infty < x \le 1$

$$=6-5x$$
, for $1 < x < 3$

$$=x-3$$
, for $3\leq x<8$, then

A.
$$f$$
 is continuous at $x=1,\,x=3$

B.
$$f$$
 is discontinuous at $x=1, x=3$

C.
$$f$$
 is continuous at $x=1$, discontinuous at $x=3$

D.
$$f$$
 is discontinuous at $x=1$, continuous at $x=6$.

Answer: C

14.
$$rac{d}{dx} \Biggl[2\cot^{-1} \Biggl(rac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \Biggr) \Biggr] =$$

C. -1/2

D.1/2

Answer: A

Watch Video Solution

15. If $x^{\log x} = y^x$ and $\frac{dy}{dx} = \frac{2y \log x + k \log y}{x^2}$, then k =

A. -xy

B.2x

 $\mathsf{C.} - 2x$

D. none of these

Answer: D

16. The value of differentiation of
$$an^{-1}x$$
 with respect to $an^{-1}\left(rac{\sqrt{1+x^2}-1}{x}
ight)$ is k . Then $k/2$ is

A.
$$1/2$$

B. 1

C. 2

D. - 1

Answer: B

Watch Video Solution

17. The sub normals at any point of the curve $y=x^n$ is constant. Then

n =

A. 1

B.1/2

C. 0.75
D1
Answer: B
Watch Video Solution
18. The percentage increase in the volume of the cube when its side
increases 1/4 % is
A. 0.25
B. O.5

C. 0.75

D. 1

Answer: C

19. The period T and length l are increasing at the same rate is

$$T=2\pi\sqrt{l/g}$$
. Then the length l in terms of π and ${\sf g}$ is

A.
$$\pi/g$$

B.
$$\pi g$$

C.
$$\pi g^2$$

D.
$$\pi^2/g$$

Answer: D

View Text Solution

 $\textbf{20.} \int \frac{dt}{\left(e^t + e^{-t}\right)^2} =$

A.
$$\frac{1}{4}$$
 sech t

B.
$$\frac{1}{4}$$
 tanh t

C.
$$\frac{1}{4}$$
 coth t

D.
$$\frac{1}{4} \sinh t$$

Answer: B

View Text Solution

21.
$$\int\!\!e^tigg(rac{t}{1+t^2}igg)dt=$$

A.
$$\dfrac{e^t}{1+t}$$

B.
$$\frac{e^t}{1+t^2}$$

C.
$$\frac{-1}{1+t^2}$$

D.
$$\frac{-e^t}{1+t}$$

Answer: A

View Text Solution

22. $\int 9^{9^{9^x}} dx$ is equal to

A.
$$\frac{9^{9^{9^x}}}{\log 9}$$

B.
$$\frac{9^{9^x}}{(\log 9)^2}$$
C. $\frac{9^{9^{9^x}}}{(\log x)^2}$
D. $\frac{9^{9^{9^x}}}{(\log 9)^3}$

D.
$$\frac{9^{9^{9^n}}}{(\log 9)^5}$$

Answer: D

View Text Solution

23.
$$\int \!\! rac{dx}{\cos(x-a)\cos(x-b)} = rac{1}{p}\!\log q$$
, then $(p,q)=$

A.
$$\sin(b-a)\frac{\sec(x-a)}{\sec(x-b)}$$

$$\mathsf{B.}\sin(a-b)\frac{\cos(x-a)}{\cos(x-b)}$$

$$\mathsf{C.}\sin(b+a)\frac{\sec(x-a)}{\sec(x-b)}$$

$$\mathsf{D.}\sin(a-b)\frac{\sec(x-a)}{\sec(x-b)}$$

Answer: A

24. Area of the region bounded by the
$$y=\sqrt{5-x^2}$$
 and $y=|x-1|$ is

curves

A.
$$\frac{5\pi-2}{4}$$

B.
$$\frac{5\pi+2}{4}$$

C.
$$\frac{3\pi-2}{4}$$
 $3\pi+2$

D.
$$\frac{3\pi+2}{4}$$

Answer: A

25.
$$\lim_{x o\infty}~\sum_{r=1}^{n-1}\sqrt{rac{n+r}{n^2(n-r)}}=$$

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi+1}{2}$$

C.
$$\frac{\pi+2}{2}$$

D.
$$\frac{\pi-2}{2}$$

Answer: C

View Text Solution

- **26.** If $ar{a}=\hat{3i}+\hat{2j}$, $ar{b}=\hat{2i}+\hat{2j}+\hat{k}$, $ar{c}=\hat{5i}-\hat{j}+\hat{k}$ then the unit vector $ar{a} + ar{b} + ar{c}$ 1 in opposite direction is
 - A. Î
 - $\mathsf{B.-\hat{\it i}}$
 - $C. \hat{j}$
 - D. $\hat{\ j}$

Answer: C

27. The projection of the vector $\hat{i}-\hat{j}+\hat{k}$ on the vector $\hat{4i4j}+\hat{7k}$ is

B. 19/9

D.1/9

C.7/3

Answer: B

Watch Video Solution

28. If
$$heta$$
 is the angle between the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$, then $heta =$

A.
$$\pi/2$$

B. $\pi/3$

C.
$$\pi/4$$

D. $\pi/6$

$$\pi/6$$

Answer: B

View Text Solution

29. The non-zero vectors $ar a, \, ar b, \, ar c$ holds $\left| \left(ar a, \, ar b \right), \, ar c \right| = |ar a| \left| ar b \right| \mid ar c$ if

A.
$$ar{a}$$
. $ar{b}=$, $ar{b}$. $ar{c}=0$

B.
$$ar{b}$$
. $ar{c}=0$, $ar{c}$. $ar{a}=0$

C.
$$\bar{c}$$
. $\bar{a}=0$, \bar{a} . $\bar{b}=0$

D.
$$ar{a}$$
. $ar{b}=ar{b}$. $ar{c}=ar{c}$. $ar{a}=0$.

Answer: D

Watch Video Solution

30. If $\bar{a}=\hat{i}+\hat{j}-\hat{k}, \bar{b}=\hat{2i}+\hat{j}+\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}+\hat{j}+\hat{k}$ then the volume of tetrahedron is

- A. 1 sq. unit
- B. 2 sq. unit
- C. 3 cubic unit
- D. 4 cubic unit.

Answer: A

View Text Solution

- **31.** The value of $\dfrac{\sec x + \tan x 1}{\tan x \sec x + 1}$, if $\cos ec2x = 2$ is
 - A. 0

B. 1

- C. 1
- D. 3

Answer: D

32. The value of $\cos ec20^{\circ}$. $\cos ec40^{\circ}$. $\cos ec60^{\circ}$. $\cos ec80^{\circ}$ is

 $\mathsf{A.}\,3\,/\,16$

 $\mathsf{B.}\,16\,/\,3$

 $\mathsf{C.}\,5/16$

D. 16/5

Answer: B

View Text Solution

33. If $\cot A \perp B \equiv 2$, $\cos A \cos B = 2/3$, then $\cos(A+B) =$

A. 1/3

 $\mathsf{B.}\,2/3$

C.1/5

Answer: A

View Text Solution

- **34.** The value of $an\Bigl(2 an^{-1}.\ rac{1}{5}-rac{\pi}{4}\Bigr)$ is equal to
 - A. -5/12
 - $\mathsf{B.}\,5\,/\,12$
 - C. 7/17
 - D. 7/17

Answer: C

Watch Video Solution

35. In a triangle $ABC, \sum r\cos A/2 =$

A.
$$\Delta$$

- B.2S
- $\mathsf{C}.\,S$
- D.3S

Answer: C

View Text Solution

- **36.** In a triangle $ABC, \, rac{1}{bc} + rac{1}{ca} + rac{1}{ab} = rac{k}{2}$, then k=
 - A. R
 - B. r
 - $\mathsf{D.}\,1/\mathit{Rr}$

 $\mathsf{C}.\,Rr$

Answer: D

37. Square root of -3-4i is

A.
$$\pm (1 + 2i)$$

B.
$$\pm (1-2i)$$

$$\mathsf{C.}\pm(\,-1-2i)$$

$$D.\pm(2+i)$$

Answer: B

Watch Video Solution

38. Find the value of log $(-\theta)$ and hence the value of $\log(-10\theta)$.

A. πi

 $\mathrm{B.}\,1+\pi i$

 $\mathsf{C.}\,1-\pi i$

$$\mathsf{D.} - 1 - \pi i$$

Answer: B

View Text Solution

- 39. The area of a triangle fanned by the complex numbers
- $2+I,\; -2-I, 1+i$ in the Argand diagram is
 - A. 1 square units
 - B. 2 square units
 - C. 3 square units
 - D. 1/2 square units

Answer: A

40. If 3x+2y-1=0 is a tangent to a hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$, then the point of contact is

A.
$$(24, 9)$$

B.
$$(-24, 9)$$

C.
$$(48, -18)$$

Answer: C

41. The centre, radius of the circle
$$r^2 - 8r\cos\left(\theta - \frac{\pi}{3}\right) + 12 = 0$$
 is

A.
$$\left[\left(4, \frac{\pi}{3}\right), 2\right]$$

B.
$$\left[\left(2, \frac{\pi}{3}\right), 2\right]$$

$$\mathsf{C.}\left[\left(4,\frac{\pi}{3}\right),1\right]$$

D.
$$\left[\left(4, \frac{\pi}{3}\right), 3\right]$$

Answer: A

Watch Video Solution

42. The line x-y+k=0 is normal to the ellipse $\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$, then k =

A. 5

C.2/5

B.5/7

D.5/2

Answer: A

43. The equation of the circle whose radius is 3 and touches internally with another circle $x^2+y^2-2x+4y-6=0$ at (-2,2) is

with another circle
$$x^2+y^2-2x+4y-6=0$$
 at $(-2,2)$ is

A.
$$\left(x+rac{1}{5}
ight)^2+\left(y+rac{2}{5}
ight)^2=9$$
B. $\left(x-rac{1}{5}
ight)^2+\left(y-rac{2}{5}
ight)^2=9$

B.
$$\left(x-\frac{1}{5}\right)+\left(y-\frac{2}{5}\right)=9$$
C. $\left(x+\frac{1}{5}\right)^2+\left(y-\frac{2}{5}\right)^2=9$
D. $\left(x-\frac{1}{5}\right)^2+\left(y+\frac{2}{5}\right)^2=9$

Answer: B

The

44.

is

radical

 $x^2 + y^2 + 4x + 7 = 0, 2x^2 + 2y^2 + 3x + 5y + 9 = 0$ and $x^2 + y^2 + y = 0$

centre

the

circle

of

A.
$$(-2, -1)$$

B. (-2, 1)

C.
$$(2, -1)$$

D.(2,1)

Answer: A

View Text Solution

45. The angles between the circle $x^2 + y^2 - 2x - 6y - 39 = 0$ and $x^2 + y^2 + 10x - 4y + 20 = 0$ is

A.
$$\pi/6$$

B.
$$\pi/2$$

C.
$$2\pi/3$$

D.
$$2\pi/6$$

Answer: C

46. The equation to pair of lines perpendicular to $x^2 + 3xy + 2y^2 = 0$ and passing through (-1, -1) is

A.
$$x^2 + 3xy + 2y^2 - x + y = 0$$

$$B. x^2 - 3xy + 2y^2 - x + y = 0$$

C.
$$x^2 - 3xy - 2y^2 + x - y = 0$$

D.
$$x^2 - 3xy + 2y^2 + x + y = 0$$

Answer: B

View Text Solution

47. The line x+y-2=0 cuts the axes at $A \, {
m and} \, B$, then the incentre of triangle AOB is

A.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$\mathrm{B.}\left(\frac{1}{\sqrt{2}},\,\frac{1}{\sqrt{2}}\right)$$

C.
$$\left(\frac{2}{2+\sqrt{2}}, \frac{2}{2+\sqrt{2}}\right)$$

Answer: C

Watch Video Solution

48. A and B are two variable points on x and y axes such that OA+OB=1/2. Then the locus of the foot of the perpendicular from the origin on the line AB is

A.
$$2ig(x^2+y^2ig)(x+y)-xy=0$$

B.
$$2(x^2 + y^2)(x + y) + xy = 0$$

C.
$$2(x^2 + y^2)(x + y) - 2xy = 0$$

D.
$$2(x^2 + y^2)(x + y) + 2xy = 0$$

Answer: B

49. If $p,\,q,\,r$ are in A. P. then the line px+qy+r=0 passes through a fixed point

A.
$$(1, 2)$$

B.
$$(-1, 2)$$

C.
$$(1, -2)$$

D.
$$(-1, -2)$$

Answer: C

50. If the axes are rotated through an angles 30° in the anticlockwise direction and the point is $\left(4,\ -2\sqrt{3}\right)$ in the new system, the formal point is

A.
$$(2, 2\sqrt{3})$$

B.
$$\left(5,\sqrt{3}\right)$$

C.
$$(\sqrt{3},3)$$

D.
$$(\sqrt{3}, -5)$$

Answer: D

Watch Video Solution

The locus of a point which is equidistant from 51.

$$(a + b, a - b)$$
 and $(a - b, a + b)$ is

A.
$$x + y = 0$$

B.
$$x - y = 0$$

$$\mathsf{C.}\,x^2-y^2=0$$

D.
$$x^2 + y^2 = 0$$

Answer: B

52. If (5, 1) is a circumcentre and (7, 5) is the centroid of a triangle, then its orthocentre is

- A. (3, -3)
- B. (-3, 3)
- C. (4, -4)
- D. (-2, 2).

Answer: B

- **53.** In a triangle ABC, D(1,2) and F(2,3) are the mid points of BC and AB respectively. If C is (4,4) then area of the triangle ABC is
 - A. 1 sq. units
 - B. 2 sq. units
 - C. 4 sq. units

D. 6 sq. units

Answer: B

View Text Solution

- **54.** The angle between the asymptotes of the hyperbola $2x^2-4y^2=1$ is
 - A. $\pi/2$
 - B. $\pi/3$
 - C. $\pi/4$
 - D. $\pi/6$

Answer: A

55. The equation to the common tangent to the circle $x^2+y^2=32$ and the parabola $y^2=32x$ is

touching

both

the

lines

A.
$$x - y + 8 = 0$$

B.
$$x + y + 8 = 0$$

$$\mathsf{C.}\,x=8y$$

D.
$$x + 8y = 0$$

Answer: A

- **56.** The radius of any circle 3x + 4y 1 = 0 and 6x + 8y + 1 = 0 is
 - - A. 3/10
 - B. 3/20
 - $\mathsf{C.}\,1/5$

Answer: B

Watch Video Solution

57. Which of the following is false?

A. |m|n divides |m+n|

B. If n is +ve integer, then $(\lfloor n
brace^{n+1}$ divides $\lfloor n^2
brace$

C. $2,\,6,\,10.\ldots(4n-6)(4n-2)$ is divided by $\lfloor n$

D. The product of r integers is always divisible by $\lfloor r.$

Answer: D

D. 7

Answer: C

Watch Video Solution

A. $98 \equiv -7 \pmod{3}$

 $\mathsf{C.}\,123 \equiv -4 \, \mathsf{(mod 7)}$

D. $240 \equiv 9 \pmod{11}$

Watch Video Solution

Answer: C

B. $67 \equiv 2 \pmod{5}$

59. Which of the following statements is false?

A. 3

B. 11

C. 14

60. The negation of the proposition "if a quadrilateral is a square, then it is a rhombus" is

- A. If a quadrilateral is not a square, then it is a rhombus
- B. If a quadrilateral is a square, then it is not a rhombus
- C. A quadrilateral is a square and it is not a rhombus
- D. A quadrilateral is not a square and it is a rhombus

Answer: C

