©゙doubtnut

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER 5

Mathematics

1. The median $A D$ of a triangle $A B C$ is perpendicular to $A B$.

Which one of the following relations is correct ?
A. $\tan C+2 \tan A=0$
B. $\tan A+2 \tan B=0$
C. $\tan B+2 \tan A=0$
D. None of these

Answer: B

- Watch Video Solution

2. if $\tan \theta+\tan 2 \theta=\sqrt{3} \tan \theta \tan 2 \theta=\sqrt{3}$, then
A. $\theta=(6 n+1) \cdot \pi / 18 \forall n \in 1$
B. $\theta=(6 n+1) . \pi / 9, \forall \in I$
C. $\theta=(3 n+1) . \pi / 9, \forall \in I$
D. None of these

- Watch Video Solution

3. If $f(x)=\sin ^{-1} \sqrt{x-4}$, find the range of x .
A. $4 \leq x \leq 5$
B. $-5 \leq x \leq-4$
C. $-1 \leq x \leq 1$
D. $0 \leq x \leq 1$

Answer: A

D Watch Video Solution
4. Solve the following equation for x, y and z :
$\log _{2} x+\log _{4} y+\log _{4} z=2$
$\log _{3} y+\log _{9} z+\log _{9} x=2$
$\log _{4} z+\log _{16} x+\log _{16} y=2$
A. $x=2 / 3, y=27 / 8, z=32 / 3$
B. $x=32 / 3, y=27 / 8, z=2 / 3$
C. $x=27 / 8, y=27 / 8, z=27 / 8$
D. $x=32 / 3, y=27 / 8, z=27 / 8$

Answer: A

- View Text Solution

5. if $f(x)=\cos (\log x)$ then the value of $f(x) f(y)-(1 / 2)[f(x / y)+f(x y)]$ is
A. x^{2}
B. 0
C. $x^{2}+2 x+1$
D. None of these

Answer: B

- Watch Video Solution

6. If $\bar{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \hat{b}=b_{1} \hat{i}+b_{2} \hat{k} \quad$ and
$\bar{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are non-zero vectors such that \bar{c} is a
unit vector perpendicular to both the vectors \vec{a} and \bar{b} and angle between \bar{a}, \bar{b} is $\pi / 6$ then, $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}=$
A. 1
B. 0
C. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
D. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

Answer: D

- Watch Video Solution

7. The value of the integral $\int_{0}^{\infty} \log \left(x+\frac{1}{x}\right) \frac{d x}{x^{2}+1}$ is
A. $\pi \log 2$
B. $2 \log \pi$
C. $4 \log \pi$
D. $\pi^{2} \log 13$

Answer: A

(D) Watch Video Solution

8. Domain of the function .
$f(x)=\left[\log _{10}\left(\frac{5 x-x^{2}}{4}\right)\right]^{\frac{1}{2}}$ is
A. $-\infty \leq x \leq \infty$
B. $1 \leq x \leq 4$
C. $4 \leq x \leq 16$
D. $-1 \leq x \leq 1$

Answer: B

- Watch Video Solution

$$
\text { 9. If } \bar{p}+\bar{q}+\bar{r}=\overline{0},|\bar{p}|=3,|\bar{q}|=5,|\bar{r}|=7 \text {. Then angle }
$$

between \bar{p} and \bar{q} is
A. $\pi / 16$
B. $2 \pi / 3$
C. $\pi / 6$
D. $\pi / 3$

Answer: D
10. Let $a_{n}=\int_{0}^{\pi / 2} \frac{1-\cos 2 n \pi}{1-\cos 2 \pi} d x$

The value of $\left|\begin{array}{lll}\pi / 2 & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|=$
A. 0
B. 1
C. 3
D. None of these

Answer: A
11. If a and b are roots of $x^{2}-p(x+1)-c=0$ then
$(1+a)(1+b)$ and $\frac{a^{2}+2 a+1}{a^{2}+2 a+c}+\frac{b^{2}+2 b+1}{b^{2}+2 b+c}$ are,
A. 1-c, 1
B. 1-c, 0
C. $1+\mathrm{c}, 1$
D. $1+c, 0$

Answer: A

(Watch Video Solution

12.

$\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{\tan \pi}{4 n}+\frac{\tan (2 \pi)}{4 n}+\frac{\tan (3 \pi)}{4 n}+\ldots .+\frac{\tan (n \pi)}{4 n}\right]$
A. $\frac{2}{\pi} \log 2$
B. $\frac{\pi}{2} \log 2$
C. $\frac{\pi}{2} \frac{\log 1}{2}$
D. $\frac{\pi}{2} \log \frac{1}{2}$

Answer: A

- Watch Video Solution

13. $\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}$ equals
A. $\pi / 2$
B. 0
C. $2 / e$
D. $-e / 2$

Answer: D

- Watch Video Solution

14. $\lim _{x \rightarrow 0}\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)=$
A. exists
B. does not exist
C. zero
D. None of these
15. OX and OY are two coordinate axes. On OY is taken a fixed point P on $O X$ any point Q. On PQ an equilateral triangle is described, its vertex R being on the side of $P Q$ away from O , then the lacus of R will be,
A. straight line
B. circle
C. ellipse
D. parabola

Answer: A

16. The locus of the point of intersection of tangents to the circles $x=a \cos \theta, y=a \sin \theta$ at points whose parametric angle differs by $\pi / 4$ is
A. $3\left(x^{2}+y^{2}\right)=4 a^{2}$
B. $4\left(x^{2}+y^{2}\right)=3 a^{2}$
C. $x^{2}+y^{2}=2(2-\sqrt{2}) a^{2}$
D. None of these

Answer: C
17. The locus of the centre of circle which cuts the circles $x^{2}+y^{2}+4 x-6 y+9=0$
$x^{2}+y^{2}-4 x+6 y+4=0$ orthogonally is
A. $12 x+8 y+5=0$
B. $8 x-12 y+5=0$
C. $5 x-8 y+12=0$
D. None of these

Answer: B
18. The equation of straight line passing through point of intersection of the straight lines $3 x-y+2=0$ and $5 x-2 y+7=0$ and having infinite slpe is
A. $x=2$
B. $x+y=3$
C. $x=3$
D. $y=4$

Answer: C
19. The locus of mid-point of chords of constant length ' $2 l$ ' of the parabola $y^{2}=4 a x$ is
A. $\left(y^{2}-4 a x\right)\left(y^{2}+4 a^{2}\right)+4 a^{2} l^{2}=0$
B. $\left(y^{2}+4 a x\right)\left(y^{2}-4 a^{2}\right)-4 a^{2} l^{2}=0$
C. $\left(y^{2}-4 a x\right)\left(y^{2}-4 a^{2}\right)-4 a^{2} l^{2}=0$
D. None of these

Answer: A

- View Text Solution

20. The equation of tangent at the point $(5,2)$ of a circle is given by $3 x-2 y-11=0$ Therefore the equation of the
circle passing through origin would be

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-23 x-102 y=0 \\
& \text { B. } 11 x^{2}+11 y^{2}-23 x-102 y=0 \\
& \text { C. } 11 x^{2}+11 y^{2}-102 x-23 y=0 \\
& \text { D. } x^{\circ}+y^{2}-102 x-23 y=0
\end{aligned}
$$

Answer: B

- View Text Solution

21. If $\lim _{x \rightarrow 0}\left[\frac{x(1+3 a \cos x)-5 b \sin x}{x^{3}}\right]=1$. The value of a and b will be

$$
\text { A. }-5 / 6,-3 / 10
$$

B. $-10 / 2,-6 / 5$
C. $5 / 6,3 / 10$
D. $10 / 3,6 / 5$

Answer: A

- View Text Solution

22. A point is moving along the parabola $y^{2}=8 x$ at the rate of $2 \mathrm{~m} / \mathrm{s}$. The compoenent velocity parallel to the axis, when it is at the point $(2,4)$ is
A. $\frac{2}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $16 \mathrm{~m} / \mathrm{s}$

Answer: A

(D) Watch Video Solution

23. The summation of the infinite series
$1+\frac{1.3}{6}+\frac{1.3 .5}{6.8}+\ldots . \infty$ of
A. 1
B. 0
C. ∞
D. 4

Answer: D
24. The comples number a+ib whose modulus is unity and $b \neq 0$ can be written in the form where ' r ' is a real number.
A. $a+i b=\frac{r+i}{r-i}$
B. $a+i b=\frac{(r+i)}{(r-i)^{2}}$
C. $a+i b=\frac{(r-i)}{(r+i)^{2}}$
D. $a+i b=\frac{(r+i)}{(r-i)^{2}}$

Answer: A

25. $f(x)=e^{-1 / x^{2}} \sin (1 / x)$ for $x \neq 0$ and $\mathrm{f}(0)=0$.

The function $f(x)$ is
A. differentiable at $x=0$
B. not differentiable at $x=0$
C. insufficient data
D. None of these

Answer: A

D View Text Solution

26. Domain of the function $f(x)=\sqrt{\sin ^{-1}\left(\log _{2} x\right)}$ is
A. $0 \leq x \leq 1$
B. $-1 \leq x \leq 1$
C. $1 \leq x \leq 2$
D. $3 \leq x \leq 4$

Answer: C

D Watch Video Solution

27. The value of the intergal
$\int_{0}^{\pi / 2} \frac{\phi(x)}{\phi(x)+\phi\left(\frac{\pi}{2}-x\right)} d x$ is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 6$

Answer: A

- View Text Solution

28. For positive integers n_{1} and n_{2} the value of the expression

$$
(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i^{5}\right)^{n_{2}}+\left(1+i^{7}\right)^{n_{2}} \text { is a real }
$$ number if and only if

A. $n_{1}-n_{2}=1$
B. $n_{1}-n_{2}=0$
C. $n_{2}-n_{1}=1$
D. n_{1}, n_{2} take any value

- Watch Video Solution

29. For real x , the equation $\left|\frac{x}{x-1}\right|+|x|=\frac{x^{2}}{|x-1|}$ has
A. no solution
B. exactly one solution
C. not more than two solutions
D. infinite number of solutions

Answer: D
30. If $a>0, b>0$ and $c>0$, then both the roots of the equations $a x^{2}+b x+c=0$
A. are real and negative
B. have negative real parts
C. are rational numbers
D. are purely imaginary

Answer: B

- Watch Video Solution

31. If $m+n p_{2}=90$ and $m-n p_{2}=30$, then (m, n) is given by
A. $(7,3)$
B. $(16,8)$
C. $(9,2)$
D. $(8,2)$

Answer: D

(Watch Video Solution

32. If ' P ' is a prime number such that $p \geq 23$ and $n+p$! +1 , then the number of primes in the list $n+1, n+2, \ldots ., n+p-1$ is
A. 0
B. 1
C. 2

D. None of these

Answer: A

- Watch Video Solution

33. If the product of ' n ' positive numbers is unity, then their sum is
A. positive integer
B. divisible by n
C. equal to $n+(1 / n)$
D. never less than n
34. A determinant is chosen at random from a set of all determinants of order 2 with elements 0 or 1 only. The probability that the determinant chosen is non-zero is
A. $3 / 16$
B. $3 / 8$
C. $1 / 4$
D. None of these

Answer: B
35.

$$
\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}} \quad \text { for }
$$

triangle $A B C$ is equal to
A. $\cos ^{2} A$
B. $\sin ^{2} A$
C. $\cos B \cos C$
D. $\sin B \sin C$

Answer: B

Watch Video Solution

36. The value of $\cos \left(\frac{1}{2} \cos ^{-1} \frac{1}{8}\right)$ is equal to
A. $-3 / 4$
B. $3 / 4$
C. $1 / 16$
D. $1 / 4$

Answer: B

- Watch Video Solution

37. If the base of an isosceles triangle is of length '2a' and the length of the altitude droped to the base is h (where $a>0, h>0$), then the distance of each side from the midpoint of the base of the triangle is
A. $\mathrm{h} / 2$
B. a
C. $\sqrt{h^{2}+a^{2}}$
D. $\frac{a h}{\sqrt{h^{2}+a^{2}}}$

Answer: D

(Watch Video Solution

38. $P Q$ is double ordinate of the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ such that OPQ is an equilateral triangle, O being the centre of hyperbola . The eccentricity of the hyperbola satisfies
A. $1<e<2 / \sqrt{3}$
B. $e=2 / \sqrt{3}$
C. $e=\sqrt{3} / 2$
D. $e>2 / \sqrt{3}$

Answer: D

- Watch Video Solution

39. If $\phi(x)=\int_{1 / x}^{\sqrt{x}} \sin \left(t^{2}\right) d t$, then $\phi^{\prime}(1)$ is equal to
A. $\sin 1$
B. $2 \sin 1$
C. $(1 / 2) \sin 1$
D. $(3 / 2) \sin 1$

- Watch Video Solution

40. If $\int \cos e x 2 x d x=f(g(x))+c$, then
A. $f\left(g^{\prime}(x)\right)=(1 / 2) \log \left|\sec ^{2} x\right|$
B. $g\left(f^{\prime}(x)\right)=\tan (1 / 2 x)$
C. Both (a) and (b)
D. none of these

Answer: C

- Watch Video Solution

41. If $y=e^{4 x}+2 e^{-x} \quad$ satisfies the relation $y_{3}+A y_{1}+B y=0$ then
A. $4 A+B+64=0$
B. $A-B+1=0$
C. Both (a) and (b)
D. none of these

Answer: C

- Watch Video Solution

42.

Let
$\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$, and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$
, be three vectors. A vector in the plane of b and c whose projection an a is of magnitude $\sqrt{2 / 3}$ is
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. both are wrong
D. both are correct

Answer: D

- Watch Video Solution

43. One diameter of the circle circumscribing the rectangle

ABCD is $4 y=x+7$. If A and B are the points $(-3,4)$ and
$(5,4)$ respectively , then
A. radius of the circle is $2 \sqrt{5}$
B. one side of the rectangle is double the other
C. area of the rectangle is 32 sq . units.
D. all are correct.

Answer: D

- Watch Video Solution

44. P is a point on the given curve such that the normal at P to the curve meets the axist is ' x ' at G. If the distance of P from the origin is same as its distance from G, then the curve is
A. a circle
B. a rectangle hyperbola
C. Both (a) and (b)
D. none of these

Answer: C

- View Text Solution

45. If $4 a^{2}+9 b^{2}-c^{2}+12 a b=0$, then the family of straight lines $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is concurrent at
A. $(2,3)$
B. $(-2,-3)$
C. Both (a) and (b)
D. none of these

- Watch Video Solution

46. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ and $S\left(x_{4}, y_{4}\right)$ then
A. $x_{1}+x_{2}+x_{3}+x_{4}=0$
B. $x_{1} x_{2} x_{3} x_{4}=0$
C. $y_{1}+y_{2}+y_{3}+y_{4}=0$
D. all the correct

Answer: D
47. Let $a=(1 / 3)(-\hat{i}+2 \hat{j}+2 \hat{k})$, then
A. a is a unit vector
B. makes acute angles with axis of y and z
C. is perpendicular to $\mathrm{b}=2 \hat{i}-2 \hat{j}+3 \hat{k}$
D. all are correct.

Answer: D

- View Text Solution

48. $F(X)=\left\{\begin{array}{ll}|x-2|+a & \text { for } \quad x<2 \\ b-|x-2| & \text { for } \quad x \geq 2\end{array}\right\}$ then
A. f is not differentiable at $x=2$ for all real values of a, b
B. $R f^{\prime}(2)=1$
C. $L f^{\prime}(2)=1$
D. all are correct.

Answer: D

- View Text Solution

49. The conic given by $y^{2}+8 x-12 y+20=0$
A. is a parabola
B. has vertex at $(2,6)$
C. has latus rectum equal to 8
D. all are correct.

(Watch Video Solution

50. The number of solutions of $1+\sin ^{6} x=\cos x$, in the interval $0 \leq x \leq 2 \pi$, is
A. 3
B. 0
C. 1
D. 2

Answer: D
51. a, b, c are the lengths of the sides of a non-degenerate triangle, If $k=\frac{a^{2}+b^{2}+c^{2}}{b c+c a+a b}$, then
A. $k<1$
B. $k>2$
C. $1 \leq k \leq 2$
D. $1 \leq k<2$

Answer: D

- Watch Video Solution

52. $k \neq-1$ is a constant. The value of $\lim _{n \rightarrow \infty} \frac{1^{k}+2^{k}+\ldots+n^{k}}{k\left(n^{k+1}\right)}$ is
A. 0
B. $k /(k+1)$
C. $1 /(k+1)^{2}$
D. None of these

Answer: A

- Watch Video Solution

53. $\mathrm{P}(\mathrm{x})$ is a polynomial satisfying $P(x+3 / 20)=P(x)$, for all x. If $P(5)=8$, then $P(8)$ equals
A. 5
B. $19 / 2$
C. 8
D. None of these

Answer: C

- View Text Solution

54. The unit's digit of $1^{2}+2^{2}+\ldots .+n^{2}$ is 5 . The unit's digit of $1^{10}+2^{10}+\ldots+n^{10}$ is
A. 1
B. 3
C. 7
D. 5
55. The least +ve remainder of division of $100 \times 128 \times 37$ by 6 is
A. 8
B. 2
C. 3
D. 4

Answer: B
(D) Watch Video Solution
56. If $(3-\mathrm{x}) \equiv(2 x-5)(\bmod 4)$ then one of the values of x is
A. 3
B. 4
C. 18
D. 5

Answer: B

- Watch Video Solution

57. Given two integers a and b where $a>b$, there exist unequal integers q and r such that $b=q a+r$ where
$0 \leq r<a$.This is known as
A. euclid's algorithm
B. division algroithm
C. archimedian property
D. none of these

Answer: B

- Watch Video Solution

58. Divisibility by non-zero integers is
A. reflexive and symmetric
B. reflexive and transitive
C. transitive and symmetric
D. none of these

Answer: B

- View Text Solution

59. $P \wedge(q \wedge r)$ is logically equivalent to
A. $p \vee(q \wedge r)$
B. $(p \wedge q) \wedge r$
C. $(p \vee q) \vee r$
D. $p \rightarrow(q \wedge r)$
60. Let p : It is hot
$\mathrm{q}:$ He wants water.

Then the verbal meaning of $p \rightarrow q$ is
A. it is hot or he wants water
B. it is hot and he wants water
C. if it is hot, then he want s water
D. if and only if it is hot he wants water

Answer: C

