

MATHS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER 5

Mathematics

1. The median AD of a triangle ABC is perpendicular to AB.

Which one of the following relations is correct ?

A. tan C + 2tan A =0

 $\mathsf{B}.\tan A+2\tan B=0$

 $\mathsf{C}.\tan B+2\tan A=0$

D. None of these

Answer: B

Watch Video Solution

2. if $an heta + an 2 heta = \sqrt{3} an heta an 2 heta = \sqrt{3}$, then

A.
$$heta=(6n+1).$$
 $\pi/18\,orall\,n\in 1$

B.
$$heta=(6n+1).~\pi/9,~orall~\in I$$

$$\mathsf{C}.\, heta=(3n+1).\,\pi/9,\,orall\,\in I$$

D. None of these

Answer: C

3. If
$$f(x) = \sin^{-1} \sqrt{x-4}$$
 , find the range of x .

A.
$$4 \leq x \leq 5$$

$$\mathsf{B.}-5 \leq x \leq -4$$

C.
$$-1 \leq x \leq 1$$

$$\mathsf{D}.\, 0 \leq x \leq 1$$

Answer: A

4. Solve the following equation for x , y and z :

$$\log_2 x + \log_4 y + \log_4 z = 2$$

 $\log_3 y + \log_9 z + \log_9 x = 2$
 $\log_4 z + \log_{16} x + \log_{16} y = 2$
A. $x = 2/3, y = 27/8, z = 32/3$
B. $x = 32/3, y = 27/8, z = 2/3$
C. $x = 27/8, y = 27/8, z = 27/8$
D. $x = 32/3, y = 27/8, z = 27/8$

Answer: A

View Text Solution

5. if $f(x) = \cos(\log x)$ then the value of f(x)f(y) - (1/2)[f(x/y) + f(xy)] is

A. x^2

B. 0

 $C. x^2 + 2x + 1$

D. None of these

Answer: B

Watch Video Solution

6. If
$$ar{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \, \hat{b} = b_1 \hat{i} + b_2 \hat{k}$$
 and

 $ar{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$ are non-zero vectors such that $ar{c}$ is a

unit vector perpendicular to both the vectors \overrightarrow{a} and \overline{b} and

angle between
$$\bar{a}, \bar{b}$$
 is $\pi/6$ then, $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ =

A. 1

B. 0

C.
$$rac{3}{4}ig(a_1^2+a_2^2+a_3^2ig)ig(b_1^2+b_2^2+b_3^2ig)$$

D. $rac{1}{4}ig(a_1^2+a_2^2+a_3^2ig)ig(b_1^2+b_2^2+b_3^2ig)$

Answer: D

Watch Video Solution

7. The value of the integral
$$\int_0^\infty \log \left(x+rac{1}{x}
ight) rac{dx}{x^2+1}$$
 is

A. $\pi \log 2$

 $\mathsf{B.}\,2\log\pi$

 $\mathsf{C.}4\log\pi$

D. $\pi^2 \log 13$

Answer: A

Watch Video Solution

8. Domain of the function .

$$f(x)=\left[\log_{10}\!\left(rac{5x-x^2}{4}
ight)
ight]^{rac{1}{2}}$$
 is

A.
$$-\infty \leq x \leq \infty$$

B. $1 \leq x \leq 4$

 $\mathsf{C.4} \leq x \leq 16$

$$\mathsf{D}.-1 \leq x \leq 1$$

Answer: B

Watch Video Solution

9. If
$$ar{p}+ar{q}+ar{r}=ar{0}, |ar{p}|=3, |ar{q}|=5, |ar{r}|=7$$
 . Then angle

between $\bar{p} \; \, {\rm and} \; \bar{q}$ is

A. $\pi/16$

B. $2\pi/3$

 $\operatorname{C.}\pi/6$

D. $\pi/3$

Answer: D

10. Let
$$a_n = \int_0^{\pi/2} rac{1-\cos 2n\pi}{1-\cos 2\pi} dx$$

The value of $\begin{vmatrix} \pi/2 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$ =

A. 0

B. 1

C. 3

D. None of these

Answer: A

View Text Solution

11. If a and b are roots of
$$x^2-p(x+1)-c=0$$
 then $(1+a)(1+b)$ and $\displaystylerac{a^2+2a+1}{a^2+2a+c}+\displaystylerac{b^2+2b+1}{b^2+2b+c}$ are,

A. 1-c, 1

В. 1-с, О

C. 1+c, 1

D. 1+c, 0

Answer: A

Watch Video Solution

12.

$$\lim_{n
ightarrow\infty}\;rac{1}{n}igg[rac{ an \pi}{4n}+rac{ an(2\pi)}{4n}+rac{ an(3\pi)}{4n}+\ldots\,+rac{ an(n\pi)}{4n}igg]$$

A.
$$\frac{2}{\pi} \log 2$$

B. $\frac{\pi}{2} \log 2$
C. $\frac{\pi}{2} \frac{\log 1}{2}$
D. $\frac{\pi}{2} \log \frac{1}{2}$

Answer: A

13.
$$\lim_{x o 0} rac{(1+x)^{1/x}-e}{x}$$
 equals

B. 0

 $\mathsf{C}.\,2/e$

 $\mathsf{D.}-e\,/\,2$

Answer: D

14.
$$\lim_{x \to 0} \left(\frac{e^{1/x} - 1}{e^{1/x} + 1} \right) =$$

A. exists

B. does not exist

C. zero

D. None of these

Answer: B

15. OX and OY are two coordinate axes . On OY is taken a fixed point P on OX any point Q . On PQ an equilateral triangle is described, its vertex R being on the side of PQ away from O, then the lacus of R will be,

A. straight line

B. circle

C. ellipse

D. parabola

Answer: A

16. The locus of the point of intersection of tangents to the circles $x = a \cos \theta$, $y = a \sin \theta$ at points whose parametric angle differs by $\pi/4$ is

A.
$$3 ig(x^2 + y^2 ig) = 4 a^2$$

B. $4 ig(x^2 + y^2 ig) = 3 a^2$
C. $x^2 + y^2 = 2 ig(2 - \sqrt{2} ig) a^2$

D. None of these

Answer: C

17. The locus of the centre of circle which cuts the circles $x^2 + y^2 + 4x - 6y + 9 = 0$ and $x^2 + y^2 - 4x + 6y + 4 = 0$ orthogonally is A. 12x + 8y + 5 = 0B. 8x - 12y + 5 = 0

C. 5x - 8y + 12 = 0

D. None of these

Answer: B

18. The equation of straight line passing through point of intersection of the straight lines 3x - y + 2 = 0 and 5x - 2y + 7 = 0 and having infinite slpe is

A. x=2

B. x+y=3

C. x=3

D. y=4

Answer: C

19. The locus of mid-point of chords of constant length $\,{}^{\prime}2l\,{}^{\prime}$ of the parabola $y^2=4ax$ is

A.
$$ig(y^2-4axig)ig(y^2+4a^2ig)+4a^2l^2=0$$

B.
$$\left(y^2+4ax
ight)\left(y^2-4a^2
ight)-4a^2l^2=0$$

C.
$$\left(y^2 - 4ax
ight)\left(y^2 - 4a^2
ight) - 4a^2l^2 = 0$$

D. None of these

Answer: A

View Text Solution

20. The equation of tangent at the point (5,2) of a circle is given by 3x - 2y - 11 = 0 Therefore the equation of the

circle passing through origin would be

A.
$$x^2 + y^2 - 23x - 102y = 0$$

B. $11x^2 + 11y^2 - 23x - 102y = 0$
C. $11x^2 + 11y^2 - 102x - 23y = 0$

D.
$$x^{\,\circ} \,+\, y^2 - 102x - 23y = 0$$

Answer: B

View Text Solution

21. If
$$\lim_{x o 0} \left[rac{x(1+3a\cos x)-5b\sin x}{x^3}
ight] = 1$$
 . The value of

a and b will be

A.
$$-5/6, -3/10$$

B.
$$-10/2, -6/5$$

C.5/6, 3/10

D. 10/3, 6/5

Answer: A

22. A point is moving along the parabola $y^2 = 8x$ at the rate of 2m/s . The component velocity parallel to the axis , when it is at the point (2,4) is

A.
$$\frac{2}{\sqrt{2}}$$
 m/s

B. 2 m/s

C. 4 m/s

D. 16 m/s

Answer: A

$$1+rac{1.3}{6}+rac{1.3.5}{6.8}+\ldots\infty$$
 of

A. 1

B. 0

 $C.\infty$

D. 4

Answer: D

24. The comples number a+ib whose modulus is unity and $b \neq 0$ can be written in the form where 'r' is a real number.

A.
$$a + ib = rac{r+i}{r-i}$$

B. $a + ib = rac{(r+i)}{(r-i)^2}$
C. $a + ib = rac{(r-i)}{(r+i)^2}$
D. $a + ib = rac{(r+i)}{(r-i)^2}$

Answer: A

25. $f(x)=e^{-1/x^2}\sin(1/x)$ for x
eq 0 and f(0) =0 .

The function f(x) is

A. differentiable at x = 0

B. not differentiable at x = 0

C. insufficient data

D. None of these

Answer: A

View Text Solution

26. Domain of the function , $f(x) = \sqrt{\sin^{-1}(\log_2 x)}$ is

A. $0 \leq x \leq 1$

$$\mathsf{B.}-1 \leq x \leq 1$$

$$\mathsf{C.1} \leq x \leq 2$$

D. $3 \leq x \leq 4$

Answer: C

27. The value of the intergal

$$\int_{0}^{\pi/2}rac{\phi(x)}{\phi(x)+\phiigg(rac{\pi}{2}-xigg)}dx$$
 is

A. $\pi/4$

B. $\pi/2$

 $\mathsf{C.}\,\pi\,/\,6$

D. π

Answer: A

28. For positive integers n_1 and n_2 the value of the expression

$${(1+i)}^{n_1}+{\left(1+i^3
ight)}^{n_1}+{\left(1+i^5
ight)}^{n_2}+{\left(1+i^7
ight)}^{n_2}$$
 is a real

number if and only if

A.
$$n_1-n_2=1$$

$$\mathsf{B.}\, n_1-n_2=0$$

C.
$$n_2-n_1=1$$

D. n_1, n_2 take any value

Answer: D

A. no solution

B. exactly one solution

C. not more than two solutions

D. infinite number of solutions

Answer: D

Watch Video Solution

30. If a>0, b>0 and c>0 , then both the roots of the equations $ax^2+bx+c=0$

A. are real and negative

B. have negative real parts

C. are rational numbers

D. are purely imaginary

Answer: B

31. If $m+np_2=90$ and $m-np_2=30$, then (m,n) is

given by

A. (7,3)

B. (16,8)

C. (9,2)

D. (8,2)

Answer: D

32. If 'P' is a prime number such that $p\geq 23$ and n+p!+1

, then the number of primes in the list

 $n+1, n+2, \ldots, n+p-1$ is

A. 0

B. 1

C. 2

D. None of these

Answer: A

33. If the product of 'n' positive numbers is unity, then their sum is

A. positive integer

B. divisible by n

C. equal to n + (1/n)

D. never less than n

Answer: D

34. A determinant is chosen at random from a set of all determinants of order 2 with elements 0 or 1 only. The probability that the determinant chosen is non-zero is

A. 3/16

B. 3/8

C.1/4

D. None of these

Answer: B

Watch Video Solution

triangle ABC is equal to

A. $\cos^2 A$

 $\mathsf{B.}\sin^2 A$

 $\mathsf{C.}\cos B\cos C$

D. $\sin B \sin C$

Answer: B

Watch Video Solution

36. The value of
$$\cos\left(\frac{1}{2}\cos^{-1}\frac{1}{8}\right)$$
 is equal to

A. -3/4

B. 3/4

C.1/16

D. 1/4

Answer: B

Watch Video Solution

37. If the base of an isosceles triangle is of length '2a' and the length of the altitude droped to the base is h (where a > 0, h > 0), then the distance of each side from the midpoint of the base of the triangle is B.a

C.
$$\sqrt{h^2+a^2}$$

D. $rac{ah}{\sqrt{h^2+a^2}}$

Answer: D

38. PQ is double ordinate of the hyperbola $x^2/a^2 - y^2/b^2 = 1$ such that OPQ is an equilateral triangle , O being the centre of hyperbola . The eccentricity of the hyperbola satisfies

A.
$$1 < e < 2/\sqrt{3}$$

B. $e=2/\sqrt{3}$

C.
$$e=\sqrt{3}/2$$

D. $e>2/\sqrt{3}$

Answer: D

39. If
$$\phi(x) = \int_{1/x}^{\sqrt{x}} \sinig(t^2ig) dt, ext{ then } \phi'(1) ext{ is equal to}$$

A. sin 1

B. 2 sin 1

C. (1/2) sin 1

D. (3/2) sin 1

Answer: D

40. If
$$\int \cos ex 2x dx = f(g(x)) + c$$
 , then

A.
$$f(g'(x)) = (1/2) \mathrm{log} |\mathrm{sec}^2 x|$$

B.
$$g(f'(x))= an(1/2x)$$

C. Both (a) and (b)

D. none of these

Answer: C

41. If $y = e^{4x} + 2e^{-x}$ satisfies the relation

 $y_3 + Ay_1 + By = 0$ then

A.
$$4A+B+64=0$$

B. A - B + 1 = 0

C. Both (a) and (b)

D. none of these

Answer: C

42. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - \hat{k}, \, \overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k}, \, ext{ and } \overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$$

, be three vectors . A vector in the plane of b and c whose projection an a is of magnitude $\sqrt{2/3}$ is

A.
$$2\hat{i}+3\hat{j}-3\hat{k}$$

B.
$$-2\hat{i}-\hat{j}+5\hat{k}$$

C. both are wrong

D. both are correct

Answer: D

43. One diameter of the circle circumscribing the rectangle ABCD is 4y = x + 7. If A and B are the points (-3,4) and (5,4) respectively, then

A. radius of the circle is $2\sqrt{5}$

B. one side of the rectangle is double the other

C. area of the rectangle is 32 sq. units.

D. all are correct.

Answer: D

Watch Video Solution

44. P is a point on the given curve such that the normal at P to the curve meets the axist is 'x' at G. If the distance of P from the origin is same as its distance from G, then the curve is

A. a circle

B. a rectangle hyperbola

C. Both (a) and (b)

D. none of these

Answer: C

View Text Solution

45. If $4a^2 + 9b^2 - c^2 + 12ab$ =0 , then the family of straight lines ax + by + c =0 is concurrent at

A. (2,3)

B. (-2,-3)

C. Both (a) and (b)

D. none of these

Answer: C

46. If the circle $x^2+y^2=a^2$ intersects the hyperbola $xy=c^2$ in four points $P(x_1,y_1),\,Q(x_2,y_2),\,R(x_3,y_3)$ and $S(x_4,y_4)$ then

A.
$$x_1 + x_2 + x_3 + x_4 = 0$$

B.
$$x_1 x_2 x_3 x_4 = 0$$

C.
$$y_1 + y_2 + y_3 + y_4 = 0$$

D. all the correct

Answer: D

Watch Video Solution

47. Let
$$a=(1/3)\Big(-\hat{i}+2\hat{j}+2\hat{k}\Big)$$
 , then

A. a is a unit vector

B. makes acute angles with axis of y and z

C. is perpendicular to b $=2\hat{i}-2\hat{j}+3\hat{k}$

D. all are correct.

Answer: D

View Text Solution

48.
$$F(X) = \left\{egin{array}{ccc} |x-2|+a & ext{for} & x<2 \ b-|x-2| & ext{for} & x\geq 2 \end{array}
ight\}$$
 then

A. f is not differentiable at x =2 for all real values of a , b

B. Rf' (2) = 1

C. Lf'(2) = 1

D. all are correct.

Answer: D

View Text Solution

49. The conic given by $y^2 + 8x - 12y + 20 = 0$

A. is a parabola

B. has vertex at (2,6)

C. has latus rectum equal to 8

D. all are correct.

Answer: D

50. The number of solutions of $1+\sin^6x=\cos x$, in the interval $0\leq x\leq 2\pi$, is

A. 3

B. 0

C. 1

D. 2

Answer: D

View Text Solution

51. a,b,c are the lengths of the sides of a non-degenerate

triangle , If
$$k=rac{a^2+b^2+c^2}{bc+ca+ab}$$
 , then

A. k < 1

 $\mathsf{B}.\,k>2$

- $\mathsf{C.1} \leq k \leq 2$
- D. $1 \leq k < 2$

Answer: D

Watch Video Solution

52. k
eq -1 is a constant. The value of $\lim_{n o\infty} rac{1^k+2^k+\ldots+n^k}{k(n^{k+1})}$ is

A. 0

- B. k/(k+1)
- $\mathsf{C.1/}(k+1)^2$

D. None of these

Answer: A

Watch Video Solution

53. P(x) is a polynomial satisfying P(x+3/20)=P(x),

for all x. If P(5) =8, then P(8) equals

A. 5

B. 19/2

C. 8

D. None of these

Answer: C

54. The unit's digit of $1^2+2^2+\ldots +n^2$ is 5. The unit's digit of $1^{10}+2^{10}+\ldots +n^{10}$ is

A. 1

B. 3

C. 7

D. 5

Answer: D

55. The least +ve remainder of division of 100 imes 128 imes 37

by 6 is

A. 8 B. 2

C. 3

D. 4

Answer: B

56. If (3-x) $\equiv (2x-5)$ (mod 4) then one of the values of x is

A. 3

B. 4

C. 18

D. 5

Answer: B

57. Given two integers a and b where a > b, there exist unequal integers q and r such that b = qa + r where

 $0 \leq r < a$.This is known as

A. euclid's algorithm

B. division algroithm

C. archimedian property

D. none of these

Answer: B

Watch Video Solution

58. Divisibility by non-zero integers is

A. reflexive and symmetric

B. reflexive and transitive

C. transitive and symmetric

D. none of these

Answer: B

View Text Solution

59. $P \wedge (q \wedge r)$ is logically equivalent to

A.
$$p \lor (q \land r)$$

B. $(p \wedge q) \wedge r$

 $\mathsf{C}.\,(p\vee q)\vee r$

D. $p
ightarrow (q \wedge r)$

Answer: B

60. Let p : It is hot

q : He wants water.

Then the verbal meaning of p o qis

A. it is hot or he wants water

B. it is hot and he wants water

C. if it is hot , then he want s water

D. if and only if it is hot he wants water

Answer: C

Watch Video Solution