©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA 2016

Physics

1. A body falls freely for 10 sec Its average
velocity during this journey (take $=10 m s^{-2}$)
A. $100 m s^{-1}$
B. $10 m s^{-2}$
C. $50 m s^{-1}$
D. $5 m s^{-1}$

Answer: c

D Watch Video Solution

2. Three projecties A, B and C are projected at an angle of $30^{\circ}, 60^{\circ}$ respectively, If R_{A}, R_{B} and R_{C} are ranges of A, B and C respectively
then (velocity of projection is same for A, B and C

$$
\text { A. } R_{A}=R_{B}=R_{C}
$$

B. $R_{A}=R_{C}>R_{B}$
C. $R_{A}<R_{B}<R_{C}$
D. $R_{A}=R_{C}<R_{B}$

Answer: d

- Watch Video Solution

3. The component of a vector \vec{r} along x - axis will have a maximum value if
A. \vec{r} is along +ve x - axis
B. \vec{r} is along + ve y -axis
C. \vec{r} is along -Ve y - axis
D. \vec{r} makes an angle of 45^{2} with the x - axis

Answer: a

D Watch Video Solution

4. maximum acceleration of the train in which

a 50 Kg bx lying on its florr will remain stationary (Given : Co - efficient f static friction between the box and the trains floor is 0.3 and

$$
g=10 m s^{-2}
$$

A. $5.0 m s^{-2}$
B. $3.0 m s^{-2}$
C. $1.5 m s^{-2}$
D. $15 m s^{-2}$

Answer: b
5. A 12 kg bomb at rest explodes into two piece of 4 kg and 8 kg . If the momentum of 4 kg piece is 20 Ns , the kinetic energy of the 8 kg piece I
A. 25 j
B. 20 j
C. 50 j
D. 40 j

D Watch Video Solution

6. Which of the points is likely position of the
centre of mass of the system shown in the
figure ?
A. A
B. D
C. B

D. C

Answer: b

D View Text Solution

7. Three bodies a ring (R) , a solid cylinder (C)
and a solid sphere (S) having same mass and
same radius roll down the inclined plane
without slipping . They start from rest, if
V_{R}, V_{C} ans V_{S} are velocities of respective
bodies on reaching the bottom of the plane then
A. $V_{R}=V_{C}=V_{s}$
B. $V_{R}>V_{C}>V_{S}$
C. $V_{R}<V_{C}<V_{S}$
D. $V_{R}=V_{C}>V_{s}$

Answer: c
(Watch Video Solution
8. Variation of acceleration due to gravity (g)
with distance x from the centre of the earth is best represented by ($\mathrm{R} \rightarrow$ Radius of the earth)

B.

C.

Answer: s

(D) Watch Video Solution
9. A spring is stretched by applying a load to
its free end. The strain produced in the spring
is
A. Volumetric
B. Shear
C. Longitudinal and shear
D. Longitudinal

Answer: c

D Watch Video Solution

10. An ideal fluid flows through a pipe of circular cross section with diameters 5 cm and

10 mc as shown. The ratio of velocities of fluid
at A and B is
A. $4: 1$
B. 1:4
C. 2:1
D. 1:2

Answer: b

D View Text Solution
11. A pan filled with hot food cools form $94^{\circ} C$
to $86^{\circ} C$ in 2 minutes. When the roo
temperature is $20^{\circ} C$. How long will it cool
from $74^{\circ} C$ to $66^{\circ} C$?
A. 2 minutes
B. 2.8 minutes
C. 2.5 minutes
D. 1.8 minutes

Answer: d
12. Four rods with different raddi r and length

I are used to connect two heat reservoirs at
different temperatures . Which one will conduct most heat ?
A. $\mathrm{r}=1 \mathrm{~cm}, \mathrm{l}=1 \mathrm{~m}$
B. $\mathrm{r}=1 \mathrm{~cm}, l=\frac{1}{2} m$
C. $r=2 \mathrm{~cm}, \mathrm{l}=2 \mathrm{~m}$

$$
\text { D. } \mathrm{r}=2 \mathrm{~cm}, l=\frac{1}{2} m
$$

Answer: d

D Watch Video Solution

13. A carnot engine working between 300 K and

400 K has 800 j of useful work. The amount of
heat enegy supplied to the engine from the source is
A. $2400 j$
B. 3200 j
C. 1200j

D. 3600j

Answer: b

D Watch Video Solution

14. A particle executive SHM has maximum speed of $0.5 m s^{-1}$ and maximum acceleration
of $1.0 \mathrm{~ms}^{-2}$. The angular freqyency of
Oscillation is
A. $2 r a d s^{-1}$
B. $0.5 \mathrm{rads}^{-1}$
C. $2 \pi \mathrm{rad} s^{-1}$
D. $0.5 \pi \mathrm{rad} s^{-1}$

Answer: a

D Watch Video Solution

15. A source of sound is moving with a velocity
of $50 \mathrm{~ms}^{-1}$ towards a stationary observer .

The Observer measure the frequency of sound as 500 Hz . The appartment frequency of sound
as heard by the observer when source is moving away from hom with the same speed is
(Speed of sound at room temperature $350 m s^{-1}$
A. 400 Hz
B. 666 Hz
C. 375 Hz
D. 177.5 Hz

Answer: c

16. If there is only one type of charge in the universe, then $\vec{E} \rightarrow$ Electric field, $\overrightarrow{d s} \rightarrow$ Area vector
A. $\int \vec{E} \cdot \overrightarrow{d s} \neq 0$ on any surface
B. $\int \vec{E} \cdot \overrightarrow{d s}$ could not be defined
C. $\int \vec{E} \cdot \overrightarrow{d s}=\infty$ if charge is inside
D. $\int \vec{E} \cdot \overrightarrow{d s}=0$ if charge is outside,$=\frac{q}{\varepsilon_{0}}$
if charge is inside

- Watch Video Solution

17. An electron of mass m, Charge e falls through a distance h meter in a unfirom electric field E . Then time of fall

$$
\begin{aligned}
& \text { A. } t=\frac{\sqrt{2 h m}}{e E} \\
& \text { B. } t=\frac{2 H M}{e E} \\
& \text { C. } t=\frac{\sqrt{2 e E}}{h m} \\
& \text { D. } t=\frac{2 e E}{h m}
\end{aligned}
$$

18. $\vec{E}_{a x}$ and $\vec{E}_{e q}$ represent electric field at a point on the axial and equatorial line of a dipole. If points are at a distance r form the centre of the dipole, for $r \gg a$

$$
\begin{aligned}
& \text { A. } \vec{E}_{a x}=\vec{E}_{e q} \\
& \text { B. } \vec{E}_{a x}=-\vec{E}_{e q} \\
& \text { C. } \vec{E}_{a x}=-2 \vec{E}_{e q} \\
& \text { D. } \vec{E}_{a x}=2 \vec{E}_{e q}
\end{aligned}
$$

D Watch Video Solution

19. Nature of equipotential surface for a point charge is
A. Ellipsoid with charge at foci .
B. Sphere with charge at the centre of the
sphere

C. Sphere with charge on the surface of the

 sphere.D. Plane with charge on the surface

Answer: b

D Watch Video Solution

20. A particle of mass 1 gm and charge $1 \mu C$ is
held at rest on a frictionaless horizontal
surface at distance 1 m from the fixed charge
2 mc . If the particleis released, it will be
repelled. The spedd of the particle when it is at a distance of 10 m from the fixed charge is
A. $60 m s^{-1}$
B. $100 m s^{-1}$
C. $90 m s^{-1}$
D. $180 m s^{-1}$

Answer: d
21. A capacitor of $8 f$ is connected as shown.

Charge on the plates of the capacitor
A. 32 C
B. 40 C
C. OC
D. 80 C

Answer: a

D View Text Solution
22. Four metal plates are arranged as shown

Capacitane between X and $Y(A \rightarrow$ Area of each plate, $d \rightarrow$ between the plates)
A. $\frac{3}{2} \frac{\varepsilon_{0} A}{d}$
B. $\frac{2 \varepsilon_{0} A}{d}$
C. $\frac{2}{3} \frac{\varepsilon_{0} A}{d}$
D. $3 \frac{\varepsilon_{0} A}{d}$

Answer: c

23. Mobility of free electrons in a conductor is
A. directly proportional to electron density
B. directly proportional to relaxation time
C. inversely proportional to electron
density
D. inversely proportional to relaxation time
24. Variation of resistance of the conductor with temperature is as shown . The temperature co-efficient (α) of the conductor is
A. $\frac{R_{o}}{m}$
B. $m R_{o}$
C. $m^{2} R_{o}$
D. $\frac{m}{R_{o}}$

Answer: d

D View Text Solution

25. Potential difference between A and B in the

following circuit

A. 4 V
B. 5.6 V

C. 2.8 V

D. 6 V

Answer: b

D View Text Solution
26. In the following network potential at O
A. 4 V
B. 3 V
C. 6 V
D. 4.8 V

Answer: d

D View Text Solution

27. Effective ressitance between A and B in the

following circuit

A. 10Ω
B. 20Ω
C. 5Ω
D. $\frac{20}{3} \Omega$

Answer: a

D View Text Solution

28. Two heating coils of resistance 10Ω and
20Ω are connected in parallel and connected
to a battery of emf 12 V and internal resistance
1Ω. The power consumed by them are in the ratio
A. $1: 4$
B. 1:3
C. 2:1
D. $4: 1$

Answer: c
(Watch Video Solution
29. A Proton is projected with a uniform
velcoity v long the axis of a current carrying solenoid, then
A. the proton will be accelerated along the axis
B. the proton path will be circular about the axis .
C. the proton moves along helical path .
D. the protn will continue to move with
velocity v long the axis.

Answer: d

D Watch Video Solution

30. In the cylotron, as radius of the circular path of the charged particle increases ($\omega=$ angular velocity, $\mathrm{v}=$ linear velocity)
A. both ω and V increases
B. only ω increases, V remains constant
C. vincreases, ω remains constant
D. vincreases, ω decreases

Answer: c

- Watch Video Solution

31. A conduct wire carrying current is arranged as shown . The magnetic field at O
A. $\frac{\mu_{0} i}{12}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
B. $\frac{\mu_{0} i}{12}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$
c. $\frac{\mu_{0} i}{6}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
D. $\frac{\mu_{0} i}{12}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$

- View Text Solution

32. The quantity of a charge that will be transferrred bya current flow of 20 A over 1 hour 30 minutes period is
A. $10.8 \times 10^{3} \mathrm{C}$
B. $10.8 \times 10^{4} C$
C. $5.4 \times 10^{3} \mathrm{C}$
D. $1.8 \times 10^{4} C$

Answer: b

- Watch Video Solution

33. A galvanometer coil has a resistance of
50Ω and the meter shows full scale deflection
for a current of 5 mA . This galvanometer is converted into voltmeter of range $0-20 \mathrm{~V}$ by connecting
A. 3950Ω in series with galvanometer
B. 40Ω in series with galvanometer
C. 3950Ω in parallel with galvanometer
D. 4050Ω in parallel with galvanometer

Answer: a

D Watch Video Solution

34. X_{1} and X_{2} are susceptbiltity of a paramagnetic material at temperature $T_{1} \mathrm{~K}$ and $T_{2} K$ respectively, then

$$
\text { A. } X_{1}=X_{2}
$$

$$
\begin{aligned}
& \text { B. } X_{1} T_{1}=x_{2} T_{2} \\
& \text { C. } X_{1} T_{2}=X_{2} T_{1} \\
& \text { D. } X_{1} \sqrt{T_{1}}=X_{2} \sqrt{T_{2}}
\end{aligned}
$$

Answer: b

D Watch Video Solution

35. At certain place, the horizontal component of earth's magnetic field is 3.0 . The magentic field of earth at that location
A. $4.5 G$
B. $5.1 G$
C. $3.5 G$
D. $6.0 G$

Answer: c

D Watch Video Solution
36. The Process of superimposing message signal on high frequency wave is called
A. Ampliction
B. Demodulation
C. Transmission
D. Modulation

Answer: s

D Watch Video Solution

37. A long solenoid with 40 turns per cm carries a current of 1A. The magnetic energy stored per unit volume is J / m^{3}
A. 3.2π
B. 32Π
C. 1.6π
D. 6.4π

Answer: a

D Watch Video Solution

38. A wheel with 10 spokes each of length L m is rotated with a uniform angular velocity ω in
a plane normal ti the magnetic field B. The emf
wheel

> A. $\frac{1}{2} N \omega B L^{2}$
> B. $\frac{1}{2} N \omega B L^{2}$
> C. $\omega b L^{2}$
> D. $N \omega B L^{2}$

Answer: b
(Watch Video Solution
39. The rms value of current in a 50 Hz AC circuit is 6A. The average value of AC current over a cycle is
A. $6 \sqrt{2}$
B. $\frac{3}{\pi \sqrt{2}}$
C. Zero
D. $\frac{6}{\pi \sqrt{2}}$

Answer: c

D Watch Video Solution
40. A capcacitor of capacitance $10 \mu F$ is connected to an AC source and an AC ammeter . If the source voltage varies as $V=50 \sqrt{2} \sin 100 t$, the reading of the ammeter is
A. 50 mA
B. $70.7 \mathrm{~m} A$
C. $5.0 M A$
D. $7.07 \mathrm{~m} A$
41. In a series LCR circuit , the potential drop across L, C and R respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and 60 V . Then the source voltage is
A. 220 V
B. 160 V
C. 180 V
D. 100 V
42. In a series LCR circuit, and alternating emf (v) and current (i) are given by the equation
$v=v_{0} \sin \omega t, i=i_{0} \sin \left(\omega t+\frac{\pi}{3}\right)$.
average power dissipated in the circuit over a
cycle of AC is
A. $\frac{v_{0} i_{0}}{2}$
B. $\frac{V_{0} i_{0}}{4}$
C. $\frac{\sqrt{3}}{2} v_{0} i_{0}$
D. Zero

Answer: b

D Watch Video Solution

43. Electromagnetic radiation used to sterilise milk is
A. X-ray
B. $\gamma-r a y$
C. UV rays

D. Radiowaves

Answer: c

D Watch Video Solution

44. A plane glass plate is placed over a various
coloured letters (violet, green, yellow, red).
The letter which appears to raised more is
A. Red
B. Yellow

C. Green

D. Violet

Answer: s

D Watch Video Solution

45. A ray of lilght passes through four transparent media with refractive indices n_{1}, n_{2}, n_{3} and n_{4} as shown. The surface of all media are parallel. If the emergent ray $D E$ is parallel. If the emergetn ray $D E$ is parallel to

incident ray Ab,then

A. $n_{1}=n_{4}$
B. $n_{2}=n_{4}$
C. $n_{3}=n_{4}$
D. $n_{1}=\frac{n_{2}+n_{3}+n_{4}}{3}$

Answer: a

D View Text Solution

46. Focal length of a convex lens is 20 cm and
its RI is 1.5 . it prodcued an erect, enlarged image if the distance of the object from the lens is
A. 40 cm
B. 30 cm
C. 15 cm
D. 20 cm

Answer: c
47. A ray of light suffers a minimum deviation when incident on a equilateral prism of refractive index $\sqrt{2}$. The angle of incidence is
A. 30°
B. 45°
C. 60°
D. 50°

Answer: b
48. In Young's double slit experiment the source is white light. One slit is covered with red filter and the other with blhe filter. There shal be
A. Alternate red and blue fringes
B. Alternated dark and pink fringes
C. Alternate dark and yellow fringes No
interference
D. No interference

Answer: d

- Watch Video Solution

49. Light of wavelength 600 nm is incident normally on a slit of width 0.2 mm . The anuglular width of central maxima in the diffraction pattern is (measured from miminum to minimum)
A. $6 \times 10^{-3} \mathrm{rad}$
B. $4 \times 10^{-3} \mathrm{rad}$
C. $2.4 \times 10^{-3} \mathrm{rad}$
D. $4.5 \times 10^{-3} \mathrm{rad}$

Answer: a

D Watch Video Solution

50. for what distance is ray optics os good approximation when the aperture is 4 mm and the wavelength of light is 400 nm ?
A. 24 m
B. 40 m
C. 18 cm
D. 30 m

Answer: b

- Watch Video Solution

51. The variation of photo- current with collecttor potential for different frequencies
of incident radiation v_{1}, v_{2} and v_{3} is shown in
the graph then
A. $V_{1}=V_{2}=V_{3}$
B. $V_{1}>V_{2}>V_{3}$
C. $V_{1}<V_{2}<V_{3}$
D. $V_{3}=\frac{V_{1}+V_{2}}{2}$

Answer: c
(D) View Text Solution
52. The de Brogle wavelength of an electron accelrated to a potential of 400 V is approximately

A. 0.03 nm

B. 0.04 nm
C. $0.12 n m$
D. 0.06 nm

Answer: d

- Watch Video Solution

53. Total energy of electron in an excited state of hydrogen atom is -3.4 eV . The kinetic and potential energy of electron on this state
A. $k=-3.4 \mathrm{eV} U=-6.8 \mathrm{eV}$
B. $\mathrm{K}=3.4 \mathrm{eV} \mathrm{U}=-6.8 \mathrm{eV}$
C. $\mathrm{K}=-6.8 \mathrm{eV} \mathrm{U}=+3.4 \mathrm{eV}$
D. ${ }^{\prime} \mathrm{K}=+10.2 \mathrm{eV} \mathrm{U}=-13.6 \mathrm{eV}$

Answer: b

- Watch Video Solution

54. When electron jumps from $n=4$ level to n
$=1$ level, the angular momentum of electron
changes

$$
\begin{aligned}
& \text { A. } \frac{h}{2 \pi} \\
& \text { B. } \frac{2 h}{2 \pi} \\
& \text { C. } \frac{3 h}{2 \pi} \\
& \text { D. } \frac{4 h}{2 \pi}
\end{aligned}
$$

Answer: c

- Watch Video Solution

55. A radio - active sample of half- life 10 days
contains $1000 \times$ nuclei . Number of original nuclie present after 5 days is
A. $707 x$
B. 750 x
C. 500 x
D. 250 x

Answer: a

- Watch Video Solution

56. An element X decays into element Z by two
-steps process
$X \rightarrow Y+H e_{2}^{4}$
$Y \rightarrow Z+2 e$ then
$A . X$ and Z are isobars .
B. X and Y are isotopes
C. X and Z are isotones
D. X and Z are isotopes.

Answer: d
57. A nucleus of amss 20 u emits a γ photon of energy 6 MeV . If the emission assume to occur when nuclues is free and at rest then the nulceus will have kintetic energy nearest to
(take $1 u=1.6 \times 10^{-27} \mathrm{Kg}$)
A. 10 KeV
B. 1 KeV
C. 0.1 KeV
D. 100 KeV

Answer: b

D Watch Video Solution

58. Cosntant DC voltage is required from a variable AC voltage. Which of the following is correct order of operation ?
A. Regular , filter rectifier
B. Rectifier, regulator, filter
C. Recitfier, Filter, regulator
D. Filter , regulator , rectifier

D Watch Video Solution

59. In a transistor, the collector current varies
by 0.49 mA and emitter current varies by
0.50 mA current gain β measured is
A. 49
B. 150
C. 99
D. 100

- Watch Video Solution

60. Identify the logic operration carried out by
the following ciruit
A. AND
B. NAND
C. NOR
D. OR

Answer: d

D View Text Solution

