©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2001

Physics

1. A balloon starts rising from thee ground
with an acceleration of $1.25 \mathrm{~m} / \mathrm{s}^{2}$. After 8 s , a
stone is released from the balloon. The stone
will (taking $g=10 \mathrm{~ms}^{-2}$)
A. have a displacement of 50 m
B. cover a distance of 40 m in reaching the

ground

C. reach the ground in 4 s
D. begin to move down after released.

Answer: B::C

D Watch Video Solution

2. When a ceiling fan is switched off, its angular velocity reduces by 50% while it makes 36 rotations. How many more rotations will it make before coming to rest ? (Assume uniform angular retardation)
A. 36
B. 48
C. 18
D. 12
3. The resultant of two forces $3 P$ and $2 P$ is R. If the first force is doubled then the resultant is also doubled. The angle between the two forces is
A. 90°
B. 180°
C. 60°
D. 120°

Answer: D

- Watch Video Solution

4. If both the mass and radius of the earth decreases by 1% then the
A. escape velocity would decrease
B. escape velocity would increase
C. acceleration due to gravity would increase

D. acceleration due to gravity would

 decrease.
Answer: C

D Watch Video Solution

5. A vertical glass capillary tube, open at both ends, contains some water. Which of the following shapes may be taken by the water in the tube?

Answer: C

D Watch Video Solution

6. A ball is thrown vertically upwards.

Assuming the air resistance to be constant and considerable,
A. the time of ascent $>$ the time of descent
B. the time of ascent $<$ the time of descent
C. the time of ascent $>$ the time of
descent

D. the time of ascent = the time of descent

Answer: B

7. During an adiabatic process, the pressure of
a gas is found to be proportional to be the cubic of its absolute temperature. The ratio C_{P} / C_{V} gas is
A. 2
B. $\frac{5}{3}$
C. $\frac{3}{2}$
D. $\frac{4}{3}$

Answer: C

8. Newton postulated his corpuscular theory on the basis of
A. Newton's rings
B. colours of thin films
C. rectilinear propagation of light
D. dispersion white light.

Answer: C
9. Three rods of same dimensions are arranged as shown in the figure. They have thermal conductivities K_{1}, K_{2} and K_{3}. The points A and B are maintained at different temperatures. For the heat to flow at the same
\qquad along
ACB
and
$A B$,

> А. $K_{3}=\frac{K_{1} K_{2}}{K_{1}+K_{2}}$
> в. $K_{3}=2\left(K_{1}+K_{2}\right)$
> с. $K_{3}=\frac{1}{2}\left(K_{1}+K_{2}\right)$
> D. $K_{3}=K_{1}+K_{2}$

Answer: A

- Watch Video Solution

10. Two spherical black bodies of radii r_{1} and r_{2} and with surface temperatures T_{1} and T_{2}
respectively, radiate the same power. Then
r_{1} / r_{2} must be equal to

$$
\begin{aligned}
& \text { A. }\left(\frac{T_{2}}{T_{1}}\right)^{4} \\
& \text { B. }\left(\frac{T_{2}}{T_{1}}\right)^{2} \\
& \text { C. }\left(\frac{T_{1}}{T_{2}}\right)^{4} \\
& \text { D. }\left(\frac{T_{1}}{T_{2}}\right)^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution
11. A small object is placed 10 cm in front of a plane mirror. If you stand behind the object 30 cm from the mirror, and look at its image, for what distance must you focus your eyes?
A. 40 cm
B. $8-\mathrm{cm}$
C. 60 cm
D. 20 cm

Answer: A
12. A luminous object is separated from a screen by a distance D. What is the greatest
focal length a lens could have to focus the object on the screen?
A. 4 D
B. D
C. $\frac{D}{2}$
D. $\frac{D}{4}$

Answer: C

- Watch Video Solution

13. A ray of light is incident normally on one of
the faces of a prism of angle 30° and refractive index $\sqrt{2}$. The angle of deviation of the ray is
A. 22.5°
B. 15°
C. 12.5°

D. 0°

Answer: D

D Watch Video Solution

14. How wil the image formed by a convex lens be affected, if the central portion of the lens is
wrapped in black paper, as shown in the figure.

A. two images will be formed, one due to
each exposed half
B. full image will be formed but without the central portion
C. full image will be formed but it is less
bright
D. no image will be formed.

Answer: C

- Watch Video Solution

15. An ideal gas is taken $A B C D$ as shown in the PV diagram. The work done during a cycle is

A. zero
B. $\frac{1}{2} P V$
C. 2PV
D. PV

Answer: D

D Watch Video Solution

16. The wavelength of the light used in Young's
double slit experiment is λ. The intensity at a
point on the screen where the path difference is $\frac{\lambda}{6}$ is $I . I_{0}$ mdenotes the maximum intensity then the ration of I and I_{0} is
A. very few coloured fringes can be seen
with first order red fringes being closer
to the central white fringe
B. very few coloured fringes can be seen,
with first order violet fringes can be
seen, with first order violet fringes being
closer to the central white fringe
C. a very larger number of coloured fringes
with a central white fringe can be seen

D. a very large number of coloured fringes

can be seen.

Answer: B

- Watch Video Solution

17. A beam of light of two wavelengths $6500 \AA$
and $5200 \AA$, is used to obtain interference
fringes in Young's double slit experiment.
Suppose the $m^{\text {th }}$ brght fringe due to $6500 \AA$
coincides with $n^{\text {th }}$ bright fringe due to $5200 \AA$
at a minimum distance from the cental

maximum. Then

A. $m=10, n=8$
B. $m=8, n=10$
C. $m=5, n=4$
D. $m=4, n=5$

Answer: B
(Watch Video Solution
18. In the experiment of diffraction at a single slit, if the slit width is decreased, the wdith of the central maximum

A. increases in both Fresnel and

Fraunhofer diffraction
B. decreases both in Fresnel and

Fraunhofer diffraction
C. increases in Fresnel diffraction but
decreases in Fraunhofer diffraction
D. decreases in Fresnel diffraction but increases in Fraunhofer diffraction.

Answer: C

- Watch Video Solution

19. When light is incident on a doubly refracting crystal, two refracted rays-ordinary
ray (O -ray) and extra ordinary ray (E -ray) are produced. Then
A. both O - ray and E - ray are polarised perpendicular to the plane of incidence B. both O - ray and E - ray are polarised in
the plane of incidence
C. E - ray is polarised perpendicular to the plane of incidence and O - ray in the plane of incidence
D. E - ray is polarised in the plane of incidence and O - ray perpendicular to the plane of incidence

Answer: B

- Watch Video Solution

20. A 20 cm length of a certain solution causes
right-handed rotation of 38°. A 30 cm length
of another solution causes left-handed
rotation of 24°. The optical rotation caused by

30 cm length of a mixture of the above solutions in the volume ratio $1: 2$ is
A. left handed rotation of 14°
B. right handed rotation of 14°
C. left handed rotation of 3°
D. right handed rotation of 3°

Answer: D

D Watch Video Solution

21. A sine wave has an amplitude A and wavelength λ. Let V be the wave velocity and v be the maximum velocity of a particle in the medium. Then
A. $V=v$ if $\lambda=\frac{3 A}{2 \pi}$
B. $V=v$ if $A=2 \pi \lambda$
C. $V=v$ if $A=\frac{\lambda}{2 \pi}$
D. V can not be equal to v

Answer: C

D Watch Video Solution

22. A wave is represented by the equation
$y=a \sin (k x-\omega t) \quad$ is \quad superposed \quad with
another wave to form a stationary wave such
that the point $x=0$ is a node. Then the equation of the other wave is
A. $y=-a \sin (k x+\omega t)$
B. $y=a \sin (k x+\omega t)$
C. $y=a \cos (k x-\omega t)$
D. $y=a \cos (k x+\omega t)$

Answer: D

D Watch Video Solution

23. A plane wave is described by the equation
$y=3 \cos \left(\frac{x}{7}-10 t-\frac{\pi}{6}\right)$.
The maximum velocity of the particles of the medium due to this wave is
A. cross the mean position with different
velocities at the same instant
B. cross the mean position with different
velocities at different instants
C.cross the mean position with same
D. cross the mean position with same velocity

Answer: C

D Watch Video Solution

24. A bus is moving with a velocity of $5 m s^{-1}$
towards a huge wall. The drive sounds a horn of frequency 165 Hz . If the speed of sound in air is $335 \mathrm{~m} / / \mathrm{s}$, the number of beats heard per second by a passenger on the bus will be
A. 3
B. 4
C. 6
D. 5

Answer: D

D Watch Video Solution

25. The speed of sound through a gaseous medium bears a constant ratio with the rms
speed of its molecules. This constant ratio is
A. γ
B. $\sqrt{\frac{2 \gamma}{3}}$
C. $\gamma-1$
D. $\sqrt{\frac{\gamma}{3}}$

Answer: D

- Watch Video Solution

26. A second harmonic has to be generated in
a string of length I stretched between two
rigid supports. The points where the string has to be plucked and touched are
A. pluck at I/4 and touch at 3I/4
B. pluck at I/4 and touch at I/2
C. pluck at I/2 and touch at $3 \mathrm{I} / 4$
D. pluck at I/2 and touch at I/4

Answer: B

D Watch Video Solution

27. In a sonometer wire, the tension is maintained by suspending a 50.7 kg mass from
the free end of the wire. The suspended mass
has a volume of $0.0075 \mathrm{~m}^{3}$. The fundamental frequency of the wire is 260 Hz . If the suspended mass is completely submerged in water, the fundamental frequency will become
(take $g=10 m s^{-2}$)
A. 240 Hz
B. 230 Hz
C. 220 Hz

D. 200 Hz

Answer: A

D Watch Video Solution

28. If the velocity of sound in air is $336 m s^{-1}$,
the maximum length of a closed pipe that would produce a just audible sound is
A. 1.0 m
B. 4.2 m

C. 4.2 mm

D. 4.2 cm

Answer: B

D Watch Video Solution

29. Transverse waves of the same frequency are generated in two steel wires A and B. The diameter of A is twice of B and the tension in A is half that in B. The ratio of the velocities of waves in A and B is
A. $3: 2 \sqrt{2}$
B. $1: 2 \sqrt{2}$
C. $1: \sqrt{2}$
D. 1:2

Answer: B

D Watch Video Solution

30. When we hear a sound, we can identify its
A. overtones present in the sound
B. wavelength of sound
C. amplitude of sound
D. intensity of sound

Answer: A

D Watch Video Solution
31. A charge q is placed at the centre of the
line joining two equal charges Q . The system
of three charges will be in equilibrium if q is equal to
A. $+\frac{Q}{2}$
B. $+\frac{Q}{4}$
C. $-\frac{Q}{4}$
D. $-\frac{Q}{2}$

Answer: C
(Watch Video Solution
32. Two equal negative charges $-q$ are fixed at
the points $(0, \alpha)$ and $(0,-\alpha)$ on the y-axis. A positive charge Q is released from rest at the point $(2 \alpha, 0)$ on the x -axis. The charge Q will
A. execute oscillatory but not simple
harmonic motion
B. execute simple harmonic motion about
the origin
C. move to infinity
D. move to the origin and remain at rest.

Answer: A

D Watch Video Solution

33. A ball of mass 1 g and charge $10^{-8} \mathrm{C}$ moves
from a point A whose potential is 600 V to the point B whose potential is zero. Velcoity of the ball at the point B is $20 \mathrm{cms}^{-1}$. The velocity of the ball at the point is

$$
\text { A. } 2.8 m s^{-1}
$$

B. $2.8 \mathrm{cms}^{-1}$
C. $16.7 m s^{-2}$

D. $16.7 \mathrm{cms}^{-1}$

Answer: D

D Watch Video Solution

34. In a parallel plate capacitor of capacitance

C, a metal sheet is inserted between the plates, parallel to them. The thickness of the sheet is half of the separation between the plates. The capacitance now becomes
A. C/4
B. C/2
C. 2C
D. 4 C

Answer: C

D Watch Video Solution

35. While a capacitor remains connected to a battery, a dielectric slab is slipped between the plates. Then
A. the energy stored in the capacitor decreases
B. the electric field between the plates
increases
C. charges flow from the battery to the
capacitor
D. the potential difference between the plates is charged.

Answer: C

36. An electric bulb is designed to draw power
P_{0} at voltage V_{0}. If the voltage is V , it draws a
power P. Then

$$
\begin{aligned}
& \text { A. } P=\left(\frac{V_{0}}{V}\right)^{2} P_{0} \\
& \text { B. } P=\left(\frac{V}{V_{0}}\right)^{2} P_{0} \\
& \text { C. } P=\left(\frac{V}{V_{0}}\right) P_{0} \\
& \text { D. } P=\left(\frac{V_{0}}{V}\right) P_{0}
\end{aligned}
$$

Answer: B
37. Three resistances of values $2 \Omega, 3 \Omega$ and 6Ω are to be connected to produce an effective resistance of 4Ω. This can be done by connecting
A. 2Ω resistance in parallel with the parallel
combination of 3Ω and 6Ω
B. 2Ω resistance in series with the parallel
combination of 3Ω and 6Ω
C. 3Ω resistance in series with the parallel
combination of 2Ω and 6Ω
D. 6Ω resistance in series with the parallel
combination of 2Ω and 3Ω

Answer: B

- Watch Video Solution

38. Five resistance are connected as shown in
the figure. The equivalent resistance between
A and C is

A. 10.6Ω
B. 15Ω
C. 22Ω
D. $\frac{10}{3} \Omega$
39. A battery supplies 150 W and 196 W power to two resistors of 6Ω and 4Ω when they are connected separately to it. The internal resistance of battery is
A. 2.5Ω
B. 2Ω
C. 1Ω
D. 0.5Ω

Answer: C

D Watch Video Solution

40. A battery of electromotive force E is connected in series with a resistance R and a
voltmeter. An ammeter is connected in parallel with the battery. Then
A. only voltmeter is likely to be damaged
B. only ammeter is likely to be damaged

C. neither the ammeter nor the voltmeter

will be damaged

D. both ammeter and voltmeter are likely
to be damaged.

Answer: C

D Watch Video Solution
41. An electron moving in a circular orbit of
radius makes n rotations per second. The
magnetic field produced at the centre has magnitude:
A. $\frac{\mu_{0} n^{2} e}{2 r}$
B. $\frac{\mu_{0} n e}{2 r}$
C. $\frac{\mu_{0} n e}{2 \pi r}$
D. zero

Answer: B
(Watch Video Solution
42. $A B C D$ is a square loop made of a uniform conducting wire. A current enters the loop at
A and leaves at D. The magnetic field is

A. zero at all points inside the loop
B. zero at all points outside the loop

C. maximum at the centre of the loop

D. zero only at the centre of the loop

Answer: D

D Watch Video Solution

43. A milliammeter of range 10 mA has a coil of resistance 1Ω. To use it as a voltmeter of range 10 V , the resistance that must be connected in series with it is
A. 1000Ω
B. 999Ω
C. 99Ω
D. 9Ω

Answer: B

D Watch Video Solution
44. Magnetic fields at two points on the axis of
a circular coil at a distance of $0.05 m$ and $0.2 m$
from the centre are in the ratio $8: 1$. The radius of the coil is
A. 0.15 m
B. 0.2 m
C. 1.0m
D. 0.1 m

Answer: D
(Watch Video Solution
45. Pick out the statement which is not true?
A. While taking reading with a tangent galvanometer, the readings are repeated
by reversing the current to take care of
the fact that the plane of the coil may
not be exactly along the earth's
magnetic meridian.
B. Measurements with thetangent
galvanometer will be more accurate
when the deflection is around 45°
C. A short magnet is used in a tangent galvanometer since a long magnet
would be heavy and may not easily move
D. A tangent galvanometer cannot be used
in the polar region.

Answer: A::D

D Watch Video Solution
46. The relative permeability is represented by
μ_{r} and susceptibility is denoted by χ for a magnetic substance then for a paramagnetic substance.

> A. $\mu,<1, x>0$
> B. $\mu,<1, x<0$
> C. $\mu,>1, x>0$
> D. $\mu,>1, x<0$

Answer: C

47. A small magnet M is allowed to fall through a fixed horizontal conducting ring R. Let g be the acceleration due to gravity. The acceleration of M will be
A. equal to g when it is below or above R and moving towards or away from R
B. greater than g when it is below R and moving away from R
C. greater than g when it is a above R and moving towards R
D. less than g when it is above R and moving towards R.

Answer: D

D Watch Video Solution

48. In the circuit shown in the figure, neglecting source resistance, the voltmeter
and ammeter readings will respectively be

A. $150 \mathrm{~V}, 8 \mathrm{~A}$
B. $0 \mathrm{~V}, 8 \mathrm{~V}$
C. OV, 3A
D. 150V, 3 A

Answer: B
49. A train is moving towards north with a speed of 180 kilometer per hour. If the vertical component of the earth's magnetic field is
$0.2 \times 10^{-4} T$, the e.m.f induced in the axis 1.5 m long is
A. 54 mV
B. 5.4 mV
C. 1.5 mV
D. 15 mV

D Watch Video Solution

50. The core of a transformer is laminated to reduce
A. magnetic loss
B. copper loss
C. hysteresis loss
D. eddy current loss

Answer: D

- Watch Video Solution

51. Two nucleons are at a separation of $1 \times 10^{-15} \mathrm{~m}$. The net force between them is
F_{1}, if both are neutrons, F_{2} if both are protons and F_{3} if one is a proton and other is a neutron. In such a case.

$$
\text { A. } F_{1}=F_{2}>F_{3}
$$

$$
\text { B. } F_{1}=F_{3}>F_{2}
$$

C. $F_{2}>F_{1}>F_{3}$

$$
\text { D. } F_{1}=F_{2}=F_{3}
$$

Answer: D

D Watch Video Solution

52. The electron in a hydrogen atom makes a transition from $n=n_{1}$ to $n=n_{2}$ state. The time period of the electron in the initial state $\left(n_{1}\right)$ is eigh times that in the final state $\left(n_{2}\right)$.

The possible values of n_{1} and n_{2} are
A. $n_{1}=6, n_{2}=2$

$$
\text { B. } n_{1}=8, n_{2}=1
$$

C. $n_{1}=8, n_{2}=2$
D. $n_{1}=4, n_{2}=2$

Answer: D

D Watch Video Solution

53. If radiation of all wavelengths from
ultraviolet to infrared ispassed through
hydrogen gas at room temperature absorption lines will be observed in the
A. Lyman, Balmer and Paschen series
B. both Lyman and Balmer series
C. Lyman series
D. Balmer series

Answer: A

D Watch Video Solution

54. Let the potential energy of hydrogen atom
in the ground state be zero. Then its total energy in the first excited state will be
A. 27.2 eV
B. 23.8 eV
C. 13.6 eV
D. 10.2 eV

Answer: D

- Watch Video Solution

55. Three fourthers of the active nuclei present
in a redioactive sample decay in $3 / 4 \mathrm{~s}$. The half
life of the sample is

> A. $\frac{3}{8} s$
> B. $\frac{3}{4} s$
> C. $\frac{1}{2} s$
> D. 1 s

Answer: A

D Watch Video Solution

56. Pick out the statement which is not true?

A. UV radiations are used for sterilisation
of water.
B. Shortest wavelength UV radiations are
beneficial to living tissues while longer
wavelengths UV are harmful
C. UV
radiations
have
wavelengths
extending from 200nm to 400nm
D. Sun is a natural source of UV radiations.

D Watch Video Solution

57. The work function of aluminium is 4.125 eV .

The cut off wavelength for photoelectric effect
for aluminium is
A. 150 nm
B. 420 nm
C. 200 nm
D. 300 nm

Answer: D

- Watch Video Solution

58. Pick out the statement which is true
A. Both fission and fusion produce same amount of energy per atom as well as per unit mass
B. The energy released per unit mass is
more in fusion and that per atom is
more in fission.
C. The energy released per atom is more in
fusion than in fission
D. The energy released per unit mass is more in fission than in fusion.

Answer: B

D Watch Video Solution

59. If the forward voltage in a diode in increased, the width of the depletion region.
A. fluctuates
B. does not change
C. decreases
D. increases.

Answer: C

- Watch Video Solution

60. In an n-p-n transistor circuit, the collector current is 10 mA . If 90% of the electrons emitted reach the collector, the emitter current $\left(I_{E}\right)$ and base current $\left(I_{B}\right)$ are given by
A. $I_{E}=-1 m A, I_{B}=9 m A$
B. $I_{E}=9 m A, I_{B}=1 m A$
C. $I_{E}=1 m A, I_{B}=11 m A$
D. $I_{E}=11 m A, I_{B}=1 m A$

Answer: D

