©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2003

Physics

1. The displacement time graph of a particle executing SHM is as shown in the figure. The corresponding force-time graph of the particle

B.

C.

Answer: C

- Watch Video Solution

2. Which of the following sets of concurrent forces may be in equilibrium ?
A. $F_{1}=3 N, F_{2}=5 N, F_{3}=1 N$
B. $F_{1}=3 N, F_{2}=5 N, F_{3}=9 N$
C. $F_{1}=3 N, F_{2}=5 N, F_{3}=6 N$
D. $F_{1}=3 N, F_{2}=5 N, F_{3}=15 \mathrm{~N}$

Answer: C

D Watch Video Solution
3. Young's modulues of perfectly rigid body material is-
A. infinity
B. zero
C. $10 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
D. $1 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$

Answer: A

D Watch Video Solution
4. An ideal monoatomic gas at $27^{\circ} \mathrm{C}$ is compressed adiabatically to $\frac{8}{27}$ times of its
present volume. The increase in temperature of the gas is
A. $375^{\circ} C$
B. $402^{\circ} \mathrm{C}$
C. $175^{\circ} \mathrm{C}$
D. $475^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution

5. A sample of ideal monoatomic gas is taken

 round the cycle $A B C A$ as shown in the figure.The work done during the cycle is

A. 3PV
B. Zero
C. 9PV

D. 6PV

Answer: A

D Watch Video Solution

6. A charge q is placed at the centre of the line
joining two equal charges Q. The system of
three charges will be in equilibrium if q is equal to
A. $+\frac{Q}{4}$

> B. $-\frac{Q}{2}$
> C. $+\frac{Q}{2}$
> D. $-\frac{Q}{4}$

Answer: D

D Watch Video Solution

7. The inward and outward electric flux from a
closed surface are respectively
8×10^{3} and 4×10^{3} units. Then the net charge inside the closed surface is
A. -4×10^{3} coulomb
B. 4×10^{3} coulomb
C. $\frac{-4 \times 10^{3}}{\varepsilon_{0}}$ coulomb
D. $-4 \times 10^{3} \varepsilon_{0}$ coulomb

Answer: D

- Watch Video Solution

8. In the circuit as shown in the figure

The effective capacitance between A and B is
A. $2 \mu F$
B. $3 \mu F$
C. $8 \mu F$
D. $4 \mu F$.

Answer: D

D Watch Video Solution

9. Capacitance of a parallel plate capacitor becomes $4 / 3$ times its original value if a dielectric slab of thickness $t=\frac{d}{2}$ is inserted between the plates [d is the separation between the plates]. The dielectric constant of the slab is
A. 4
B. 8
C. 2
D. 6

Answer: C

D Watch Video Solution

10. A charged particle of mass m and charge q
is released from rest in an uniform electric field \vec{E}. Neglecting the effect of gravity, the
kinetic energy of the charged particle after ' t ' second is

$$
\begin{aligned}
& \text { A. } \frac{2 E^{2} t^{2}}{m q} \\
& \text { B. } \frac{E q^{2} m}{2 t^{2}} \\
& \text { C. } \frac{E q m}{t} \\
& \text { D. } \frac{E^{2} q^{2} t^{2}}{2 m}
\end{aligned}
$$

Answer: D

11. If a ray of light in a denser medium strikes a rarer medium at an angle of incidence i, the angle of reflection and refraction are respectively r and r^{\prime}, if the reflected and refracted rays are at right angles to each other, the critical angle for the given pair of media is
A. $\sin ^{-1}\left(\tan r^{\prime}\right)$
B. $\sin ^{-1}(\tan r)$
C. $\tan ^{-1}(\sin i)$

$$
\text { D. } \cot ^{-1}(\tan i)
$$

Answer: A

D Watch Video Solution

12. Waves that can not be polarized are
A. electromagnetic waves
B. light waves
C. longitudinal waves
D. transverse wave

Answer: C

- Watch Video Solution

13. The phenomenon of re-irradiation of absorbed light is called
A. kerr effect
B. Double refraction
C. Optical activity
D. Dichroism

Answer: C

D Watch Video Solution

14. As a result of interference of two coherent sources of light, energy is
A. redistributed and the distribution does
not vary with time
B. increased

C. redistributed and the distribution

changes with time
D. decreased

Answer: A

D Watch Video Solution

15. There are n_{1} photons of frequency v_{1} in a
beam of light. In an equally energetic beam
there are n_{2} photons of frequency v_{2}. Then the correct relation is
A. $\frac{n_{1}}{n_{2}}=\frac{v_{1}}{v_{2}}$
B. $\frac{n_{1}}{n_{2}}=1$
c. $\frac{n_{1}}{n_{2}}=\frac{v_{1}^{2}}{v_{2}^{2}}$
D. $\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}}$

Answer: D

D Watch Video Solution
16. A bucket full of hot water is kept in a room.

It cools from $75^{\circ} C$ to $70^{\circ} C$ in t_{1} minutes,
from $70^{\circ} C$ to $65^{\circ} C$ in t_{2} minutes and from $65^{\circ} C$ to $60^{\circ} C$ in t_{3} minutes. Then

$$
\begin{aligned}
& \text { A. } t_{1}<t_{2}<t_{3} \\
& \text { B. } t_{1}=t_{2}=t_{3} \\
& \text { C. } t_{1}<t_{2}>t_{3} \\
& \text { D. } t_{1}>t_{2}>t_{3}
\end{aligned}
$$

Answer: A

- Watch Video Solution

17. A fish, looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $4 / 3$ and the fish is 12 cm below the surace of water, the radius of the circle in centimere is

$$
\begin{aligned}
& \text { A. } \frac{12 \times 3}{\sqrt{5}} \\
& \text { B. } 12 \times 3 \times \sqrt{5} \\
& \text { C. } \frac{12 \times 3}{\sqrt{7}} \\
& \text { D. } 12 \times 3 \times \sqrt{7}
\end{aligned}
$$

18.

A given ray of light suffers minimum deviation in an equilateral prism P. additonal prism Q and R of identical shape and material are now added to P, as shown in the figure. The ray will surffer
A. same deviation
B. greater deviation
C. total internal reflection
D. no deviation

Answer: A

- Watch Video Solution

19. The aperture of the objective lens of a telescope is made large so as to
A. increase the resolving power of the telescope
B. increase the magnifying power of the
telescope
C. to focus on distant objects
D. make image aberration less

Answer: A
20. A lamp hanging 4 metres above the table
is lowered by 1 metre. Illumination on the table
A. decreses by 25%
B. increases by 25%
C. decreases by 77.7\%
D. increases by 77.7%

Answer: D

- Watch Video Solution

21. Two wires of the same dimensions but resistivities ρ_{1} and ρ_{2} are connected in series.

The equivalent resistivity of the combination is

$$
\begin{aligned}
& \text { A. } \frac{\rho_{1}+\rho_{2}}{2} \\
& \text { B. } \rho_{1}+\rho_{2} \\
& \text { C. } 2\left(\rho_{1}+\rho_{2}\right) \\
& \text { D. } \sqrt{\rho_{1} \rho_{2}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

22. If a $30 \mathrm{~V}, 90 \mathrm{~W}$ bulb is to be worked in 120 V

line, the resistance to be connected in series with the bulb is
A. 20Ω
B. 10Ω
C. 40Ω
D. 30Ω

Answer: D

- Watch Video Solution

23. The potential difference between the terminals of a cell in open circuit is 2.2 volt.

With resistance of 5 ohm across the terminals of a cell, the terminal difference is 1.8 volt. The internal resistance of the cell is
A. $\frac{9}{10}$ ohm
B. $\frac{10}{9}$ ohm
C. $\frac{7}{12}$ ohm
D. $\frac{12}{7}$ ohm

Answer: B
24.

Thirteen resistances each of resistance R ohm are connected in the circuit as shown in the
figure above. The effective resistance between
A and B is
A. $\frac{4 R}{3} \Omega$
B. $2 R \quad \Omega$
C. $R \Omega$
D. $\frac{2 R}{3} \Omega$

Answer: D

- Watch Video Solution

25.

A group of N cells whose e.m.f. varies directly with the internal resistance as per the equation $E_{n}=1.5 r_{n}$ are connected as shown in the figure above. The current I in the circuit is
A. 5.1 amp
B. 0.51 amp
C. 1.5 amp
D. 0.15 amp

Answer: C

D Watch Video Solution

26. The dimensions of $\frac{a}{b}$ in the equation
$P=\frac{a-t^{2}}{b x}$ where P is pressure, x is distance
and t is time are
A. $M^{2} L T^{-3}$
B. $M T^{-2}$
C. $L T^{-3}$
D. $M L^{3} T^{-1}$

Answer: B
27. Three vectors satisfyi the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$ then \vec{A} is parallel to
А. \vec{C}
B. \vec{B}
с. $\vec{B} \times \vec{C}$
D. $\vec{B} \cdot \vec{C}$

Answer: C

- Watch Video Solution

28. A student is standing at a distance of 50 metre from the bus. As soon as the bus begins its motion with an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$, the student starts running towards the bus with a uniform velocity u. assuming the motion to be along a straight road, the minimum value of u. so that the student is able to catch the bus is
A. $8 m s^{-1}$
B. $5 m s^{-1}$
C. $12 m s^{-1}$

D. $10 m s^{-1}$

Answer: D

D Watch Video Solution

29. For a given velocity, a projectile has the same range R for two angles of projection if
t_{1} and t_{2} are the time of flight in the two cases then
A. $t_{1} t_{2} \propto R$
B. $t_{1} t_{2} \propto R^{2}$
C. $t_{1} t_{2} \propto \frac{1}{R^{2}}$
D. $t_{1} t_{2} \propto \frac{1}{R}$

Answer: A

D Watch Video Solution

30. Weight of a body of mass m decreases by
1% when it is raised to height h above the earth's surface. If the body is taken to a depth
h in a mine, charge in its weight is
A. 0.5% decrease
B. 2% decrease
C. 0.5% increase
D. 1\% increase

Answer: A

D Watch Video Solution

31. The equation of a transverse wave travelling along positive x axis with amplitude
0.2 m , velocity $360 \mathrm{~m} / \mathrm{sec}$ and wave-length 60 m can be written as

$$
\begin{aligned}
& \text { A. } y=0.2 \sin \pi\left[6 t+\frac{x}{60}\right] \\
& \text { B. } y=0.2 \sin \pi\left[6 t-\frac{x}{60}\right] \\
& \text { C. } y=0.2 \sin 2 \pi\left[6 t-\frac{x}{60}\right] \\
& \text { D. } y=0.2 \sin 2 \pi\left[6 t+\frac{x}{60}\right]
\end{aligned}
$$

Answer: C

D Watch Video Solution

32. If v_{m} is the velocity of sound in moist air, v_{d} is the velocity of sound in dry air, under identical conditions of pressure and temperature
A. $v_{m}<v_{d}$
B. $v_{m}>v_{d}$
C. $v_{m} v_{d}=1$
D. $v_{m}=1 v_{d}$

Answer: B
33. if T is the reverberation time of an auditorium of volume V , then
A. $T \propto V^{2}$
B. $T \propto V$
C. $T \propto \frac{1}{V}$
D. $T \propto \frac{1}{V^{2}}$

Answer: B

34. Two wires are fixed in a sonometer. Their tensions are in the ratio 8:1. the lengths are in the ratio $36: 35$. the diameters are in the ratio

4:1. densities of the materials are in the ratio

1:2. if the higher frequency in the setting is

360 Hz , the beat frequency when the two wires are sounded together is
A. 8
B. 5
C. 10
D. 6

Answer: C

D Watch Video Solution

35. A sound source is moving towards stationary listener with $\frac{1}{10}$ th of the speed of sound. The ratio of apparent to real frequency is
A. $\left(\frac{9}{10}\right)^{2}$
B. $\frac{10}{9}$
c. $\frac{11}{10}$
D. $\left(\frac{11}{10}\right)^{2}$

Answer: B

D Watch Video Solution

36. If v is the speed of sound in air then the shortest length of the closed pipe which resonates to a frequency n
A. $\frac{v}{2 n}$
B. $\frac{v}{4 n}$
C. $\frac{4 n}{v}$
D. $\frac{2 n}{v}$

Answer: B

D Watch Video Solution

37. Cavitation is a special application property exhibited only by
A. ultrasonics
B. electromagnetic waves
C. audible sound
D. infrasonics

Answer: B

D Watch Video Solution

38. In Young's double slit experiment, the fringe width is β. If the entire arrangement is
placed in a liquid of refractive index n, the fringe width becomes
A. $n \beta$
B. $\frac{\beta}{n+1}$
C. $\frac{\beta}{n-1}$
D. $\frac{\beta}{n}$

Answer: D
(Watch Video Solution
39. Yellow light is used in signel slit diffraction
experiment with slit width 0.6 mm . if yellow
light is replaced by X -rays then the pattern will reveal that
A. no diffraction pattern
B. that the central maxima narrower
C. less number of fringes
D. more number of fringes.

Answer: A

40. In an interference exeperiment, third bright fringe is obtained at a point on the screen with a light of 700 nm . What should be the wavelength of the light source in order to obtain 5th bright fringe at the same point?
A. 630 nm
B. 500 nm
C. 420 nm
D. 750 nm

Answer: C

D Watch Video Solution

41. A particle of mass M at rest decays into two masses m_{1} and m_{2} with non zero velocities.

The ratio of de-Broglie wavelengths of the particles $\frac{\lambda_{1}}{\lambda_{2}}$ is

$$
\begin{aligned}
& \text { A. } \frac{m_{2}}{m_{1}} \\
& \text { B. } \frac{m_{1}}{m_{2}} \\
& \text { C. } \frac{\sqrt{m_{1}}}{\sqrt{m_{2}}}
\end{aligned}
$$

D. $1: 1$

Answer: D

- Watch Video Solution

42. For an electron in the second orbit of Bohr

Hydrogen atom, the moment of linear momentum is
A. πh
B. $2 \pi h$
C. $\frac{h}{\pi}$
D. $\frac{2 h}{\pi}$

Answer: C

D Watch Video Solution

43. If elements with principal quantum number
$n>4$ were not allowed in nature, the number of possible elements would have been
A. 32
B. 60
C. 64
D. 4

Answer: B

D Watch Video Solution
44. In photoelectric effect, the number of electrons ejected per second is
A. proportional to the wavelength of light
B. proportional to the intensity of light
C. proportional to the work function of the metal
D. proportional to the frequency of light

Answer: B

D Watch Video Solution

45. Half-life of a radioactive substance is 20
minutes. The time between 20% and 80% decay will be
A. 40 minutes
B. 20minutes
C. 25 minutes
D. 30 minutes

Answer: A

D Watch Video Solution
46. The temperature coefficient of resistance
of a wire is $0.00125 /{ }^{\circ} \mathrm{C}$. Its resistance is 1 ohm
at 300 K . its resistance will be 2 ohm at
A. 1127 K
B. 1400 K
C. 1154K
D. 1100K

Answer: A

D Watch Video Solution

47. A potentiometer has uniform potential gradient. The specific resistance of the material of the potentiometer wire is 10^{-7}
ohm-meter and the current passing through it
is 0.1 ampere cross-section of the wire is
$10^{-6} m^{2}$. The potential gradient along the potentiometer wire is
A. $10^{-6} V / m$
B. $10^{-4} V / m$
C. $10^{-8} \mathrm{~V} / \mathrm{m}$
D. $10^{-2} V / m$

Answer: D

48. A fuse wire with radius 1 mm blows at 1.5 ampere. The radius of the fuse wire of the same material to alow at 3 A will be
A. $3^{1 / 4} \mathrm{~mm}$
B. $4^{1 / 3} \mathrm{~mm}$
C. $3^{1 / 2} \mathrm{~mm}$
D. $2^{1 / 3} \mathrm{~mm}$

Answer: D

D Watch Video Solution
49. A wire in the form of a circular loop of one
turn carrying a current produces a magnetic
field B at the centre. If the same wire is looped
into a coil of two turns and carries the same
current, the new value of magnetic induction at the centre is
A. 3 B
B. 5 B
C. 4B
D. 2 B

- Watch Video Solution

50. To send 10% of the main current through a
moving coil galvanometer of resistance 99 ohm the shunt required is
A. 10 ohm
B. 9.9 ohm
C. 9 ohm
D. 11ohm

Answer: D

D Watch Video Solution

51. A hypothetical radioactive nucleus decays
according to the following series:
$A \xrightarrow{\alpha} A_{1} \xrightarrow{\beta-} A_{2} \xrightarrow{\alpha} A_{3} \xrightarrow{\gamma} A_{4}$

If the mass number and atomic number of A are respectively 180 and 72 then the atomic number and mass number of A_{4} will be respectively
A. 69,171
B. 70,172
C. 68,172
D. 69,172

Answer: D

D Watch Video Solution

52. Nucleus A is converted into C through the following reactions
$A \rightarrow B+\alpha \quad \alpha=$ particles
$B \rightarrow C+2 \beta^{-} \quad \beta=$ electron Then
A. A and B are isotopes
B. A and C are isobars
C. A and B are isobars
D. A and C are isotopes.

Answer: D

D Watch Video Solution
53. If m, m_{n} and m_{p} are the masses of ${ }_{Z} X^{A}$ nucleus, neutrol and proton respectively
A. $m=(A-Z) m_{n}+Z m_{p}$
B. $m<(A-Z) m_{n}+Z m_{p}$
C. $m>(A-Z) m_{n}+Z m_{p}$
D. $m=(A-Z) m_{p}+Z m_{n}$

Answer: B

D Watch Video Solution

54. The electrical circuit used to get smooth

DC output from a rectifier circuit is called
A. filter
B. oscillator
C. logic gates
D. amplifier

Answer: A

D Watch Video Solution
55. In the case of constant α and β of a transistor
A. $\alpha=\beta$
B. $\beta<1, \alpha>1$
C. $\alpha \beta=1$
D. $\beta>1, \alpha<1$.

Answer: D
(Watch Video Solution
56. The magnitude flux linked with a coil at any instant 't' is given by $\phi=5 t^{3}-100 t+300$, the e.m.f. induced in the coil at $t=2$ second is
A. 40 V
B. -40 V
C. 300 V
D. 140 V

Answer: C

57.

A charged particle moves along the line $A B$ which lies in the same plane of a circular loop of the conducting wire as shown in the figure above. Then,
A. no current will be induced in the loop
B. the current induced in the loop will
change its direction as the charged

particle pases by

C. the current induced will be anticlockwise
D. the current induced will be clockwise

Answer: D

D Watch Video Solution

58. The time taken by $A C$ of 50 Hz in reaching from zero to the maximum value is
A. $50 \times 10^{-3} \mathrm{sec}$
B. $5 \times 10^{-3} \mathrm{sec}$
C. $1 \times 10^{-2} \mathrm{sec}$
D. $2 \times 10^{-2} \mathrm{sec}$

Answer: C

D Watch Video Solution

59. The ratio of the secodnary to the primary turns in a transformer is 3:2 and the output power is P. neglecting all power losses, the input power must be
A. $\frac{P}{2}$
B. P
C. $\frac{2 P}{3}$
D. $\frac{3 P}{2}$

Answer: B

D Watch Video Solution

60. The material used for permanent magnet
A. low retentivity, high coercivity
B. high retentivity, low coercivity
C. high retentivity, high coercivity
D. low retentivity, low coercivity

Answer: C

D Watch Video Solution

