đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2006

Physics

1. The twinkling effect of star light is due to
A. total internal reflection
B. high dense matter of star
C. constant burning of hydrogen in the star
D. the fluctating apparent position of the
star being slightly different from the actual position of the star.

Answer: C

- Watch Video Solution

2. The width of the diffraction band varies

A. inversely as the wavelength
B. directly as the width of the slit
C. directly as the distance between the slit
and the screen
D. inversely as the size of the source from
which the slit is illuminated.

Answer: C

3. An unploarised beam of intensity I_{0} is incident on a pair of nicols making an angle of 60° with each other. The intensity of light emerging from the pair is
A. I_{0}
B. $I_{0} / 2$
C. $I_{0} / 4$
D. $I_{0} / 8$
4. Look at the graphs (a) to (d) carefully and indicate which of these possibly represents one dimensional motion of a particle ?

C.

D.

Answer: B

D Watch Video Solution

5. A cyclist starts from the centre O of a circular park of radius one kilometre, reaches
the edge P of the park, then cycles along the
circumference and returns to the centre along

QO as shown in the figure. If the round trip
takes ten minutes, the net displacement and average speed of the cyclist (in metre and kilometre per hour) is

A. 0,1
B. $\frac{\pi+4}{2}, 0$
C. $21.4, \frac{\pi+4}{2}$
D. $0,21.4$

Answer: D

D Watch Video Solution

6. What a low flying aircraft passes over head, we sometimes notice a slight shaking of the picture on our TV screen. This is due to
A. diffraction of the signal received from
the antenna
B. interference of the direct signal received
by the antenna with the weak signal
reflected by the passing aircraft
C. change of magnetic flux occurring due
to the passage of aircraft
D. vibrations created by the passage of
aircraft.

- Watch Video Solution

7. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the fist dark fringes on either side of the central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm

D. 2.4 mm

Answer: D

D Watch Video Solution

8. The physical quantity having the dimensions
$\left[M^{-1} L^{-3} T^{3} A^{2}\right]$ is
A. resistance
B. resistivity
C. electrical conductivity

D. electromotive force

Answer: C

D Watch Video Solution

9. A battery of emf 10 V and internal resistance

3 ohm is connected to a resistor. The current in the circuit is 0.5 A . The terminal voltage of the battery when the circuit is closed is
A. 10 V
B. 0 V
C. 1.5 V
D. 8.5 V

Answer: D

D Watch Video Solution

10. A galvanometer coil has a resistance of 15
ohm and gives full scale deflection for a
current of 4 mA . To convert it to an ammeter of range 0 to 6 A ,
A. $10 \mathrm{~m} \Omega$ resistance is to be connected in
parallel to the galvanometer
B. $10 \mathrm{~m} \Omega$ resistance is to be connected in
series with the galvanometer
C. 0.1Ω resistance is to be connected in
parallel to the galvanometer
D. 0.1Ω resistance is to be connected in
series with the galvanometer.

Answer: A

11. The electron drift speed is small and the charge of the electron is also small but still, we obtain large current in a conductor. This is due to
A. the conducting property of the conductor
B. the resistance of the conductor is small
C. the electron number density of the
D. the electron number density of the conductor is enormous.

Answer: D

D Watch Video Solution

12. A straight wire of mass 200 g and length 1.5
m carries a current of 2 A . It is suspended in
mid - air by a uniform horizontal magnetic
field B. The magnitude of B (in tesla) is
(assume $g=9.9 m s^{-2}$)
A. 2
B. 1.5
C. 0.55
D. 0.66

Answer: D

D Watch Video Solution

13. If the circuit shown the value of I in ampere

A. 1
B. 0.60
C. 0.4
D. 1.5

Answer: C
14. A gaussian sphere encloses an electric dipole within it. The total flux across the sphere is
A. zero
B. half that due to a single charge
C. double that due to a single charge
D. dependent on the position of the dipole
15. A parallel plate air capacitor has a capacitance C. When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be
A. 400%
B. 66.6%
C. 33.3%
D. 200%

Answer: B

D Watch Video Solution

16. A comb run through one's dry hair attracts
small bits of paper. This is due to
A. comb is a good conductor
B. paper is a good conductor
C. the atoms in the paper get polarised by
the charged comb

D. the com properties.

Answer: C

D Watch Video Solution

17. The top of the atomosphere is about 400
kV with respect to the surface of earth, corresponding to an electric field that decreases with altitude. Near the surface of earth the field is about $100 \mathrm{~V} m^{-1}$, but still
don't get an electric shock, as we set out of out houses in to open because (assume the house is free from electric field)
A. there is a potential difference between our body and the ground
B. $100 \mathrm{Vm}^{-1}$ is not a high electric field so
that we do not feel the shock
C. our body and the ground forms an
equipotential surface
D. the atmosphere is not a conductor.

Answer: D

D Watch Video Solution

18. The specific charge of a proton is
$9.6 \times 10^{7} \mathrm{C} / \mathrm{kg}$. The specific charge of an alpha particle will be
A. $9.6 \times 10^{7} \mathrm{Ckg}^{-1}$
B. $19.2 \times 10^{7} \mathrm{Ckg}^{-1}$
C. $4.8 \times 10^{7} \mathrm{Ckg}^{-1}$
D. $2.4 \times 10^{7} \mathrm{Ckg}^{-1}$

Answer: C

D Watch Video Solution

19. When light of wavelength 300 nm falls on a photoelectric emitter, photoelectrons are
liberated. For another emitter, light of wavelength 600 nm is sufficient for liberating photoelectrons. The ratio of the work function of the two emitters is
A. $1: 2$
B. $2: 1$
C. $4: 1$
D. 1:4

Answer: B

D Watch Video Solution
20. White light is passed through a dilute
solution of potassium permanganate. The
spectrum produced by the emergent light is
A. band emission spectrum
B. line emission spectrum
C. band absorption spectrum
D. line absorption spectrum

Answer: A

D Watch Video Solution
21. If λ_{1} and λ_{2} are the wavelengths of the first members of the Lyman and Paschen series respectively, then $\lambda_{1}: \lambda_{2}$ is
A. $1: 3$
B. 1: 30
C. 7:50
D. 7:108

Answer: D

D Watch Video Solution

22. Activity of a radioactive sample decreases
to $(1 / 3)^{r d}$ of its original value in 3 days. Then,
in 9 days its activity will become
A. $(1 / 27)$ of the original value
B. $(1 / 9)$ of the original value
C. $(1 / 18)$ of the original value
D. $(1 / 3)$ of the original value

Answer: B

- Watch Video Solution

23. Identify the operation performed by the circuit given below.

A. NOT
B. AND
C. OR
D. NAND

Answer: B
(Watch Video Solution
24. The working of which of the following is similar to that of a slide projector ?
A. electron microscope
B. scanning electron microscope
C. transmission electron microscope
D. atomic force microscope

Answer: C

D Watch Video Solution
25. In a transistor, the collector current is always • less then the emitter current because
A. collector side is reverse biased and the emitter side is forward biased
B. a few electrons are lost in the base and
only remaining ones reach the collector
C. collector being reverse biased, attracts
less electrons

D. collector side is forward biased and

 emitter side is reverse biased.
Answer: A

D Watch Video Solution

26. A transparent cube of 0.21 m edge contains
a small air bubble. Its apparent distance when
viewed through one face of the cube is 0.10 m and when viewed from the opposite face is
0.04 m . The actual distance of the bubble from
the second face of the cube is
A. 0.06 m
B. 0.17 m
C. 0.05 m
D. 0.04 m

Answer: B
(Watch Video Solution
27. White light is incident on one of the refracting surface of a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, the angular separation between these two colours when they emerge out of the prism is
A. 0.9°
B. 0.09°
C. 1.8°
D. 1.2°

Answer: C

D Watch Video Solution

28. For a given lens, the magnification was
found to be twice as large when the object
was 0.15 m distance from it as when the distance was 0.2 m . The focal length of the lens is
A. 0.15 m
B. 0.20 m

C. 0.10 m

D. 0.05 m

Answer: A

D Watch Video Solution

29. To fish under water, viewing obliquely a
fisherman standing on bank of a lake the man
looks.
A. taller than what he actually is
B. shorter than whatt he actually is
C. the same height as he actually is
D. depends on the obliquity

Answer: C

D Watch Video Solution

30. A thin prism P_{1} with angle 4° and made from a glass of refractive index 1.54 is comined with another thin prism P_{2} made from glass of
refractive index 1.72 to produce dispersion without deviation. The angle of the prism P_{2} is
A. 5.33°
B. 4°
C. 3°
D. 2.6°

Answer: C

D Watch Video Solution
31. If white light is used in the Newton's rings experiment, the colour observed in the reflected light is complementary to that observed in the transmitted light through the same point. This is due to
A. 90° change of phase in one of the reflected waves
B. 180° change of phase in one of the reflected waves
C. 145° change of phase in one of the reflected waves
D. 45° change of phase in one of the reflected waves.

Answer: A

- Watch Video Solution

32. Specific rotation of suguar solution is 0.5
deg $\mathrm{m}^{2} / \mathrm{kg} \cdot 200 \mathrm{kgm}^{-3}$ of impure sugar
solution is taken in a sample polarimeter tube
of length 20 cm and optical rotation is found to be 19°. The percentage of purity of sugar is
A. 20%
B. 80%
C. 95%
D. 89%

Answer: A

D View Text Solution
33. A simple pendulum has a length I and the mass of the bob is m. The bob is given a charge q coulomb. The pendulum is suspended between the vertical plate of a charged parallel plate capacitor. If E is the electric field strength between the plates, the time period of the pendulum is given by

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{l}{g}} \\
& \text { B. } 2 \pi \sqrt{\frac{l}{\sqrt{g+\frac{q E}{m}}}} \\
& \text { C. } 2 \pi \sqrt{\frac{l}{\sqrt{g-\frac{q E}{m}}}}
\end{aligned}
$$

D. π
 $\sqrt{\sqrt{g^{2}+\left(\frac{q E}{m}\right)^{2}}}$

Answer: D

D Watch Video Solution

34. A gang capacitor is formed by interlocking a number of plates as shown in figure. The distance between the consecutive plates is
0.885 cm and the overlapping area of the
plates is $5 \mathrm{~cm}^{2}$. The capacity of the unit is

A. $1.06 p F$
B. $4 p F$
C. $6.36 p F$
D. $12.72 p F$
35. A satellite in a circular orbit of radius R has
a period of 4 hours. Another satellite with orbital radius 3 R around the same planet will have a period (in hours)
A. 16
B. 4
C. $4 \sqrt{27}$
D. $4 \sqrt{8}$

- Watch Video Solution

36. The freezer in a refrigerator is located at the top section so that
A. the entire chamber of the refrigerator is cooled quickly due to convection
B. the motor is not heated

C. the heat gained from the environment is

high

D. the heat gained from the environment is

low

Answer: A

D Watch Video Solution
37. Unit of Stefan's constant is
A. $W m^{-2} K^{-1}$
B. $W m K^{-1}$
C. $W m^{-2} K^{-4}$
D. $N m^{-2} K^{4}$

Answer: C

- Watch Video Solution

38. A monoatomic gas is suddenly compressed to $(1 / 8)^{t h}$ of its initial volume adiabatically.

The ratio of its final pressure to the initial
pressure is given the ratio of the specific heat of the given gas to be $5 / 3$).
A. 32
B. $40 / 3$
C. $24 / 5$
D. 8

Answer: A
(Watch Video Solution
39. A Cannot engine takes heat from a reservoir at $627^{\circ} \mathrm{C}$ and rejects heat to sink at $27^{\circ} C$. Its efficiency will be
A. $3 / 5$
B. $1 / 3$
C. $2 / 3$
D. 200/209

Answer: C

D Watch Video Solution
40. A $30 \mathrm{~V}, 90 \mathrm{~W}$ lamp is to be perated on a 120

V D.C. line. For proper glow, a resistor of
ohm should be connected in series with the lamp.
A. 40
B. 10
C. 20
D. 30

Answer: D

41. A battery consists of a variable number (n)
of identical cells, each having an internal
resistance r connected in series. The terminals
of the battery are short - circuited. A graph of
current (I) in the circuit verses the number of
cells will be as shown in figure.
A.

Answer: C

- Watch Video Solution

42. A tuning fork A produces 4 beats per second with another tuning fork B of frequency 320 Hz . On filing one of the prongs of A, 4 beats per second are again heard when sounded with the same fork B. Then the frequency of the fork A before filing is
A. 328 Hz
B. 316 Hz
C. 324 Hz
D. 320 Hz

Answer: B

D Watch Video Solution

43. When the length of the vibrating segment
of a sonometer wire is increased by 1%, the percentage change in its frequency is
A. $\frac{100}{101}$
B. $\frac{99}{100}$
C. 1
D. 2

Answer: C

D Watch Video Solution

44. The sprinkling of water reduces slightly the temperature of a closed room because
A. temperature of water is less than that of
the room
B. specific heat of water is high
C. water has large latent heat of
vaporisation
D. water is a bad conductor of heat

Answer: C

D Watch Video Solution

45. The equation of a simple harmonic wave is
given by $y=5 \sin \frac{\pi}{2}(100 t-x)$ where x and y
are in metre and time is in second. The period of the wave in second will be
A. 0.04
B. 0.01
C. 1
D. 5

Answer: A

D Watch Video Solution

46. The loudness and the pitch of a sound depends on
A. intensity and frequency
B. frequency and number of harmonics
C. intensity and velocity
D. frequency and velocity

Answer: A

D Watch Video Solution
47. For ordinary terrestrial experimants, the observer is an inertial frame in the following cases is
A. a child revolving in a giant wheel
B. a driver in a sports car moving with a constant high speed of $200 \mathrm{kmh}^{-1}$ on a straight rod
C. the pilot of an aeroplane which is taking off

D. a cyclist negotiating a sharp curve

Answer: B

D Watch Video Solution

48. A rectangular vessel when full of water takes 10 minutes to be emptied through an orifice in its bottom. How much time will it take to be emptied when half filled with water
A. 9 minutes
B. 7 minutes
C. 5 minutes
D. 3 minutes

Answer: B
49. If there were no gravity, which of the following will not be there for a fluid?
A. viscosity
B. surface tension
C. pressure
D. Archimedes's upward thrust

Answer: D

D Watch Video Solution
50. In a LCR series circuit, the potential difference between the terminals of the inductance is 60 V , between the terminals of the capacitor is 30 V nd that across the resistance is 40 V . Then, then supply voltage will be equal to
A. 50 V
B. 70 V
C. 130 V
D. 10 V

Answer: A

D Watch Video Solution

51. A proton and helium necleus are shot into
a magnetic field at right angles to the field with same kinetic energy. Then the ratio of their radii is
A. both acquire same energy
B. deuterium accelerates faster
C. helium accelerates faster

D. neither of them is accelerated

Answer: D

D Watch Video Solution

52. A solenoid 1.5 m long and 0.4 cm in diameter possesses 10 turns per cm length. A current of 5 A falls through it. The magnetic field at the axis inside the solenoid is

$$
\text { A. } 2 \pi \times 10^{-3} T
$$

B. $2 \pi \times 10^{-5} T$
C. $4 \pi \times 10^{-2} T$
D. $4 \pi \times 10^{-3} T$

Answer: A

D Watch Video Solution

53. A wire $P Q R$ is bent as shown in figure and is
placed in a region of uniform magnetic field B.

The length of $P Q=Q R=I$. A current I ampere
flows through the wire as shown. The
magnitude of the force on PQ and QR will be

A. BII, 0
B. $2 \mathrm{BII}, 0$
C. O, BII
D. 0,0

Answer: C

D Watch Video Solution

54. A choke is preferred to a resistance for limiting current in AC circuit because
A. choke is cheap
B. there is no wastage of power
C. choke is compact in size
D. choke is a good absorber of heat

Answer: B

- Watch Video Solution

55. A current of A enters one corner P of an equilateral triangle PQR having 3 wires of resistances 2Ω each and leaves by the corner
R. Then the current I_{1} and I_{2} are

A. $2 \mathrm{~A}, 4 \mathrm{~A}$
B. $4 \mathrm{~A}, 2 \mathrm{~A}$
C. 1 A, 2 A
D. $2 \mathrm{~A}, 3 \mathrm{~A}$

Answer: A

- Watch Video Solution

56. To a germanium crystal equal number of aluminum arid indium are added. Then,
A. it remains as intrinsic semiconductor
B. it becomes a n-type semiconductor
C. it becomes a p-type semiconductor
D. it becomes an insulator.

Answer: C

D Watch Video Solution

57. Maximum velocity of the photoelectrons emitted by a metal surface $1.2 \times 10^{6} \mathrm{~ms}^{-1}$.

Assuming the specific charge of the electron to be $1.8 \times 10^{11} \mathrm{Ckg}^{-1}$, the value of the stopping potential in volt will be
A. 2
B. 3
C. 4
D. 6

Answer: C

D Watch Video Solution

58. Which of the following figure represents
the variation of particle momentum and the
associated de - Broglie wavelength ?

C.

D.

Answer: D

- Watch Video Solution

59. Coliform refers to a
A. crystalline solid and amorphous liquid
B. crystalline solid and vapour
C. amorphous liquid and its vapour
D. a crystal immersed in a liquid

Answer: A

- Watch Video Solution

60. If r_{1} and r_{2} are the radii of the atomic nuclei of mass numbers 64 and 125 respectively, then the ratio $\left(r_{1} / r_{2}\right)$ is

> A. $\frac{64}{125}$
> B. $\sqrt{\frac{64}{125}}$
> C. $\frac{5}{4}$
> D. $\frac{4}{5}$

Answer: D

- Watch Video Solution

