©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2007

Physics

1. All components of the electromagnetic
A. energy
B. velocity
C. wavelength
D. frequency

Answer: B

D Watch Video Solution

2. Which one of the following graphs represents the variation of maximum kinetic
energy $\left(E_{K}\right)$ of the emitted electrons with frequency v in photoelectric effect correctly?
A.

B. E_{1}
C.

D.

Answer: D

- Watch Video Solution

3. A and B are two metals with threshold frequencies $1.8 \times 10^{14} \mathrm{~Hz} \quad$ and $\quad 2.2 \times 10^{14}$

Hz.Two identical photons of energy 0.825 eV each are incident on them.Then
photoelectrons are emitted in
(Take $h=6.6 \times 10^{34} \mathrm{Js}$)
A. B alone
B. A alone
C. neither A nor B
D. both A and B

Answer: B

- Watch Video Solution

4. the ionization energy of $\mathrm{Li}^{\wedge}(++)^{\wedge}$ is equal to
A. 9 hcR
B. 6 hcR

C. 2 hcR

D. $h c R$

Answer: A

D Watch Video Solution

5. In the Wheatstone's network given, $P=10 \Omega, Q=20 \Omega, R=15 \Omega, S=30 \Omega$.The current passing through the battery (of
negligible internal resistance) is

A. 0.36 A
B. 0 A
C. 0.18 A
D. 0.72 A

Answer: A

D Watch Video Solution

6. Electrons in a certain energy level $n=n_{1}$,
can emit 3 spectral lines.When they are in
another energy level, $n=n_{2}$. They can emit 6
spectral lines.The orbital speed of the electrons in the two orbits are in the ratio.
A. $4: 3$
B. 3: 4
C. $2: 1$
D. 1:2

Answer: A

- Watch Video Solution

7. A circular coil carrying a certain current produces a magnetic field B_{0} at its centre.The coil is now rewound so as to have 3 turns and
the same current is psses through it.The new magnetic field at the centre is
A. $\frac{B_{0}}{9}$
B. $9 B_{0}$
c. $\frac{B_{0}}{3}$
D. $3 B_{0}$

Answer: B

D Watch Video Solution

8. A proton and a deuteron with the same initial kinetic energy enter a magnetic field in a direction perpendicular to the direction of the
field.The ratio of the radii of the circular trajectories described by them is
A. $1: 4$
B. $1: \sqrt{2}$
C. $1: 1$
D. 1:2

Answer: B
(Watch Video Solution
9. Two tangent galvanometers A and B have coils of radii 8 cm and 16 cm respectively and resistance $80 h m$ each. They are connected in parallel to a cell of emf $4 V$ and negligible internal resistance. The deflections produced are 30° and 60° respectivley. A has 2 turns.

What is the number of turns in B ?
A. 18 turns
B. 12 turns
C. 6 turns

D. 2 turns

Answer: B

D Watch Video Solution

10. A charged particle is moving in a magnetic
field of strength B perpendicular to the direction of the field.If q and m denote the charge and mass of the particle respectively,
then the frequency of rotation of the particle is

> A. $f=\frac{q B}{2 \pi m}$
> B. $f=\frac{q B}{2 \pi m^{2}}$
> C. $f=\frac{2 \pi^{2} m}{q B}$
> D. $f=\frac{2 \pi m}{q B}$

Answer: A

- Watch Video Solution

11. Two identical capacitors each of capacitance $5 \mu F$ are charged to potentials 2
kV and 1 kV respectively.The -ve ends are
connected together. When the +ve ends are also connected together, the loss of energy of the system is
A. 160 J
B. 0 J
C. 5 J
D. 1.25 J

Answer: D

D Watch Video Solution
12. A parallel plate capacitor with air as the dielectric has capacitance C.A slab of dielectric constant K and having the same thickness as the separation between the plates is introduced so as to fill one-fourth of the capacitor as shown in the figure.The new capacitance will be

A. $(K+3) \frac{C}{4}$
B. $(K+2) \frac{C}{4}$
C. $(K+1) \frac{C}{4}$
D. $\frac{K C}{4}$

Answer: A

D Watch Video Solution

13. A current of 5 A is passing through a metallic wire of cross- sectional area
$4 \times 10^{-6} m^{2}$. If the density of charge carries of
the wire is $5 \times 10^{26} \mathrm{~m}^{-3}$, the drift velocity of the electrons will be
A. $1 \times 10^{2} m s^{-1}$
B. $1.56 \times 10^{-2} \mathrm{~ms}^{-1}$
C. $1.56 \times 10^{-3} m s^{-1}$
D. $1 \times 10^{-2} m s^{-1}$

Answer: B

D Watch Video Solution
14. Two bulbs rated $25 \mathrm{~W}-220 \mathrm{~V}$ and 100 W 220 V are connected in series to a 440 V supply.Then,
A. 100 W bulb fuses
B. 25 W bulb fuses
C. both the bulb fuses
D. neither of the bulb fuses.

Answer: B

D Watch Video Solution
15. The current passing through the ideal ammeter in the circuit given below is

A. 1.25 A
B. 1 A
C. 0.75 A
D. 0.5 A .

Answer: D

D Watch Video Solution
16. A and B are two infinitely long straight parallel conductors.C is another straight conductor of length 1 m kept parallel to A and B as shown in the figure.Then the force experienced by C is

A. towards A equal to $0.6 \times 10^{-5} N$
B. towards B equal to $5.4 \times 10^{-5} N$
C. towards A equal to $5.4 \times 10^{-5} N$
D. towards B equal to $0.6 \times 10^{-5} N$

Answer: D

D Watch Video Solution

17. An electric bulb has a rated power of 50 W at 100 V . If it is used on an a.c. Source $200 \mathrm{~V}, 50$

Hz , a choke has to be used in series with it.This

choke should have an inductance of

A. 0.1 mH
B. 1 mH
C. 0.1 H
D. 1.1 H

Answer: D
(Watch Video Solution
18. An inductance of $\left(\frac{200}{\pi}\right) \mathrm{mH}$, a capacitance of $\left(\frac{10^{-3}}{\pi}\right) F$ and a resistance of 10Ω are connected in series with an a.c source
$220 \mathrm{~V}, 50 \mathrm{~Hz}$.The phase angle of the circuit is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: B
19. A stepdown transformer reduces the voltage of a transmission line from 2200 V to 220 V .The power delivered by it is 880 W and its efficiency is 88%.The input current is
A. 4.65 mA
B. 0.0465 A
C. 0.465 A
D. 4.65 A

Answer:

- Watch Video Solution

20. Current in a coil changes from 4 A to zero
in 0.1 second and the emf induced is 100 V .

The self inductance of the coil is
A. 0.25 H
B. 0.4 H
C. 2.5 H
D. 4 H

Answer: C

- Watch Video Solution

21. Newton's corpusclar theory of light failed to explain
A. photoelectric effect
B. polarisation
C. diffraction
D. interference

Answer: A

D Watch Video Solution

22. Light from two coherent sources of the same amplitude A and wavelength λ illuminates the screen. The intensity of the central maximum is I_{0}. If the sources were incoherent, the intensity at the same point will be
A. $4 I_{0}$
B. $2 I_{0}$
C. I_{0}
D. $\frac{I_{0}}{2}$

Answer: D

- Watch Video Solution

23. In Young's double slit experiment with sodium vapour lamp of wavelength 589 nm and the slits 0.589 mm apart, the half angular width of the central maximum is
A. $\sin ^{-1} 0.01$
B. $\sin ^{-1} 0.0001$
C. $\sin ^{-1} 0.001$
D. $\sin ^{-1} 0.1$

Answer: C

D Watch Video Solution

24. A single slit Fraunhoffer diffraction pattern
is formed with white light.For what
wavelength of light the third secondary
maximum in the diffraction pattern coincides
with the second secondary maximum in the pattern of red light of wavelength $6500 \AA$?
A. $4400 \AA$
B. $4100 \AA$
C. $4642.8 \AA$
D. $9100 \AA$

Answer: C

D Watch Video Solution
25. The head lights of a jeep are 1.2 m apart.If
the pupil of the eye of an observer has a diameter of 2 mm and light of wavelength
$5896 \AA$ is used, what should be the maximum distance of the jeep from the observer if the two head lights are just separated?
A. 33.9 km
B. 33.9 m
C. 3.39 km
D. 3.39 m

Answer: C

D Watch Video Solution

26. The de Borglie wavelength of a proton(charge $=1.6 \times 10^{-19} \mathrm{C}$, mass $=$ $\left.1.6 \times 10^{-27} \mathrm{~kg}\right)$ accelerated through a potential difference of 1 kV is
A. $600 \dot{A}$
B. $0.9 \times 10^{-12} \mathrm{~m}$
C. $7 \dot{A}$

D. $0.9 \dot{A}$

Answer: B

D Watch Video Solution

27. A radioactive decay can form an isotope of

the original nucleus with the emission of particles
A. 3β-particles
B. 2β-particles and 1α-particle
C. 2β-particles and 1γ-particle
D. 2α-particles and 1β-particle.

Answer: B

D Watch Video Solution

28. A radioactive substance contains 10,000
nuclei and its half - life period is 20 days.The number of nuclei present at the end of 10 days is
A. 7070
B. 9000
C. 8000
D. 7500

Answer: A

D Watch Video Solution
29. In Raman effect, Stokes' lines are spectral
lines having
A. frequency greater than that of the original line
B. wavelength equal to that of the original
line
C. wavelength less than that of the original

line

D. wavelength greater than that of the
original line

Answer: D

30. The principal of LASER action involves
A. amplification of particular frequency
emitted by the system
B. population inversion
C. stimulated emission
D. all of these

Answer: D
31. A ray of light is travelling from glass to air
(Refractive index of glass = 1.5). The angle of incidence is 50°.The deviation of the ray is
A. 0°
B. 80°
C. $50^{\circ}-\sin ^{-1}\left[\frac{\sin 50^{\circ}}{1.5}\right]$
D. $\sin ^{-1}\left[\frac{\sin 50^{\circ}}{1.5}\right]-50^{\circ}$

Answer: B

D Watch Video Solution
32. A vessel of height 2 d is half- filled with a liquid of refractive index $\sqrt{2}$ and the other half with a liquid of refractive index n.(The given
liquids are immiscible).Then the apparent depth of the inner surface of the bottom of the vessel (neglecting the thickness of the bottom of the vessel) will be

$$
\begin{aligned}
& \text { A. } \frac{n}{d(n+\sqrt{2})} \\
& \text { B. } \frac{d(n+\sqrt{2})}{n \sqrt{2}}
\end{aligned}
$$

> C. $\frac{\sqrt{2} n}{d(n+\sqrt{2})}$
> D. $\frac{n d}{d+\sqrt{2} n}$

Answer: B

- Watch Video Solution

33. A ray of light is incident normally on one
face of a right-angled isosceles prism and then it grazes the hypotenuse. The refractive index of the material of the prism is
A. 1.33
B. 1.414
C. 1.5
D. 1.732

Answer: B

D Watch Video Solution

34. Two thin equiconvex lenses each of focal length 0.2 m are placed coaxially with their
optic centres 0.5 m apart.Then the foacla length of the combination is
A. -0.4 m
B. 0.4 m
C. -0.1 m
D. 0.1 m

Answer: A
(Watch Video Solution
35. A prism of a certain angle deviates the red and blue rays by 8° and 12° respectively.

Another prism of the same angle deviates the red and blue rays by 10° and 14° respectively.

The prisms are small angled and made of different materials. The dispersive powers of the materials of the prisms are in the ratio
A. 5:6
B. 9:11
C. 6:5

D. $11: 9$

Answer: C

D Watch Video Solution

36. When the angle of incidence is 60° on the
surface of a glass slab, it is found that the reflected ray is completely polarised. The velocity of light in glass is
A. $\sqrt{2} \times 10^{8} m s^{-1}$
B. $\sqrt{3} \times 10^{8} m s^{-1}$
C. $2 \times 10^{8} m s^{-1}$
D. $3 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

37. A 20 cm length of a certain solution causes
right-handed rotation of 38°. A 30 cm length
of another solution causes left-handed
rotation of 24°. The optical rotation caused by

30 cm length of a mixture of the above solutions in the volume ratio $1: 2$ is
A. left handed rotation of 14°
B. right handed rotation of 14°
C. left handed rotation of 3°
D. right handed rotation of 3°

Answer: D

D Watch Video Solution

38. Two identical charges repel each other with
a force equal to 10 mgwt when they are 0.6 m
apart in air $\left(g=10 m s^{-2}\right)$. The value of each
charge is
A. $2 m C$
B. $2 \times 10^{-7} \mathrm{mC}$
C. $2 n C$
D. $2 \mu C$

Answer: D

39. The potential of the electric field produced by point charge at any point (x, y, z) is given by
$V=3 x^{2}+5$, where x, y are in are in metres
and V is in volts. The intensity of the electric field at $(-2,1,0)$ is :
A. $+17 \mathrm{Vm}^{-1}$
B. $-17 \mathrm{Vm}^{-1}$
C. $+12 \mathrm{Vm}^{-1}$
D. $-12 \mathrm{Vm}^{-1}$

Answer: D

D Watch Video Solution

40. The potential of a large liquid drop when
eight liquid drops are combined is 20 V . Then, the potential of each single drop was
A. 10 V
B. 7.5 V
C. 5 V
D. 2.5 V

Answer: C

D Watch Video Solution

41. The dimesional formula for impulse is
A. $M L T^{-1}$
B. $M L^{-1} T$
C. $M^{-1} L T^{-1}$

$$
\text { D. } M L^{-1} T^{-1}
$$

42. The maximum height attained by a projectile when thrown at angle θ with the horizontal is found to be half the horizontal range.Then $\theta=$
A. $\tan ^{-1}(2)$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: A

- Watch Video Solution

43. A shell of mass 20 kg at rest explodes into
two fragments whose masses are in the ratio

2:3.The smaller fragment moves with a velocity of $6 \mathrm{~ms}^{-1}$. The kinetic energy of the larger fragment is
A. 96 J
B. 216 J
C. 144 J
D. 360 J

Answer: A

- Watch Video Solution

44. Water rises in plant fibres due to

A. capillarity
B. viscosity
C. fluid pressure
D. osmosis

Answer: A

D Watch Video Solution

45. The acceleration due to gravity becomes
$\left(\frac{g}{2}\right)$ where $g=$ acceleration due to gravity on
the surface of the earht at a height equal to
A. $4 R$
B. $\frac{R}{4}$
C. $2 R$
D. $\frac{R}{2}$

Answer: B

D Watch Video Solution

46. The cylindrical tube of a spray pump has a cross-section of $8 \mathrm{~cm}^{2}$, one end of which has

40 fine holes each of area $10^{-8} m^{2}$.If the liquid
flows inside the tube with a speed of
$0.15 \mathrm{~mm}^{-1}$, the speed with which the liquid is ejected through the holes is
A. $50 m s^{-1}$
B. $5 m s^{-1}$
C. $0.05 m s^{-1}$
D. $0.5 m s^{-1}$

Answer: B
(Watch Video Solution
47. During an adiabatic process, the cube of the pressure is found to be inversely proportional to the fourth power of the volume.Then the ratio of specific heats is
A. 1
B. 1.33
C. 1.67
D. 1.4

Answer: B
48. Two identical rods $A C$ and $C B$ made of two different metals having thermal conductivities in the ratio $2: 3$ are kept in contact with each other at the end C as shown in the figure.A is at $100^{\circ} \mathrm{C}$ and B is at $25^{\circ} \mathrm{C}$.Then the junction C is at

$$
\text { A. } 55^{\circ} \mathrm{C}
$$

B. $60^{\circ} \mathrm{C}$
C. $75^{\circ} \mathrm{C}$
D. $50^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

49. $310 J$ of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required to raise the
temperature of the gas through the same range at constant volume is
A. 384 J
B. 144 J
C. 276 J
D. 452 J

Answer: B
(Watch Video Solution
50. A Carnot's engine operates with source at $127^{\circ} \mathrm{C}$ and sink at $27^{\circ} \mathrm{C}$.If the source supplies

40 kJ of heat energy, the work done by the engine is
A. 30 kJ
B. 10 kJ
C. 4 kJ
D. 1 kJ

Answer: B
51. The maximum particle velocity in a wavemotion is half the wave velocity.Then the amplitude of the wave is equal to

> A. $\frac{\lambda}{4 \pi}$
> B. $\frac{2 \lambda}{\pi}$
> C. $\frac{\lambda}{2 \pi}$
D. λ

Answer: A
52. The ratio of the velocity of sound in hydrogen $\left(\gamma=\frac{7}{5}\right)$ to that in helium $\left(\gamma=\frac{5}{3}\right)$ at the same temperature is

$$
\left(\rho_{1}: \rho_{2}=1: 2\right)
$$

A. $\sqrt{\frac{5}{42}}$
B. $\sqrt{\frac{5}{21}}$
C. $\frac{\sqrt{42}}{5}$
D. $\frac{\sqrt{21}}{5}$

Answer: C

D Watch Video Solution

53. An engine is moving towards a wall with a velocity $50 \mathrm{~ms}^{-1}$ emits a note of 1.2 kHz . Speed of sound in air $=350 m s^{-1}$. The frequency of the note after reflection from the wall as heard by the driver of the engine is
A. 2.4 kHz
B. 0.24 kHz

C. 1.6 kHz

D. 1.2 kHz

Answer: C

D Watch Video Solution

54. A glass tube is open at both the ends.A tuning fork of frequency f resonates with the air column inside the tube.Now the tube is placed vertically inside water so that half the length of the tube is filled with water.Now the
air column inside the tube is in unison with another fork of frequency f^{\prime}. Then
A. $f^{\prime}=f$
B. $f^{\prime}=4 f$
C. $f^{\prime}=2 f^{\prime}$
D. $f^{\prime}=\frac{f}{2}$

Answer: A
(Watch Video Solution
55. The surface temperature at the sun which
has maximum energy emission at 500 nm is
6000 K . The temperature of a star which has maximum energy emission at 400 nm will be
A. 8500 K
B. 4500 K
C. 7500 K
D. 6500 K

Answer: C
56. The volume of a nucleus is directly proportional to
(where $\mathrm{A}=$ mass number of the nucleus)
A. A
B. A^{3}
C. \sqrt{A}
D. $A^{\frac{1}{3}}$

Answer: A
57. An electron is
A. Hardon
B. Baryon
C. a nucleon
D. a lepton

Answer: D

- Watch Video Solution

58. Minority carriers in a p-type semiconductor are
A. free electrons
B. holes
C. neither holes nor free electrons
D. both holes and free electrons

Answer: A
(D) Watch Video Solution
59. In a reverse biased diode when the applied
voltage changes by 1 V , the current is found to
change by $0.5 \mu A$. The reverse bias resistance of the diode is
A. $2 \times 10^{5} \Omega$
B. $2 \times 10^{6} \Omega$
C. 200Ω
D. 2Ω

Answer: B

60. The truth table given below is for

(A and B are the inputs, Y is the output)
A. NOR
B. AND

C. XOR

D. NAND

Answer: D

(D) Watch Video Solution

