

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2007

Physics

1. All components of the electromagnetic spectrum in vacuum have the same

- A. energy
- B. velocity
- C. wavelength
- D. frequency

Answer: B

Watch Video Solution

2. Which one of the following graphs represents the variation of maximum kinetic

energy $\left(E_K\right)$ of the emitted electrons with

frequency \boldsymbol{v} in photoelectric effect correctly?

Answer: D

Watch Video Solution

3. A and B are two metals with threshold frequencies 1.8×10^{14} Hz and 2.2×10^{14} Hz. Two identical photons of energy 0.825 eV each are incident on them. Then photoelectrons are emitted in (Take $h=6.6 \times 10^{34}$ Js)

A. B alone

- B. A alone
- C. neither A nor B
- D. both A and B

Answer: B

Watch Video Solution

- **4.** the ionization energy of Li ^(++)` is equal to
 - A. 9 hcR
 - B. 6 hcR

C. 2 hcR

D. hcR

Answer: A

Watch Video Solution

5. In the Wheatstone's network given, $P=10\Omega,\,Q=20\Omega,\,R=15\Omega,\,S=30\Omega.$ The current passing through the battery (of

negligible internal resistance) is

 $\mathsf{A.}\ 0.36\ \mathsf{A}$

 $\mathsf{B.}\,0\,\mathsf{A}$

 $\mathsf{C.}\,0.18\,\mathsf{A}$

$\mathsf{D.}\ 0.72\ \mathsf{A}$

Answer: A

Watch Video Solution

6. Electrons in a certain energy level $n=n_1$, can emit 3 spectral lines.When they are in another energy level, $n=n_2$.They can emit 6 spectral lines.The orbital speed of the electrons in the two orbits are in the ratio.

A. 4:3

B. 3:4

C. 2:1

D. 1: 2

Answer: A

Watch Video Solution

7. A circular coil carrying a certain current produces a magnetic field B_0 at its centre. The coil is now rewound so as to have 3 turns and the same current is psses through it. The new magnetic field at the centre is

A.
$$\frac{B_0}{9}$$

B. $9B_0$

$$\mathsf{C.}\,\frac{B_0}{3}$$

D. $3B_0$

Answer: B

Watch Video Solution

8. A proton and a deuteron with the same initial kinetic energy enter a magnetic field in a direction perpendicular to the direction of the field. The ratio of the radii of the circular trajectories described by them is

- A. 1:4
- B. 1: $\sqrt{2}$
- C. 1:1
- D. 1: 2

Answer: B

Watch Video Solution

9. Two tangent galvanometers A and B have coils of radii 8cm and 16cm respectively and resistance 8ohm each. They are connected in parallel to a cell of emf 4V and negligible internal resistance. The deflections produced are 30° and 60° respectivley. A has 2 turns. What is the number of turns in B?

A. 18 turns

B. 12 turns

C. 6 turns

D. 2 turns

Answer: B

Watch Video Solution

10. A charged particle is moving in a magnetic field of strength B perpendicular to the direction of the field. If q and m denote the charge and mass of the particle respectively, then the frequency of rotation of the particle is

A.
$$f=rac{qB}{2\pi m}$$
B. $f=rac{qB}{2\pi m^2}$

C.
$$f=rac{2\pi m^2}{qB}$$

D.
$$f=rac{2\pi m}{qB}$$

Answer: A

Watch Video Solution

11. Two identical capacitors each of capacitance $5\mu F$ are charged to potentials 2

kV and 1 kV respectively.The -ve ends are

connected together. When the +ve ends are also connected together, the loss of energy of the system is

- A. 160 J
- B. 0 J
- C. 5 J
- D. $1.25 \, J$

Answer: D

Watch Video Solution

12. A parallel plate capacitor with air as the dielectric has capacitance C.A slab of dielectric constant K and having the same thickness as the separation between the plates is introduced so as to fill one-fourth of the capacitor as shown in the figure. The new capacitance will be

A.
$$(K+3)rac{C}{4}$$

B.
$$(K+2)rac{C}{4}$$

$$\mathsf{C.}\,(K+1)\frac{C}{4}$$

D.
$$\frac{KC}{4}$$

Answer: A

Watch Video Solution

13. A current of 5 A is passing through a metallic wire of cross- sectional area $4 imes 10^{-6} m^2$. If the density of charge carries of the wire is $5 \times 10^{26} m^{-3}$, the drift velocity of the electrons will be

A.
$$1 imes10^2 ms^{-1}$$

B.
$$1.56 imes10^{-2}ms^{-1}$$

C.
$$1.56 imes10^{-3}ms^{-1}$$

D.
$$1 imes10^{-2}ms^{-1}$$

Answer: B

Watch Video Solution

14. Two bulbs rated 25 W - 220V and 100 W-220 V are connected in series to a 440 V supply.Then,

- A. 100 W bulb fuses
- B. 25 W bulb fuses
- C. both the bulb fuses
- D. neither of the bulb fuses.

Answer: B

Watch Video Solution

15. The current passing through the ideal ammeter in the circuit given below is

A. 1.25 A

B. 1 A

 $\mathsf{C.}\ 0.75\ \mathsf{A}$

 $D.\,0.5\,A.$

Answer: D

Watch Video Solution

16. A and B are two infinitely long straight parallel conductors.C is another straight conductor of length 1 m kept parallel to A and B as shown in the figure.Then the force experienced by C is

A. towards A equal to $0.6 imes 10^{-5} N$

B. towards B equal to $5.4 imes 10^{-5} N$

C. towards A equal to $5.4 imes 10^{-5} N$

D. towards B equal to $0.6 imes 10^{-5} N$

Answer: D

Watch Video Solution

17. An electric bulb has a rated power of 50 W at 100 V. If it is used on an a.c. Source 200 V. 50

Hz, a choke has to be used in series with it. This choke should have an inductance of

- $\mathsf{A.}\ 0.1\ \mathsf{mH}$
- B. 1 mH
- $\mathsf{C.}\ 0.1\ \mathsf{H}$
- D. 1.1 H

Answer: D

Watch Video Solution

18. An inductance of $\left(\frac{200}{\pi}\right)$ mH, a capacitance of $\left(\frac{10^{-3}}{\pi}\right)$ F and a resistance of 10Ω are connected in series with an a.c source 220 V, 50 Hz.The phase angle of the circuit is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.}\;\frac{\pi}{2}$$

D.
$$\frac{\pi}{3}$$

Answer: B

19. A stepdown transformer reduces the voltage of a transmission line from 2200V to 220V. The power delivered by it is 880 W and its efficiency is 88%. The input current is

 $\mathsf{A.}\ 4.65\ \mathsf{mA}$

B. 0.0465 A

 $\mathsf{C.}\ 0.465\ \mathsf{A}$

 $\mathsf{D.}\ 4.65\ \mathsf{A}$

Answer:

Watch Video Solution

20. Current in a coil changes from 4 A to zero in 0.1 second and the emf induced is 100 V.

The self inductance of the coil is

 $\mathsf{A.}\ 0.25\ \mathsf{H}$

 $B. \, 0.4 \, H$

 $\mathsf{C.}\ 2.5\ \mathsf{H}$

D. 4 H

Answer: C

Watch Video Solution

21. Newton's corpusclar theory of light failed to explain

- A. photoelectric effect
- B. polarisation
- C. diffraction
- D. interference

Answer: A

Watch Video Solution

22. Light from two coherent sources of the same amplitude A and wavelength λ illuminates the screen. The intensity of the central maximum is I_0 . If the sources were incoherent, the intensity at the same point will be

A. $4I_0$

B. $2I_0$

 $\mathsf{C}.\,I_0$

D. $\frac{I_0}{2}$

Answer: D

Watch Video Solution

23. In Young's double slit experiment with sodium vapour lamp of wavelength 589 nm and the slits 0.589 mm apart, the half angular width of the central maximum is

- A. $\sin^{-1} 0.01$
- B. $\sin^{-1} 0.0001$
- $C. \sin^{-1} 0.001$
- $D. \sin^{-1} 0.1$

Answer: C

Watch Video Solution

24. A single slit Fraunhoffer diffraction pattern is formed with white light.For what wavelength of light the third secondary maximum in the diffraction pattern coincides with the second secondary maximum in the pattern of red light of wavelength 6500 Å?

- A. 4400 Å
- B. 4100 Å
- C. 4642.8 Å
- D. 9100 Å

Answer: C

Watch Video Solution

25. The head lights of a jeep are 1.2 m apart.If the pupil of the eye of an observer has a diameter of 2 mm and light of wavelength 5896 Å is used, what should be the maximum distance of the jeep from the observer if the two head lights are just separated?

- A. 33.9 km
- $B.\,33.9~\mathrm{m}$
- $\mathsf{C.}\ 3.39\ \mathsf{km}$
- $D. 3.39 \, m$

Answer: C

Watch Video Solution

- **26.** The de Borglie wavelength of a proton(charge = 1.6×10^{-19} C, mass = 1.6×10^{-27} kg) accelerated through a potential difference of 1 kV is
 - A. 600 $\overset{\cdot}{A}$
 - $\mathrm{B.}~0.9\times10^{-12}~\mathrm{m}$
 - C. 7 $\stackrel{.}{A}$

D. 0.9A

Answer: B

Watch Video Solution

27. A radioactive decay can form an isotope of the original nucleus with the emission of particles

A. 3 β - particles

B. 2 β - particles and 1 α - particle

C. 2 β - particles and 1 γ - particle

D. 2 α -particles and 1 β - particle.

Answer: B

Watch Video Solution

28. A radioactive substance contains 10, 000 nuclei and its half - life period is 20 days. The number of nuclei present at the end of 10 days is

- A. 7070
- B. 9000
- C. 8000
- D. 7500

Answer: A

Watch Video Solution

29. In Raman effect, Stokes' lines are spectral lines having

A. frequency greater than that of the original line

B. wavelength equal to that of the original line

C. wavelength less than that of the original line

D. wavelength greater than that of the original line

Answer: D

30. The principal of LASER action involves

A. amplification of particular frequency emitted by the system

B. population inversion

C. stimulated emission

D. all of these

Answer: D

31. A ray of light is travelling from glass to air (Refractive index of glass = 1.5). The angle of incidence is 50° . The deviation of the ray is

A.
$$0^{\circ}$$

B.
$$80^{\circ}$$

C.
$$50^{\circ} - \sin^{-1} \left\lceil \frac{\sin 50^{\circ}}{1.5} \right
ceil$$

D.
$$\sin^{-1} \left[rac{\sin 50^\circ}{1.5}
ight] - 50^\circ$$

Answer: B

32. A vessel of height 2d is half-filled with a liquid of refractive index $\sqrt{2}$ and the other half with a liquid of refractive index n.(The given liquids are immiscible).Then the apparent depth of the inner surface of the bottom of the vessel (neglecting the thickness of the bottom of the vessel) will be

A.
$$\dfrac{n}{d\Big(n+\sqrt{2}\Big)}$$
B. $\dfrac{d\Big(n+\sqrt{2}\Big)}{n\sqrt{2}}$

C.
$$\dfrac{\sqrt{2}n}{d\Big(n+\sqrt{2}\Big)}$$
 D. $\dfrac{nd}{d+\sqrt{2}n}$

Answer: B

Watch Video Solution

33. A ray of light is incident normally on one face of a right-angled isosceles prism and then it grazes the hypotenuse. The refractive index of the material of the prism is

- A. 1.33
- B. 1.414
- C. 1.5
- D. 1.732

Answer: B

Watch Video Solution

34. Two thin equiconvex lenses each of focal length $0.2\ \mathrm{m}$ are placed coaxially with their

optic centres 0.5 m apart.Then the foacla

length of the combination is

 $\mathsf{A.}-0.4~\mathsf{m}$

 $B.\,0.4\,\mathrm{m}$

 $\mathsf{C.}-0.1~\mathsf{m}$

 $\mathsf{D.}\ 0.1\ \mathsf{m}$

Answer: A

35. A prism of a certain angle deviates the red and blue rays by 8° and 12° respectively. Another prism of the same angle deviates the red and blue rays by 10° and 14° respectively. The prisms are small angled and made of different materials. The dispersive powers of the materials of the prisms are in the ratio

- A. 5:6
- B. 9:11
- C. 6:5

D. 11:9

Answer: C

Watch Video Solution

36. When the angle of incidence is 60° on the surface of a glass slab, it is found that the reflected ray is completely polarised. The velocity of light in glass is

A. $\sqrt{2} imes 10^8 ms^{-1}$

B.
$$\sqrt{3} imes 10^8 ms^{-1}$$

C.
$$2 imes10^8 ms^{-1}$$

D.
$$3 imes10^8 ms^{-1}$$

Answer: B

Watch Video Solution

37. A 20cm length of a certain solution causes right-handed rotation of 38° . A 30cm length of another solution causes left-handed rotation of 24° . The optical rotation caused by

30cm length of a mixture of the above solutions in the volume ratio $1\colon 2$ is

A. left handed rotation of 14°

B. right handed rotation of 14°

C. left handed rotation of 3°

D. right handed rotation of 3°

Answer: D

38. Two identical charges repel each other with a force equal to 10 mgwt when they are $0.6~{\rm m}$ apart in air $\left(g=10ms^{-2}\right)$. The value of each charge is

A.
$$2mC$$

B.
$$2 imes 10^{-7} mC$$

$$\mathsf{C}.\,2nC$$

D.
$$2\mu C$$

Answer: D

Water video Solution

39. The potential of the electric field produced by point charge at any point (x, y, z) is given by $V=3x^2+5$, where x ,y are in are in metres and V is in volts. The intensity of the electric field at (-2,1,0) is :

A.
$$+17Vm^{-1}$$

B.
$$-17Vm^{-1}$$

$$\mathsf{C.} + 12Vm^{\,-1}$$

D.
$$-12Vm^{-1}$$

Answer: D

Watch Video Solution

40. The potential of a large liquid drop when eight liquid drops are combined is 20 V. Then, the potential of each single drop was

A. 10 V

B. 7.5V

C. 5 V

D. 2.5V

Answer: C

Watch Video Solution

41. The dimesional formula for impulse is _____

A.
$$MLT^{\,-1}$$

B.
$$ML^{-1}T$$

C.
$$M^{-1}LT^{-1}$$

D.
$$ML^{-1}T^{-1}$$

Answer: A

42. The maximum height attained by a projectile when thrown at an angle θ with the horizontal is found to be half the horizontal range. Then $\theta=$

A.
$$\tan^{-1}(2)$$

B.
$$\frac{\pi}{6}$$

C.
$$\frac{\pi}{4}$$

D.
$$\tan^{-1}\left(\frac{1}{2}\right)$$

Answer: A

Watch Video Solution

43. A shell of mass 20 kg at rest explodes into two fragments whose masses are in the ratio 2:3. The smaller fragment moves with a velocity of $6ms^{-1}$. The kinetic energy of the larger fragment is

A. 96 J

B. 216 J

C. 144 J

D. 360 J

Answer: A

Watch Video Solution

44. Water rises in plant fibres due to

A. capillarity

B. viscosity

C. fluid pressure

D. osmosis

Answer: A

Watch Video Solution

45. The acceleration due to gravity becomes

$$\left(\frac{g}{2}\right)$$
 where g = acceleration due to gravity on

the surface of the earht at a height equal to

A. 4R

B. $\frac{R}{4}$

 $\mathsf{C}.\,2R$

D. $\frac{R}{2}$

Answer: B

Watch Video Solution

46. The cylindrical tube of a spray pump has a cross-section of $8cm^2$, one end of which has 40 fine holes each of area $10^{-8}m^2$. If the liquid flows inside the tube with a speed of

 $0.15mm^{-1}$, the speed with which the liquid is ejected through the holes is

A.
$$50ms^{\,-\,1}$$

B.
$$5ms^{-1}$$

C.
$$0.05 ms^{-1}$$

D.
$$0.5ms^{-1}$$

Answer: B

47. During an adiabatic process, the cube of the pressure is found to be inversely proportional to the fourth power of the volume. Then the ratio of specific heats is

- **A.** 1
- B. 1.33
- C. 1.67
- D. 1.4

Answer: B

Istch Wideo Solution

Valcii Video Solution

48. Two identical rods AC and CB made of two different metals having thermal conductivities in the ratio $2\colon 3$ are kept in contact with each other at the end C as shown in the figure.A is at $100^\circ C$ and B is at 25° C.Then the junction C is at

A. $55^{\circ}C$

B. $60^{\circ}C$

C. $75^{\circ}C$

D. 50° C

Answer: A

Watch Video Solution

49. 310J of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from $25^{\circ}C$ to $35^{\circ}C$. The amount of heat required to raise the

temperature of the gas through the same range at constant volume is

- A. 384 J
- B. 144 J
- C. 276 J
- D. 452 J

Answer: B

50. A Carnot's engine operates with source at $127^{\circ}\,C$ and sink at $27^{\circ}\,C$. If the source supplies 40 kJ of heat energy, the work done by the engine is

- A. 30 kJ
- B. 10 kJ
- C. 4 kJ
- D. 1 kJ

Answer: B

Watch video Solution

51. The maximum particle velocity in a wavemotion is half the wave velocity. Then the amplitude of the wave is equal to

A.
$$\frac{\lambda}{4\pi}$$

$$3. \frac{2\lambda}{\pi}$$

C.
$$\frac{\lambda}{2\pi}$$

$$\mathrm{D.}\,\lambda$$

Answer: A

52. The ratio of the velocity of sound in hydrogen $\left(\gamma=\frac{7}{5}\right)$ to that in helium $\left(\gamma=\frac{5}{3}\right)$ at the same temperature is $(\rho_1\!:\!\rho_2=1\!:\!2)$

A.
$$\sqrt{\frac{5}{42}}$$

$$\mathsf{B.}\;\sqrt{\frac{5}{21}}$$

$$\mathsf{C.} \; \frac{\sqrt{42}}{5}$$

D.
$$\frac{\sqrt{21}}{5}$$

Answer: C

Watch Video Solution

53. An engine is moving towards a wall with a velocity $50ms^{-1}$ emits a note of 1.2kHz. Speed of sound in air = $350ms^{-1}$. The frequency of the note after reflection from the wall as heard by the driver of the engine is

A. $2.4~\mathrm{kHz}$

B.0.24 kHz

 $\mathsf{C.}\ 1.6\ \mathsf{kHz}$

 $D.\,1.2\,\mathrm{kHz}$

Answer: C

Watch Video Solution

54. A glass tube is open at both the ends.A tuning fork of frequency f resonates with the air column inside the tube.Now the tube is placed vertically inside water so that half the length of the tube is filled with water.Now the

air column inside the tube is in unison with another fork of frequency f'. Then

A.
$$f'=f$$

B.
$$f'=4f$$

$$\mathsf{C}.\,f'=2f'$$

D.
$$f'=rac{f}{2}$$

Answer: A

55. The surface temperature at the sun which has maximum energy emission at 500 nm is 6000 K. The temperature of a star which has maximum energy emission at 400 nm will be

- A. 8500 K
- B. 4500 K
- C. 7500 K
- D. 6500 K

Answer: C

Water Video Solution

56. The volume of a nucleus is directly proportional to

(where A = mass number of the nucleus)

A. A

 $B.A^3$

 $\operatorname{C.}\sqrt{A}$

D. $A^{\frac{1}{3}}$

Answer: A

57. An electron is

- A. Hardon
- B. Baryon
- C. a nucleon
- D. a lepton

Answer: D

58. Minority carriers in a p-type semiconductor are

- A. free electrons
- B. holes
- C. neither holes nor free electrons
- D. both holes and free electrons

Answer: A

59. In a reverse biased diode when the applied voltage changes by 1 V, the current is found to change by $0.5\mu A$. The reverse bias resistance of the diode is

A.
$$2 imes 10^5 \Omega$$

B.
$$2 imes 10^6 \Omega$$

$$\mathrm{C.}\ 200\Omega$$

D.
$$2\Omega$$

Answer: B

60. The truth table given below is for

(A and B are the inputs, Y is the output)

A. NOR

B. AND

C. XOR

D. NAND

Answer: D

