# ©゙’ doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - KCET PREVIOUS YEAR PAPERS

## KARNATAKA CET 2008

Physics

1. If $\mu_{0}$ is permeability of free space and $\varepsilon_{0}$ is
permittivity of free space, the speed of light in
vacuum is given by
A. $\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}$
B. $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$
C. $\sqrt{\mu_{0} \varepsilon_{0}}$
D. $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$

## Answer: A

## - Watch Video Solution

2. In Young's double slit experiment, a third slit
is made in between the double sits. Then
A. firinges of unewual width are formed
B. contrast between bright and dark
fringes is reduced
C. intensity of fringes totally disappeans

D. only bright is observed on the screen

## Answer: B

## - Watch Video Solution

3. The maximum number of possible interference maxima when slit separation is equal to 4 times the wevelenght of light used in a double slit experiment is
A. 8
B. 4
C. $\infty$
D. 9

## Answer:

4. In a Fraunhofer diffraction experiment at single slit using a light of wavelength 400 nm , the first minimum is formed at an angle of $30^{\circ}$
. The direction $\theta$ of the first secondary maximum is given by

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(1 / 4) \\
& \text { B. } \tan ^{-1}(2 / 3) \\
& \text { C. } \sin ^{-1}(2 / 3) \\
& \text { D. } \sin ^{-1}(3 / 4)
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

5. Maximum diffraction takes place in a given
slit for
A. infrared light
B. radio waves
C. $\gamma$ rays
D. ultravolet light

## Answer:

## - Watch Video Solution

6. Solar spectrum is an example for
A. band absorption spectrum
B. line absorption spectrum
C. line emission spectrum
D. continuous emission spectrum

## - Watch Video Solution

7. When a piece of metal is illuminated by a monochromatics light of wavelength $\gamma$ then stopping potential is $3 V_{s}$. When same surface is illuminated by light of wavelength $2 \gamma$, then stopping potential becomes $V_{s}$. The value of threshold wavelength for photoelectric emission will be
A. $(4 \gamma) / 3$
B. $6 \gamma$
C. $4 \gamma$
D. $8 \gamma$

## Answer: C

## - Watch Video Solution

8. The maximum kinetic energy of emitted electrons in a photoelectric effect does not depend upon
A. intensity

## B. work function

C. wavelength
D. frequency

## Answer: A

## - Watch Video Solution

9. The ration of minimum wavelengths of Lyman and Balmer series will be
A. 5
B. 10
C. 1.25
D. 0.25

Answer: D

## D Watch Video Solution

10. Hydrogen atom does not emit X-rays
because
A. its size is very small
B. energy levels in it are very close to each other
C. it contains only a single electron
D. energy levels in it are far apart

## Answer: C

## D Watch Video Solution

11. A certain current on passing through a galvanometer produces a deflection of 100 divisions. When a shunt of one ohm is
.The galvanometer resistance is
A. $10 \Omega$
B. $9.9 \Omega$
C. $100 \Omega$
D. $99 \Omega$

Answer: D
( Watch Video Solution
12. Two similar circular loops carry equal currents in the same direction. On moving the coils further apart , the electric current will
A. remain unaltered
B. increases in one and decreases in the second
C. increase in both
D. decrease in both

Answer: C
13. The value of alternating emf $E$ in the given circuit will be

A. 100 V
B. 20 V
C. 220 V
D. 140 V

Answer: A

## D Watch Video Solution

14. A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and $50 \%$ of power is lost, then the current in the secondary will be
A. $0.25 A$
B. 0.5 A
C. $2.5 A$
D. $5 A$

## Answer: A

## D Watch Video Solution

15. For a series $L C R$ circuit at reasonance, the statement which is not true is
A. wattless current is zero
B. power factor is zero
C. peak energy stred by a capacitor = peak energy stored by an inductor
D. average power = apparemt power

## Answer: B

## D Watch Video Solution

16. An unpolarised beam of intensity $I_{0}$ falls on
a polaroid. The intensity of the emergent light
is
A. $I_{0} / 4$
B. zero
C. $I_{0} / 2$
D. $I_{0}$

Answer: C

## - Watch Video Solution

17. Which of the following is a dichroic crysral?
A. Mica

## B. Selenite

## C. Quartz

D. Tourmaline

## Answer: D

## D Watch Video Solution

18. Two identical metal spheres with +12
$\mu C$ and $-8 \mu C$ are kept at certain distance
in air. They are brought into contact and then
kept at the same distance. The ratio of the
magnitudes of electrostatic forces between
them before and after contact is
A. $24: 1$
B. $4: 1$
C. $12: 1$
D. $8: 1$

Answer: A
( Watch Video Solution
19. A small conducing sphere of radius $r$ is
lying concentrically inside a bigger hollow conducting sphere of radius R . The bigger and smaller spheres are charged with Q and q $(Q>q)$ and are insulated from each other.

The potential difference between the spheres
will be

$$
\begin{aligned}
& \text { A. } \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r}-\frac{Q}{R}\right) \\
& \text { B. } \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q}{R}+\frac{q}{r}\right) \\
& \text { C. } \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r}-\frac{q}{R}\right)
\end{aligned}
$$

D. $\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{R}-\frac{Q}{r}\right)$

## Answer: C

## D Watch Video Solution

20. The charges $Q,+q$ and $+q$ are placed at the vertices of an equilateral triangle of side I.

If the net electrostatic potential energy of the system is zero, the Q is equal to
A. $+q / 2$

## B. zero

C. $-q / 2$
D. $-q$

## Answer: C

## D Watch Video Solution

21. If an electron and a proton have the same de - Broglie wavelength , then the kinetic energy of the electron is
A. more than that of a proton
B. equal to that of a proton
C. zero
D. less than that of a proton

## Answer: A

## D Watch Video Solution

22. Two proton are kept at a separation of
$40 \AA . F_{n}$ is the nuclear force and $F_{e}$ is the electrostatic force between them. Then
A. $F_{n} \ll F_{e}$
B. $F_{n} \approx F_{e}$
C. $F_{n} \gg F_{e}$
D. $F_{n}=F_{e}$

Answer: A

- Watch Video Solution

23. Blue colour of sea water is due to
A. image of sky in water
B. refreaction of sunlight
C. interference of sunlight reflected from
the water surface
D. scattering of sunlight by the water molecules

Answer: D

- Watch Video Solution

24. The ratio of the nuclear radii of elements with mass numbers 216 and 125 is
A. $6: 5$
B. $\sqrt{216}: \sqrt{125}$
C. 126:125
D. none of these

Answer: A

- Watch Video Solution

25. On bombarding $U^{235}$ by slow neutron, 200

Me V energy is released. If the power output of atomic reactor is 1.6 MW , then the rate of fission will be
A. $8 \times 10^{16} / s$
B. $20 \times 10^{16} / s$
C. $5 \times 10^{22} / s$
D. $5 \times 10^{16} / \mathrm{s}$

Answer: D
26. A ray of light enters from a rarer to a denser medium. The angle of incidence is 1 . Then the reflected and refracted rays are mutually perpendicular to each other . The critical angle for the pair of media is
A. $\sin ^{-1}(\cot i)$
B. $\cos ^{-1}(\tan i)$
C. $\sin ^{-1}(\tan i)$
D. $\tan ^{-1}(\sin i)$

Answer: A

## D Watch Video Solution

27. A fish in water (refractive index $n$ ) looks at
a bird vertically above in the air. If $y$ is the
height of the bird and $x$ is the depth of the
fish from the surface, then the distance of the
bird as estimated by the fish is

$$
\begin{aligned}
& \text { A. } x+y\left(1+\frac{1}{n}\right) \\
& \text { B. } y+x\left(1-\frac{1}{n}\right)
\end{aligned}
$$

C. $x+y\left(1-\frac{1}{n}\right)$
D. $x+n y$

## Answer: D

## - Watch Video Solution

28. Figure shows a mixture of blue, green and red coloured rays incident normally on a right angled prism. The critical angles of the material of the prism for red, green and blue are $46^{\circ}, 44^{\circ}$ and $43^{\circ}$ respectively. The
arrangement will separate

A. green colour from red and blue
B. all the three colours
C. red colour from blue and green
D. blue colour from red and green

Answer: C

## - Watch Video Solution

29. A convex and a concave lens separated by distance $d$ are then put in contact. The focal length of the combination
A. becomes 0
B. remains the same
C. decreases
D. increases


A convex lens is made of 3 layers of glass of 3
different materials as in the figure. A point
object is placed on its axis. The number of images of the object are
A. 3
B. 4
C. 1
D. 2

Answer: C
( Watch Video Solution
31. How many $6 \mu F, 200 V$ condensers are needed to make a condenser of $18 \mu F, 600 V$.
A. 3
B. 27
C. 9
D. 18

Answer: B

D Watch Video Solution
32. The total energy stored in the condenser system shown in the figure will be

A. $8 \mu J$
B. $16 \mu J$
C. $2 \mu J$
D. $4 \mu J$

## Answer: A

## D Watch Video Solution

33. A metal wire is subjected to a constant potential difference. When the temperature of the metal wire increases, the drift velocity of the electron in it
A. increases , thermal velocity of the electron increases
B. decreases , thermal velocity of the
electron increases
C. increases , thermal velocity of the
electron decreases
D. decreases , thermal velocity of the
electron decreases

Answer: B
( Watch Video Solution
34. The equivalent resistance between the points $A$ and $B$ will be (each resistance is $15 \Omega$ )

A. $10 \Omega$
B. $40 \Omega$
C. $30 \Omega$
D. $8 \Omega$

## Answer: D

## D Watch Video Solution

35. The terminals of a 18 V battery with an internal resistance of $24 \Omega$ are connected to a circular wire of resistance $24 \Omega$ at two point distant at one quarter of the circumference of a circular wire. The current through the bigger arc of the circle will be A. 0.225 A
B. 3 A
C. 0.75 A
D. 1.5 A

## Answer:

D Watch Video Solution
36. The potential difference between $A$ and $B$
in the following figure is:

A. 24 V
B. 14 V
C. 32 V
D. 48 V

## Answer: D

## D Watch Video Solution

37. The magnetic field at the centre of a circular current carrying conductor of radius $r$ is $B_{c}$. The magnetic field on its axis at a
distance r from the centre is $B_{a}$. The value of
$B_{c}: B_{a}$ will be
A. $2 \sqrt{2}: 1$
B. $\sqrt{2}: 1$
C. $1: \sqrt{2}$
D. $1: 2 \sqrt{2}$

Answer: A

D Watch Video Solution
38. Current I is flowing in a conductor shaped as shown in the figure. The radius of the curved part is $r$ and the length of straight portion is very large . The value of the magnetic field at the centre $O$ will be

A. $\frac{\mu_{0} I}{4 \pi r}\left(\frac{\pi}{2}+1\right)$
B. $\frac{\mu_{0} I}{4 \pi r}\left(\frac{\pi}{2}-1\right)$
C. $\frac{\mu_{0} I}{4 \pi r}\left(\frac{3 \pi}{2}+1\right)$
D. $\frac{\mu_{0} I}{4 \pi r}\left(\frac{3 \pi}{2}-1\right)$

## Answer: C

## - Watch Video Solution

39. Two tangent galvanometers $A$ and $B$ are identical except in their number of turns. They are connected in seris. On passing a current through them, deflections of $60^{\circ}$ and $30^{\circ}$ are produced. The ratio of the number of turns in
$A$ and $B$ is
A. $1: 2$
B. 2:1
C. 1:3
D. 3:1

## Answer: D

D Watch Video Solution
40. The ressultant force on the current looop
will be

A. $1.8 \times 10^{-4} N$
B. $5 \times 10^{-4} N$
C. $10^{-4} N$
D. $3.6 \times 10^{-4} N$

Answer: B

## - Watch Video Solution

41. A simple pendulum is suspended from the ceiling of a lift. When the lift is at rest its time period is T . With what acceleration should the lift be accelerated upwards in order to reduce its period to $T / 2$ ? (g is acceleration due to gravity ).
A. 4 g
B. $g$
C. 2 g

## D. 3 g

## Answer: D

## D Watch Video Solution

42. If $\gamma$ is the ratio of specific heats and R is
the universal gas constant, then the molar specific heat at constant volume $C_{v}$ is given by

$$
\begin{aligned}
& \text { A. } \frac{R}{\gamma-1} \\
& \text { B. } \frac{\gamma R}{\gamma-1}
\end{aligned}
$$

C. $\gamma R$
D. $\frac{(\gamma-1) R}{\gamma}$

Answer: A

## - Watch Video Solution

43. An ideal gas is taken via path ABCA as
shown in figure. The network done in the
whole cycle is

A. $6 P_{1} V_{1}$
B. zero
C. $3 P_{1} V_{1}$
D. $-3 P_{1} V_{1}$

## Answer: D

## - Watch Video Solution

44. In which of the processes, does the internal energy of the system remain constant?
A. Isobaric
B. Isothermal
C. Adiabatic
D. Isochoric

Answer: B

## - Watch Video Solution

45. The coefficient of the thermal conductivity
of copper is 9 times that of steel. In the composite sylindrical bar shown in the figure , what will be the temperature at the junction of copper and steel ?

A. $25^{\circ} \mathrm{C}$
B. $33^{\circ} \mathrm{C}$
C. $75^{\circ} C$
D. $67^{\circ} \mathrm{C}$

## Answer: C

## D Watch Video Solution

46. The number of nuclei of two radioactive substance is the same and their half-lives are 1
year and 2 years respectively. The ratio of their activities after 6 years will be
A. $1: 3$
B. $1: 6$
C. 1: 4
D. 1:2

Answer: C

- Watch Video Solution

47. $\quad .92 U^{235}$ undergoes
successive
disintegrations with the end product of
${ }^{-} 82 P^{203}$. The number of $\alpha$ and $\beta$ particles emitted are
A. $\alpha=8, \beta=6$
B. $\alpha=3, \beta=3$
C. $\alpha=6, \beta=4$
D. $\alpha=6, \beta=0$

Answer: A
48. The most stable free radical is :
A. proton
B. lambda - particle
C. neutron
D. omega - particle

Answer: A
49. In an unbiased p-n jinction
A. Potential at $p$ is equal to that at $n$
B. Potential at $p$ is +ve and that at $n$ is -ve
C. Potential at $p$ is more that that at $n$
D. Potential at $p$ is less than that at $n$

## Answer: D

## D Watch Video Solution

50. To get an output $\mathrm{y}=1$ from the circuit shown, the input $A, B$ and $C$ must be respectively

A. 1,0,1
B. 1,1,0
C. 0,1,0
D. 1,0,0

Answer: A

## - Watch Video Solution

51. The equation of a simple harmonic wave is given by $\mathrm{y}=6 \sin 2 \pi(2 t-0.1 x)$, where x and y are in mm and t is in seconds. The phase difference between two particles 2 mm apart at any instant is
A. $54^{\circ}$
B. $72^{\circ}$
C. $18^{\circ}$

## D. $36^{\circ}$

## Answer: B

## D Watch Video Solution

52. With what velocity should an observer approach a stationary shound source so that
the apparent frequency of shound should appear double the actual frequency ? (v is velocity of shound).
A. 2 v
B. v
C. $v / 2$
D. 3 v

Answer: B

## D Watch Video Solution

53. If a black body emits 0.5 joules of energy per second when it is at $27^{\circ} \mathrm{C}$, then the amount of energy emitted by it it when it is at $627^{\circ} C$ will be
A. 13.5 J
B. 135 J
C. 40.5 J
D. 162 J

## Answer: C

## D Watch Video Solution

54. A string vibrates with a frequency of 200 Hz
. When its length is doubled and tension is
altered, it begins to vibrate with a frequency
A. $3: 1$
B. $1: 3$
C. $9: 1$
D. 1:9

Answer: C
( Watch Video Solution
55. How many times more intense is a 60 dB sound than a 30 dB sound ?
A. 100
B. 4
C. 1000
D. 2

Answer: C

D Watch Video Solution
56. Dimensional formula for the universal gravitational constant G is
A. $M^{-1} L^{3} T^{-2}$
B. $M^{-1} L^{3} T^{-1}$
C. $M^{-1} L^{2} T^{-2}$
D. $M^{0} L^{0} T^{0}$

Answer: A

D Watch Video Solution
57. A body is projected vertically upwards. The
times corresponding to height $h$ while ascending and while descending are $t_{1}$ and $t_{2}$ respectively. Then the velocity of projection is ( $g$ is acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{g \sqrt{t_{1}} t_{2}}{2} \\
& \text { B. } \frac{g\left(t_{1}+t_{2}\right)}{2} \\
& \text { C. } g \sqrt{t_{1} t_{2}} \\
& \text { D. } \frac{g t_{1} t_{2}}{t_{1}+t_{2}}
\end{aligned}
$$

58. A mass of 10 kg is suspended from a spring so that it makes angle of $60^{\circ}$ with the veritical
. The new reading of the balance is
A. $10 \sqrt{3} \mathrm{~kg}$ wt
B. $20 \sqrt{3} \mathrm{kgwt}$
C. 20 kgwt
D. 10 kg wt
59. A body weigh $50 g$ in air and $40 g$ in water.

How much would it weigh in a liquid of specific gravity 1.5
A. 65 grams
B. 45 grams
C. 30 grams
D. 35 grams
60. A body of mass 4 kg is accelerated up by a constant force, travels a distance of 5 m in the first second and a distance of $2 m$ in the third second. The force acting on the body is
A. 6 N
B. 8 N
C. 2 N
D. 4 N

## Answer: D

## D Watch Video Solution

