©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2012

Physics

1. Which of the following graphs correctly
represents the variation of heat energy (U)
produced in a metallic conductor in a given
time as a function of potential difference (V) across the conductor?

B.

C.

D.

Answer: D

D Watch Video Solution

2. A current of 2 A is passing through a metal wire of cross sectional area $2 \times 10^{-6} m^{-2}$. If the number density of free electrons in the wire is $5 \times 10^{26} m^{-3}$, the drift speed of electrons is (given $e=1.6 \times 10^{-19} C$)
A. $\frac{1}{16} m s^{-1}$
B. $\frac{1}{40} m s^{-1}$

> C. $\frac{1}{80} m s^{-1}$
> D. $\frac{1}{32} m s^{-1}$

Answer: C

- Watch Video Solution

3. Magnetic field at a distance r from an infinitely long straight conductor carrying a steady current varies as

$$
\text { A. } \frac{1}{r^{2}}
$$

B. $\frac{1}{r}$
C. $\frac{1}{r^{3}}$
D. $\frac{1}{\sqrt{r}}$

Answer: B

D Watch Video Solution

4. In the loop shown, the magnetic induction at the point ' O ' is

A. $\frac{\mu_{0} I}{8}\left(\frac{R_{1}-R_{2}}{R_{1} R_{2}}\right)$
B. $\frac{\mu_{0} I}{8}\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)$
C. $\frac{\mu_{0} I}{8}\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)$
D. zero

Answer: B
5. An α-particle and a proton moving with the same kinetic energy enter a region of uniform magnetic field at right angles to the field. The ratio of the radii of the paths of α - particle to that of the proton is
A. $1: 1$
B. 1:2
C. 1: 4
D. $1: 8$

Answer: A

- Watch Video Solution

6. Direction of current induced in a wire moving in a magnetic field is found using
A. Fleming's left hand rule
B. Fleming's right hand rule
C. Ampere's rule
D. Right hand clasp rule

Answer: B

- Watch Video Solution

7. An ideal resistance R, ideal inductance L, ideal capacitance C and $A C$ volt meters V_{1}, V_{2}, V_{3} and V_{4} are connected to an AC source as shown. At resonance.

A. reading in $V_{3}=$ reading in V_{1}
B. reading in $V_{1}=$ reading in V_{2}
C. reading in $V_{2}=$ reading in V_{4}
D. reading in $V_{2}=$ reading in V_{3}

Answer: D

D Watch Video Solution

8. X- rays, gamma rays and microwaves travelling in vacuum have
A. same wavelength but different velocities
B. same frequency but different velocities
C. same velocity but different wavelengths
D. same velocity and same frequency

Answer: C

D Watch Video Solution

9. If n is the orbit number of the electron in a hydrogen atom, the correct statement among the following is
A. electron energy increases as n increases
B. hydrogen emits infrared rays for the electron transition from $\mathrm{n}=\infty$ to $\mathrm{n}=1$
C. electron energy is zero for $\mathrm{n}=1$
D. electron energy varies as n^{2}

Answer: A

- Watch Video Solution

10. In a Ruby laser, the colour of laser light is due to atom .
A. oxygen
B. aluminium
C. xenon
D. chromium

Answer: D

D Watch Video Solution
11. The radius of ${ }_{29} C u^{64}$ nucleus in Fermi is
(given $R_{0}=1.2 \times 10^{-15} \mathrm{~m}$)
A. 4.8
B. 1.2
C. 7.7
D. 9.6

Answer: A

- Watch Video Solution

12. In a radioactive decay, an element ${ }_{Z} X^{A}$
emits four α - particles, three β - particles and eight gamma photons. The atomic number and mass number of the resulting final nucleus are
A. Z-11, A-16
B. Z-5,A-13
C. Z-5,A-16
D. Z-8, A-13

Answer: C
13. For a transistor, $\beta=100$. The value of α is
A. 1.01
B. 0.99
C. 100
D. 0.01

Answer: B
14. The following truth table with A and B as
inputs is for, gate .

A. AND
B. OR
C. XOR
D. NOR

Answer: C

- Watch Video Solution

15. n photons of wavelength λ are absorbed
by a black body of mass m. The momentum
gained by the body is

$$
\begin{aligned}
& \text { A. } \frac{h}{m \lambda} \\
& \text { B. } \frac{m n h}{\lambda} \\
& \text { C. } \frac{n h}{m \lambda} \\
& \text { D. } \frac{n h}{\lambda}
\end{aligned}
$$

Answer: D

D Watch Video Solution

16. A radioactive nucleus has specific binding
energy ' E_{1} '. It emits an α - particle. The resulting nucleus has specific binding energy ${ }^{\prime} E_{2}{ }^{\prime}$. Then
A. $E_{2}=E_{1}$
B. $E_{2}<E_{1}$
C. $E_{2}>E_{1}$

D. $E_{2}=0$

Answer: C

D Watch Video Solution

17. The dimensional formula of physical quantity is $M^{a} L^{b} T^{c}$. Then that physical quantity is
A. surface tension if $a=1, b=1, c=-2$

$$
\text { B. force if } a=1, b=1, c=2
$$

C. angular frequency if $a=0, b=0, c=-1$
D. spring constant if $a=1, b=-1, c=-2$

Answer: C

- Watch Video Solution

18. A person throws balls into air vertically upward in regular intervals of time of one second. The next ball is thrown when the velocity of the ball thrown earlier becomes
zero . The height to which the balls rise is ...
(Assume , $\mathrm{g}=10 m s^{-2}$)
A. 5 m
B. 10 m
C. 7.5 m
D. 20 m

Answer: A
(Watch Video Solution
19. The circular motion of a particle with constant speed is
A. periodic but not SHM
B. SHM but not periodic
C. periodic and also SHM
D. neither periodic nor SHM

Answer: A
(D) Watch Video Solution
20. A planet moving around sun sweeps area
A_{1} in 2 days, A_{2} in 3 days and A_{3} in 6 days.

Then the relation between A_{1}, A_{2} and A_{3} is

A. $3 A_{1}=2 A_{2}=A_{3}$
B. $2 A_{1}=3 A_{2}=6 A_{3}$
C. $3 A_{1}=2 A_{2}=6 A_{3}$
D. $6 A_{1}=3 A_{2}=2 A_{3}$

Answer: A

D Watch Video Solution

21. A, B and C are the three identical conductors but made from different materials
. They are kept in contact as shown . Their thermal conductivities are $\mathrm{K}, 2 \mathrm{~K}$ and $\frac{K}{2}$. The free end of A is at $100^{\circ} \mathrm{C}$ and the free end of C is at $0^{\circ} C$. During steady state, the temperature of the junction of A and B is
nearly ${ }^{\circ} C$.

A. 71
B. 29
C. 63
D. 37

Answer: A

- Watch Video Solution

22. One mole of an ideal gas is taken from A to
B, from B to C and then back to A. The
variation of its volume with the temperature
for that change is as shown. Its pressure at A is P_{0}, volume is V_{0}. Then , the internal energy

A. at A is more than at B
B. at C is less than at B
C. at B is more than A
D. at A and B are equal

Answer: D

D Watch Video Solution

23. Which of the following is incorrect ?
A. If the wave is longitudinal, it must be a mechanical wave .
B. If the wave is mechanical, it may or may not be transverse wave .
C. Mechanical wave cannot propagate in
vacuum.
D. Diffraction helps us to distinguish between sound waves and light wave.

Answer: D

D Watch Video Solution

24. Intensity level of sound whose intensity is
$10^{-8} W m^{-2}$ is dB
A. 8
B. 4
C. 40
D. 80

Answer: C

D Watch Video Solution

25. A point source of light is kept below the
surface of water $\left(n_{w}=\frac{4}{3}\right)$ at a depth of $\sqrt{7}$
m . The radius of the circular bright patch of
light noticed on the surface of water is m .
A. $\frac{3}{\sqrt{7}}$
B. 3
C. $\frac{\sqrt{7}}{3}$
D. $\sqrt{7}$

Answer: B
(Watch Video Solution
26. A monochromatic beam of light is travelling from medium A of refractive index
n_{1} to a medium B of refractive index n_{2}. In the medium A, there are x number of waves in certain distance. In the medium B, there are y number of waves in the same distance. Then, refractive index of medium A with respect to medium B is ...
A. $\frac{y}{x}$
B. $\sqrt{\frac{x}{y}}$
C. $\frac{x}{y-x}$
D. $\frac{x}{y}$

Answer: D

D Watch Video Solution

27. In Young's double slit experiment, fringes
of width β are produced on a screen kept at a distance of 1 m from the slit. When the screen is moved away by $5 \times 10^{-2} \mathrm{~m}$, fringe width changes by $3 \times 10^{-5} \mathrm{~m}$. The separation
between the slits is $1 \times 10^{-3} \mathrm{~m}$. The wavelength of the light used isnm
A. 500
B. 600
C. 700
D. 400

Answer: B
(Watch Video Solution
28. For sustained interference fringes in double slit experiment, essential condition/s is / are
(1) sources must be coherent .
(2) the intensities of the two sources must be equal.

Here, the correct option/s is/are
A. both (1) (2)
B. only (1)
C. only (2)

D. neither (1) nor (2)

Answer: B

D Watch Video Solution

29. In single slit experiment, the width ofthe
slit is reduced.Then, the linear width ofthe principal maxima....
A. increases but becomes less bright
B. decreases but becomes more bright
C. increases but becomes more bright
D. decreases but becomes less bright

Answer: A

D Watch Video Solution

30. In the uniform electric field of
$E=1 \times 10^{4} N C^{-1}$ an electron is accelerated
from rest. The velocity of the electron when it has travelled a distance of $2 \times 10^{-2} \mathrm{~m}$ is
nearly...$m s^{-1}$
$\left(\frac{e}{m}\right.$ of electron $\left.=1.8 \times 10^{11} \mathrm{Ckg}^{-1}\right)$
A. 1.6×10^{6}
B. 0.85×10^{6}
C. 0.425×10^{6}
D. 8.5×10^{6}

Answer: D
(Watch Video Solution

31. In this diagram , the P.D. between A and B is

 60 V . The P.D. across $6 \mu F$ capacitor is ... V
A. 10
B. 5
C. 20
D. 4
32. In this circuit, when certain current flows, the heat produced in 5Ω is 4.05 J in a time t .

The heat produced in 2Ω coil in the same time interval is

A. 5.76
B. 1.44
C. 2.88
D. 2.02

Answer: C

(Watch Video Solution
33. In this circuit, the value of I_{2} is

A. 0.2 A
B. 0.3 A
C. 0.4 A
D. 0.6 A

Answer: C

D Watch Video Solution

34. A straight current carrying conductor is
kept along the axis of circular loop carrying
current. The force exerted by the straight conductor on the loop is
A. perpendicular to the plane of the loop
B. in the plane of the loop, away from the
center
C. in the plane of the loop, towards the
center
D. zero

Answer: D

35. A resistor of 500Ω, an inductance of $0.5 H$
are in series with an a.c. which is given by
$V=100 \sqrt{2} \sin (1000 t)$. The power factor of
the combination is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } 0.5 \\
& \text { D. } 0.6
\end{aligned}
$$

36. Pick out the wrong statement .
A. The gain in the K.E. of the electron moving at right angles to the magnetic field is zero .
B. When an electron is shot at right angles
to the electric field, it traces a parabolic path .
C. An electron moving in the direction of the electric field gains K.E.

D. An electron at rest experiences no force in the magnetic field .

Answer: C

D Watch Video Solution

37. A proton and an α particle are accelerated through the same potential difference V . The ratio of their de Broglie wavelengths is
A. $\sqrt{8}$
B. $\frac{1}{\sqrt{8}}$
C. 1
D. 2

Answer: A

D Watch Video Solution

38. Spectrum of sunlight is an example for
A. band emission spectrum

B. line absorption spectrum

C. continuous emission spectrum
D. continuous absorption spectrum

Answer: B

D View Text Solution

39. In hydrogen atom, electron excites from ground state of higher energy state and its orbital velocity is reduced to $\left(\frac{1}{3}\right)^{r d}$ of its initial value. The radius of the orbit in the
ground state is R. The radius of the orbit in
that higher energy state is ...
A. 2 R
B. 3 R
C. 27 R
D. 9 R

Answer: D
(Watch Video Solution
40. Decay constants of two radio-active samples A and B are $15 x$ and $3 x$ respectively .

They have equal number of initial nuclei. The ratio of the number of nuclei left in A and B after a time $\frac{1}{6 x}$ is
A. e
B. e^{2}
C. e^{-1}
D. e^{-2}

Answer: D

- Watch Video Solution

41. Mass numbers of the elements A, B, C and

D are $30,60,90$ and 120 respectively. The specific binding energy of them are $5 \mathrm{MeV}, 8.5$
$\mathrm{MeV}, 8 \mathrm{MeV}$ and 7 MeV respectively. Then , in
which of the following reaction/s energy is released?
(1) $D \rightarrow 2 B$ (2) $C \rightarrow B+A$
(3) $B \rightarrow 2 A$
A. only in (1)
B. in (2), (3)
C. in (1) , (3)
D. in (1) , (2) and (3)

Answer: A

D Watch Video Solution
42. Copper and Germanium are cooled from room temperature to 100 K . Then the resistance of
A. Germanium decreases, Copper increases

B. Germanium
decreases
,
Copper

decreases
C. Germanium increases, Copper decreases
D. Germanium increases, Copper increases

Answer: C

D Watch Video Solution

43. The most stable particle in Baryon group is
A. neutron
B. proton
C. lamba particle
D. sigma particle

Answer: B

D Watch Video Solution

44. Frequencies of light incident on a system of scattering particles are in the ratio of $1: 2$.

Then, the intensity of scattered light in a particular direction is
A. $1: 4$
B. 1:2
C. $1: 8$
D. 1:16

Answer: D

- Watch Video Solution

45. The ratio of the magnetic dipole moment to the angular momentum of the electron in the $1^{\text {st }}$ orbit of hydrogen atom is

$$
\begin{aligned}
& \text { A. } \frac{e}{2 m} \\
& \text { B. } \frac{e}{m} \\
& \text { C. } \frac{2 m}{e} \\
& \text { D. } \frac{m}{e}
\end{aligned}
$$

Answer: A

- Watch Video Solution

46. Milk is an example for

A. inelastic gel
B. foam
C. elastic gel

D. emulsion

Answer: D

47. A body of mass ' m ' is travelling with a velocity ' u '. When a constant retarding force
' F ' is applied, it comes to rest after travelling a distance s_{1}. If the initial velocity is 2 u , with
the same force F, the distance travelled before it comes to rest is s_{2}. then
A. $s_{2}=2 s_{1}$
B. $s_{2}=\frac{s_{1}}{2}$
C. $s_{2}=s_{1}$
D. $s_{2}=4 s_{1}$

Answer: D

- Watch Video Solution

48. A block kept on a rough surface starts
sliding when the inclination of the surface is θ
with respect to the horizontal . The coefficient of static friction between the block and the surface is
A. $\sin \theta$
B. $\tan \theta$
C. $\cos \theta$
D. $\sec \theta$

Answer: B

D Watch Video Solution

49. Two bodies of masses m_{1} and m_{2} are acted upon by a constant force F for a time t.

They start from rest and acquire kinetic energies E_{1} and E_{2} respectively. Then $\frac{E_{1}}{E_{2}}$ is
A. $\frac{m_{1}}{m_{2}}$
B. $\frac{m_{2}}{m_{1}}$
C. 1
D. $\frac{\sqrt{m_{1} m_{2}}}{m_{1}+m_{2}}$

Answer: B

D Watch Video Solution

50. The X and Y components of a force F acting
at 30° to x - axis are respectively
A. $\frac{F}{\sqrt{2}}, F$
B. $\frac{F}{2}, \frac{\sqrt{3}}{2} F$
C. $\frac{\sqrt{3}}{2} F, \frac{1}{2} F$
D. $F, \frac{F}{\sqrt{2}}$

Answer: C

D Watch Video Solution

51. Spheres of iron and lead having same mass are completely immersed in water. Density of
lead is more than that of iron. Apparent loss
of weight is W_{1} for iron sphere and W_{2} for lead sphere. Then $\frac{W_{1}}{W_{2}}$ is
A. $=1$
B. between 0 and 1
C. $=0$
D. >1

Answer: D
(Watch Video Solution
52. A hot body is allowed to cool. The surrounding temperature is constant at $30^{\circ} \mathrm{C}$
. The body takes time t_{1} to cool from 90° to $89^{\circ} C$ and time t_{2} to cool from $60^{\circ} C$ to $59.5^{\circ} \mathrm{C}$. Then,

$$
\begin{aligned}
& \text { A. } t_{2}=2 t_{1} \\
& \text { B. } t_{2}=\frac{t_{1}}{2} \\
& \text { C. } t_{2}=4 t_{1} \\
& \text { D. } t_{2}=t_{1}
\end{aligned}
$$

53. A particle executes SHM with amplitude 0.2
m and time period 24 s . The time required for
it to move from the mean position to a point 0.1 m from the mean position is
A. 2 s
B. 3 s
C. 8 s
D. 12 s

- Watch Video Solution

54. White light is incident normally on a glass
slab. Inside the glass slab,
A. red light travels faster than other colours
B. violet light travels faster than other colours .
C. yellow light travels faster than other colours .
D. all colours travel with the same speed .

Answer: A

D Watch Video Solution

55. Two thin plano-convex lenses each of focal length f are placed as shown in the figure. The ratio of their effective focal lengths in the
three cases is

(i)

(ii)

(iii)
A. $1: 2: 3$
B. 1:2:1
C. $1: 1: 1$
D. $3: 2: 1$

Answer:

D Watch Video Solution
56. White light is used to illuminate the two slits in Young's double slit experiment. The separation between the slits is b and the screen is at a distance $d \gg b$) from the slits. At a point on the screen directly infront of one of the slits, certain wavelengths are missing. Some of these missing wavelengths are
A. the bright fringes will have unequal spacing.
B. the bright fringes will have unequal brightness.
C. the fringes do not appear .
D. the dark fringes are not perfectly dark .

Answer: D

D Watch Video Solution
57. The phenomenon of polarization shows
that light has , nature .
A. particle
B. transverse
C. longitudinal
D. dual

Answer: B

D Watch Video Solution
58. Acceleration of a charged particle of
charge ' q ' and mass ' m ' moving in a uniform
electric field of strength ' E ' is
A. $\frac{q E}{m}$
B. $\frac{m}{q E}$
C. mqE
D. $\frac{q}{m E}$

Answer: A

- Watch Video Solution

59. Two fixed charges "A" and "B" of $5 \mu C$ each are separated by a distance of " 6 m " .C is the mid point of the line joining " A " and " B " . A
charge Q of $-5 \mu C$ is shot perpendicular to
the line joining "A" and "B" through "C" with a kinetic energy of " 0.06 " J. The charge ' Q ' comes
to rest at a point "D" .The distance "CD" is (a)
$3 m$ (b) $\sqrt{3} m$ (c) $3 \sqrt{3} m$ (d) $4 m$
A. 3 m
B. $\sqrt{3} \mathrm{~m}$
C. $3 \sqrt{3} \mathrm{~m}$
D. 4 m

Answer: D
60. A capacitor of capacitance of $10 \mu F$ is charged to 10 V . The energy stored in it is
A. $100 \mu J$
B. $500 \mu \mathrm{~J}$
C. $1000 \mu J$
D. $1 \mu J$

Answer: B

- Watch Video Solution
\square

