©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2013

Physics

1. When an additional charge 2 C is given to a capacitor, energy stored in it is increased by
21%. The original charge of the capacitor is
A. 30 C
B. 40 C
C. 10 C
D. 20 C

Answer: D

D Watch Video Solution

2. When a potential difference of $10^{3} \mathrm{~V}$ is applied between A and B, a charge of 0.75 mC
is stored in the system of capacitors as shown.

A. $\frac{1}{2}$
B. 2
C. 2.5
D. 3

Answer: B
3. See the diagram. Area of each plate is $2.0 m^{2}$
and $\quad d=2 \times 10^{-3} \mathrm{~m} . \quad$ A charge of
$8.85 \times 10^{-8} C$ is given to Q. Then the
potential of Q becomes

A. 13 V
B. 10 V
C. 6.67 V
D. 8.825 V

Answer: C

D Watch Video Solution

4. Three conductors draw currents of $1 \mathrm{~A}, 2 \mathrm{~A}$
and 3 A respectively, when connected in turn
across a battery. If they are connected in series
and the combination is connected across the
same battery, the current drawn will be

$$
\text { A. } \frac{2}{7} A
$$

B. $\frac{3}{7} A$
C. $\frac{4}{7} A$
D. $\frac{5}{7} A$

Answer:

D Watch Video Solution

5. In the current, $R_{1}=R_{2}$. The value of E and
$R_{1} \quad$ are $\quad\left(E-E M F, R_{1} \quad-\quad\right.$ resistance $)$

A. $180 \vee, 60 \Omega$
B. $120 \mathrm{~V}, 60 \Omega$
C. $180 \mathrm{~V}, 10 \Omega$
D. Data insufficient

Answer:

D Watch Video Solution
6. Masses of three wires of copper are in the ratio $1: 3: 5$ and their lengths are in the ratio $5: 3: 1$ The ratio of their electrical resistance are
A. $1: 3: 5$
B. 5:3:1
C. 1:15:125
D. $125: 15: 1$

Answer: D

- Watch Video Solution

7. For a transformer, the turns ratio is 3 and its efficiency is 0.75 . The current flowing in the primary coil is 2 A and the voltage applied to it is 100 V . Then the voltage and the current flowing in the secondary coil are respectively.
A. $150 \mathrm{~V}, 1.5 \mathrm{~A}$
B. $300 \mathrm{~V}, 0.5 \mathrm{~A}$
C. $300 \mathrm{~V}, 1.5 \mathrm{~A}$
D. $150 \mathrm{~V}, 0.5 \mathrm{~A}$

Answer: B

D Watch Video Solution

8. A proton and helium nucleus are shot into a magnetic field at right angles to the field with
same kinetic energy. Then the ratio of their radii is
A. $1: 1$
B. 1:2
C. 2:1

D. 1:4

Answer: A

D Watch Video Solution

9. Two identical circular coils A and B are kept
on a horizontal tube side by side without
touching each other. If the current in the coil A
increases with time, in response, the coil B
A. is attracted by A

B. remains stationary

C. is repelled
D. rotates

Answer: C

D Watch Video Solution

10. In the diagram, I_{1}, I_{2} are the strength of
the currents in the loop and straight conductors respectively. $O A=A B=R$. The net magnetic field at the centre O is zero. Then the
ratio of the currents in the loop and the straight conductors is

A. π
B. 2π

> C. $\frac{1}{\pi}$
> D. $\frac{1}{2 \pi}$

Answer: D

- Watch Video Solution

11. Two tangent galvanometers, which are identical except in their number of turns are connected in parallel. The ratio of their resistances of the coils is $1: 3$. If the
deflections in the two tangent galvanometers
are 30° and 60° respectively, then the ratio of their number of turns is
A. $1: 1$
B. $3: 1$
C. 1:2
D. $1: 9$

Answer:

D Watch Video Solution
12. A charged particle with a velocity $2 \times 10^{3} \mathrm{~ms}^{-1}$ passes undeflected through electric field and magnetic fields in the mutually perpendicular directions. The magnetic field is 1.5 T . The magnitude of electric field will be
A. $1.5 \times 10^{3} N C^{-1}$
B. $2 \times 10^{3} N C^{-1}$
C. $3 \times 10^{3} N C^{-1}$
D. $1.33 \times 10^{3} \mathrm{NC}^{-1}$

Answer: C

D Watch Video Solution

13. In R-L-C series circuit, the potential
differences across each element is 20 V . Now
the value of the resistance alone is doubled, then P.D across R, L and C respectively
A. $20 \mathrm{~V}, 10 \mathrm{~V}, 10 \mathrm{~V}$
B. 20 V, 20 V, 20 V
C. $20 \mathrm{~V}, 40 \mathrm{~V}, 40 \mathrm{~V}$

D. $10 \mathrm{~V}, 20 \mathrm{~V}, 20 \mathrm{~V}$

Answer: A

D Watch Video Solution

14. A rectangular coil of 100 turns and size
$0.1 m \times 0.05 m$ is placed perpendicular to a magnetic field of 0.1 T. If the field drops to 0.05 T in 0.05 second, the magnitude o the e.m.f. induced in the coil is
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{0.6}$
D. None of the above

Answer:

D Watch Video Solution
15. In the circuit diagram, heat produces in R, 2
R and $1.5 R$ are in the ratio of

A. $4: 2: 3$
B. $8: 4: 27$
C. $2: 4: 3$
D. $27: 8: 4$

Answer: B

D Watch Video Solution
16. A series combination of resistor (R),
capacitor (C) is connected to an .C. source of angular frequency ω. Keeping the voltage same, if the frequency is charged to $\frac{\omega}{3}$, the current becomes half of the original current.

Then the ratio of the capacitive reactance and resistance at the former frequency is
A. $\sqrt{0.6}$
B. $\sqrt{3}$
C. $\sqrt{2}$

D. $\sqrt{6}$

Answer: A

D Watch Video Solution

17. Pick out the correct statement from the

following :

A. Mercury vapour lamp produces line emission spectrum.
B. Oil flame produces line emission
spectrum.
C. Brand spectrum helps us to study molecular structure.
D. Sunlight spectrum is an example for line absorption spectrum.

Answer: A::C::D

- Watch Video Solution

18. Light emitted during the de excitation of
electron from $n=3$ to $n=2$, when incident on
a metal, photoelectrons are just emitted from that metal. In which of the following deexcitations photoelectric effect is not possible?
A. From $n=2$ to $n=1$
B. From $n=3$ to $n=1$
C. From $n=5$ to $n=2$
D. From $n=4$ to $n=3$

Answer: D

D Watch Video Solution

19. The energy that should be added to an electron to reduce its de Broglie wavelength
from one nm to 0.5 nm is
A. 2 times the initial kinetic energy
B. 3 times the initial kinetic energy
C. 0.5 times the initial kinetic energy
D. 4 times the initial kinetic energy

Answer: B

D Watch Video Solution

20. The ionisation energy of an electron in the ground state of helium atom is 24.6 eV . The energy required to remove both the electron is
A. 51.8 eV
B. 79 eV
C. 38.2 eV

D. 49.2 eV

Answer: B

D Watch Video Solution

$-5 E / 3$

21.

$3 E$

 \underline{L}The figure shows the energy level of certain atom. When the electron deexcites from 3E to

E , an electromagnetic wave of wavelength λ is
emitted. What is the wavelength of the electromagnetic wave emitted when the electron de excites from $\frac{5 E}{3}$ to E ?
A. 3λ
B. 2λ
C. 5λ
D. $\frac{3 \lambda}{5}$

Answer: A

22. Maximum velocity of the photoelectron emitted by a metal is $1.8 \times 10^{6} \mathrm{~ms}^{-1}$. Take the value of specific charge of the electron is $1.8 \times 10^{11} \mathrm{Ckg}^{-1}$. Then the stopping potential in volt is
A. 1
B. 3
C. 9
D. 6

Answer: C

- Watch Video Solution

23. λ_{1} and λ_{2} are used to illuminated the slits.
β_{1} and β_{2} are the corresponding fringe widths. The wavelength λ_{1} can produce photoelectric effect when incident on a metal.

But the wavelength λ_{2} cannot produce photoelectric effect. The correct relation between β_{1} and β_{2} is
A. $\beta_{1}<\beta_{2}$
B. $\beta_{1}=\beta_{2}$
C. $\beta_{1}>\beta_{2}$
D. $\beta_{1} \geq \beta_{2}$

Answer: A

D Watch Video Solution
24. Pick out the correct statement/s from the

following :

(1) Electron emission during β-decay is always
accompanied by neutrino.
(2) Nuclear force is charge independent.
(3) Fusion is the chief source of stellar energy.
A. (1), (2) are correct
B. (1), (3) are correct
C. Only (1) is correct
D. (2), (3) are correct

Answer: D

D Watch Video Solution
25. A nucleus ${ }_{Z} X^{A}$ emits an α - particle with
the velocity v . The recoil speed of the daughter nucleus is
A. $\frac{A-4}{4 v}$
B. $\frac{4 v}{A-4}$
C.v
D. $\frac{v}{4}$

Answer: B

26. A radioactive substance emits 100 beta particles in the first 2 seconds and 50 beta particles in the next 2 seconds. The mean life of the sample is
A. 4 seconds
B. 2 seconds
C. $\frac{2}{0.693}$ seconds
D. 2×0.693 seconds

Answer: C

27. In which of the following statements, the obtained impure semiconductor is of p-type?
A. Germanium is doped with bismuth
B. Silicon is doped with antimony
C. Germanium is doped with gallium
D. Silicon is doped with phosphorus

Answer: C
28. The width of the depletion region in a P-N junction diode is
A. increased by reverse bias
B. increased by forward bias
C. decreased by reverse bias
D. independent of the bias voltage

Answer: A
29. When the transistor is used as an amplifier
A. Emitter - base junction must be reverse
biased, Collector - base junction must be
forward biased.
B. Emitter - base junction must be forward
biased, Collector - base junction must be
forward biased.
C. Emitter - base junction must be reverse
biased, Collector - base junction must be
reverse biased.

D. Emitter - base junction must be forward

 biased, Collector - base junction must be reverse biased.
Answer: D

D Watch Video Solution

30. Which of the following is not made by quarks?
A. Neutron
B. Positron
C. Proton
D. πe-meson

Answer: B

- View Text Solution

31. Which one of the following is NOT correct?
A. In forward biased condition diode conducts.
B. If the packing fraction is negative, the element is stable.
C. Binding energy is the energy equivalent to mass defect.

D. Radioactive element can undergo

spontaneous fission.

Answer: D

32. The output of an OR gate is connected to
both the inputs of a NAND gate. The combination will serve as
A. AND gate
B. NOT gate
C. NAND gate
D. NOR gate

Answer: D

D Watch Video Solution
33. A and B are two radioactive elements. The mixture of these elements show a total activity
of 1200 disintegrations/minute. The half life of
A is 1 day and that B is 2days. What will be the total activity after 4days? Given: The initial number of atoms in A and B are equal
A. $200 \mathrm{dis} / \mathrm{min}$
B. $250 \mathrm{dis} / \mathrm{min}$
C. $500 \mathrm{dis} / \mathrm{min}$

D. $150 \mathrm{dis} / \mathrm{min}$

Answer: D

D Watch Video Solution

34. The binding energy/nucleon of deuteron
$\left({ }_{1} H^{2}\right)$ and the helium atom $\left({ }_{2} H e^{4}\right)$ are 1.1
MeV and 7 MeV respectively. If the two deuteron atoms fuse to form a single helium atom, then the energy released is
A. 26.9 MeV
B. 25.8 MeV
C. 23.6 MeV
D. 12.9 MeV

Answer: C

D Watch Video Solution

35. Which one of the following is NOT correct?
A. Dimensional formula of thermal
conductivity (K) is $M^{1} L^{1} T^{-3} K^{-1}$
B. Dimensional formula of potential (V) is

$$
M^{1} L^{2} T^{3} A^{-1}
$$

C. Dimensional formula of permeability of free space $\left(\mu_{0}\right)$ is $M^{1} L^{1} T^{-2} A^{-2}$
D. Dimensional formula of RC is $M^{0} L^{0} T^{-1}$

Answer: B::D

D Watch Video Solution

36. In a lift moving up with an acceleration of
$5 m s^{-2}$, a ball is dropped from a height of 1.25
m . The time taken by the ball to reach the floor of the lift is(nearly) $\left(g=10 m s^{-2}\right)$
A. 0.3 second
B. 0.2 second
C. 0.16 second
D. 0.4 second

Answer: D
37. A gun fires a small bullet with kinetic energy K. Then kinetic energy of the gun while recoiling is
A. K
B. more than K
C. less than K
D. \sqrt{K}

Answer: C

Watch Video Solution

38. From a fixed support, two small identical
spheres are suspended by means of strings of length 1 m each. They are pulled aside as shown and then released. B is the mean position. Then the two spheres collide,

A. at B after 0.25 second

B. at B after 0.5 second

C. on the right side of B after some time

D. on the right side of B when the strings

are inclined at 15° with B

Answer: B::C

- Watch Video Solution

39. A truck accelerates from speed v to 2 v . Work done in during this is
A.three times as the work done in accelerating it from rest to v .
B. same as the work done in acceleating it
from rest v.
C.four times as the work done in accelerating it from rest to v .

D. less than the work done in accelerating

it from rest to v.

Answer: A

D Watch Video Solution

40. Earth is moving around the Sun in elliptical orbit as shown. The ratio of $O B$ and $O A$ is R.

Then ratio of Earth velocity at A and B is

A. R^{-1}
B. \sqrt{R}
C. R
D. $R^{2 / 3}$

Answer:
(Watch Video Solution
41. A projectile is projected at $10 m s^{-1}$ by making at an angle 60° to the horizontal.

After some time its velocity makes an angle of 30° to the horizontal. Its speed at this instant is
A. $\frac{10}{\sqrt{3}}$
B. $10 \sqrt{3}$
C. $\frac{5}{\sqrt{3}}$
D. $5 \sqrt{3}$

Answer: A

- Watch Video Solution

42. For which combination of working temperatures of the source and sink, the efficiency of Carnot's heat engine is maximum?
A. $600 \mathrm{~K}, 400 \mathrm{~K}$
B. $400 \mathrm{~K}, 200 \mathrm{~K}$
C. $500 \mathrm{~K}, 300 \mathrm{~K}$
D. $300 \mathrm{~K}, 100 \mathrm{~K}$

Answer: D

D Watch Video Solution

43. A solid cylinder of radius R made of a material of thermal conductivity K_{1} is surrounded by a cylindrical shell of inner radius R and outer radius $2 R$ made of material of thermal conductivity K_{2}. The two ends of the combined system are maintained at two different temperatures. Then there is no loss of heat across the cylindrical surface
and the system is in steady state. The effective
thermal conductivity of the system is
A. $K_{1}+K_{2}$
B. $\frac{K_{1} K_{2}}{K_{1}+K_{2}}$
C. $\frac{3 K_{1}+K_{2}}{4}$
D. $\frac{K_{1}+3 K_{2}}{4}$

Answer: D

D Watch Video Solution

44. Two stars A and B radiate maximum energy
at the wavelength of 360 nm and 480 nm
respectively. Then the ratio of the surface temperatures of A and B is
A. $3: 4$
B. $81: 256$
C. $4: 3$
D. $256: 81$

Answer: C

45. Two solids P and Q float in water. It is observed that P floats with half of its volume immersed and Q floats with $\frac{2^{r d}}{3}$ of its volume is immersed. The ratio of densities of P and Q is
A. $\frac{4}{3}$
B. $\frac{3}{4}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

D Watch Video Solution

46. The equations of a transverse wave is given
by $y=0.05 \sin \pi(2 t-0.02 x)$, where x, y are in
metre and t is in second. The minimum distance of separation between two particles
which are in phase and the wave velocity are respectively.......
A. $50 m, 50 m s^{-1}$

$$
\text { B. } 100 \mathrm{~m}, 100 \mathrm{~ms}^{-1}
$$

C. $50 m, 100 m s^{-1}$
D. $100 \mathrm{~m}, 50 m s^{-1}$

Answer: B

- Watch Video Solution

47. The frequency of the second overtone of the open pipe is equal to the frequency of first overtone of the closed pipe. The ratio of the
lengths of the open pipe and the closed pipe is
A. $2: 1$
B. 1:2
C. $1: 3$
D. $3: 1$

Answer: A

- Watch Video Solution

48. A person with vibrating tuning fork of frequency 338 Hz is moving towards a vertical
wall with a speed of $2 m s^{-1}$. Velocity of sound
in air is $340 \mathrm{~ms}^{-1}$. The number of beats heard by that person per second is
A. 2
B. 4
C. 6
D. 8

Answer: B
49. Pick out the Wrong statement from the following:
A. Lateral shift increases as the angle of incidence increases.
B. Lateral shift increases as the value of refractive index increases
C. Normal shift decreases as the value of refractive index increases

D. Both normal shift and lateral shift are

directly proportional to the thickness of the medium

Answer: C

D Watch Video Solution

50. The refraction through the prisms are as
shown. Pick out the Wrong statement from
the following. Path of the light ray in

A. (i) is correct if $n_{2}>n_{1}$ and $n_{2}>n_{3}$
B. (ii) is correct if $n_{1}=n_{2}$ and $n_{2}>n_{3}$
C. (iii) is correct if $n_{2}<n_{1}$ and $n_{2}=n_{3}$
D. (iv) is correct if $n_{1}>n_{2}$ and $n_{2}<n_{3}$

Answer: C::D

D Watch Video Solution
51. The distance between an object and its real image produced by a converging lens is 0.72 m .

The magnification is 2 . What will be the magnification when the object is moved by 0.04 m towards the lens?
A. 2
B. 4
C. 3
D. 6

Watch Video Solution

52. The speed of light in media M_{1} and M_{2} are 1.5×10^{8} and $2 \times 10^{8} \mathrm{~ms}^{-1}$ respectively.

A ray travels from medium M_{1} to the medium
M_{2} with an angle of incidence θ. The ray suffers total internal reflection. Then the value of the angle of incidence θ is

$$
\begin{aligned}
& \text { A. }>\sin ^{-1}\left(\frac{3}{4}\right) \\
& \text { B. }<\sin ^{-1}\left(\frac{3}{4}\right) \\
& \text { C. }=\sin ^{-1}\left(\frac{4}{3}\right)
\end{aligned}
$$

$$
\text { D. } \leq \sin ^{-1}\left(\frac{4}{3}\right)
$$

Answer: A

- Watch Video Solution

53. Which of the following phenomena support the wave theory of ligth?
54. Scattering 2 Interference 3 Diffraction
55. Velocity of light in a denser medium is less
than the velocity of light in the rarer medium
A. 1,2,3
B. 1,2,4
C. 2,3,4
D. 1,3,4

Answer: C

- Watch Video Solution

54. White light reflected from a soap film
(Refractive index $=1.5$) has a maxima at 600 mm and a minima at 450 nm at with no
minimum in between. Then, the thickness of
the film is
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution
55. A cylindrical tube of light 0.2 m and radius R
with sugar solution of concentration ' C '
produce a rotation of θ in the plane of vibration of a plane polarized light. The same sugar solution is transferred to another tube of length 0.3 m of same radius. The remaining gap is filled by distilled water. Now the optical rotation produced is
A. θ
B. $2 \frac{\theta}{3}$
C. $3 \frac{\theta}{2}$
D. $9 \frac{\theta}{4}$

Answer: A

D Watch Video Solution

56. Radii of curvature of a converging lens are in the ratio $1: 2$. Its focal length is 6 cm and refractive index is 1.5 . Then its radii of curvture are _____ respectively.
A. 9 cm and 18 cm
B. 6 cma nd 12 cm
C. 3 cm and 6 cm
D. 4.5 cm and 9 cm

Answer: D

D Watch Video Solution

57. A small oil drop of mass $10^{-6} \mathrm{~kg}$ is hanging
in at rest between two plates separated by1
mm having a potential difference of 500 V . The
charge on the drop is

$$
\left(g=10 m s^{-2}\right)
$$

A. $2 \times 10^{-9} C$
B. $2 \times 10^{-11} C$
C. $2 \times 10^{-6} C$
D. $2 \times 10^{-8} C$

Answer: B

D Watch Video Solution

58. A uniform electric field in the plane of the paper as shown. Here A, B, C, D are the points on the circle. $V_{1}, V_{2}, V_{3}, V_{4}$ are the potentials
at those points respectively. Then

A. $V_{A}=V_{C}, V_{B}=V_{D}$
B. $V_{A}=V_{C}, V_{B}>V_{D}$
C. $V_{A}>V_{C}, V_{B}>V_{D}$
D. None of the above

Answer:
59. Two metal spheres of radii 0.01 m and 0.02 m are given a charge of 15 mC and 45 mC respectively. They are then connected by a wire. The final charge on the first sphere is $\ldots 10^{-3} \mathrm{C}$
A. 40
B. 30
C. 20
D. 10

Answer: C

D Watch Video Solution

60. Two concentric spheres of raddi R and r
have positive charges q_{1} and q_{2} with equal
surface charge densities. What is the electric potential at their common centre?

$$
\begin{aligned}
& \text { A. } \frac{\sigma}{\epsilon_{0}}(R+r) \\
& \text { B. } \frac{\sigma}{\epsilon_{0}}(R-r) \\
& \text { C. } \frac{\sigma}{\epsilon_{0}}\left(\frac{1}{R}+\frac{1}{r}\right)
\end{aligned}
$$

D. $\frac{\sigma}{\epsilon_{0}}\left(\frac{R}{r}\right)$

Answer: A
(Watch Video Solution

