đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2017

Physics

1. In the A. C. circuit shown, keeping ' K ' pressed,
if an iron rod is inserted into the coil, the bulb

in the circuit

A. gets damaged
B. glows less brightly
C. glows with same brightness (as before
the rod is inserted)
D. glows more brightly

- Watch Video Solution

2. A basic communication system consists of
(a) Transmitter
(b) Information source
(c) User of information
(d) Channel (e) Receiver

The correct sequence of the arrangement is
A. b, e, a, d and c
B. b, a, d, e and c
C. a, b, c, d and e
D. b, d, a, c and e

Answer: B

D Watch Video Solution

3. A bar magnet is allowed to fall vertically
through a copper coil placed in a horizontal
plane. The magnet falls with a net acceleration

A. $=g$
B. Zero
C. $<g$

D. $>g$

Answer: C

D Watch Video Solution

4. Two spheres of electric charges +2 nC and -8 nC are placed at a distance d apart. If they are allowed to touch each other, what is the new distance between them to get a repulsive force of same magnitude as before?

$$
\text { A. } \frac{d}{2}
$$

B. d
C. $\frac{3 d}{4}$
D. $\frac{4 d}{3}$

Answer: C

- Watch Video Solution

5. The partlcles emitted 1 n the decay of ${ }_{92}^{238} U$ to ${ }_{92}^{234} U$
A. 2α and 2β

B. 1α and 2β

C. 1α and 1β

D. 2α only

Answer: B

D Watch Video Solution

6. In the figure shown, if the diode forward voltage drop is 0.2 V , the voltage differenc

between A and B is

A. 1.3 V
B. 2.2 V
C. 0.5 V
D. 0

Answer: B

D Watch Video Solution

7. In Young's double - slit experiment if yellow
light is replaced by blue light, the interference fringes become
A. wider
B. brighter
C. narrower
D. darker

Answer: C

D Watch Video Solution

8. A system of 2 capacitors of capacitance $2 \mu F$ and $4 \mu F$ is connected in series across
potential difference of 6 V . The electric charge and energy stored in the system are
A. $1 \mu C$ and $3 \mu J$
B. $8 \mu C$ and $24 \mu J$
C. $10 \mu C$ and $30 \mu J$
D. $36 \mu C$ and $108 \mu J$

Answer: B

D Watch Video Solution

9. 4×10^{10} electrons are removed from a neutral metal sphere of diameter 20 cm placed
in air. The magnitude of the electric field (in
$N C^{-1}$) at a distance of 20 cm from its centre is
A. Zero
B. 5760
C. 640
D. 1440

Answer: D
10. Write the SI unit of specific heat of a substance.

$$
\begin{aligned}
& \text { A. } J k g^{-1} K^{-1} \\
& \text { B. } J m o l^{-1} K^{-1} \\
& \text { C. } J k g^{-1} \\
& \text { D. } J K^{-1}
\end{aligned}
$$

Answer: A
11. A coil of inductive reactance $1 / \sqrt{3} \Omega$ and
resistance 1Ω is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$
A.C. supply. The time lag between maximum
voltage and current is
A. $\frac{1}{600} s$
B. $\frac{1}{200} s$
C. $\frac{1}{300} s$
D. $\frac{1}{500} s$

Answer: A

- Watch Video Solution

12. Which of the following logic gates considered as universal?
A.

B.

C.

D.

Answer: B

D Watch Video Solution

13. Which of the following semi-conducting devices is used as voltage regulator?
A. Zener diode
B. LASER diode
C. Photo diode
D. Solar cell

Answer: A

D Watch Video Solution

14. In metre bridge experiment, with a standard resistance in the right gap and a resistance coil dipped in water (in a beaker) in the left gap, the balancing length obtained is
' 1 '. If the temperature of water is increased, the new balancing
A. >1
B. <1
C. $=0$
D. $=l$

Answer: A

- Watch Video Solution

15. The susceptibility of a ferromagnetic
substance is
A. >1
B. Zero
C. $\gg 1$
D. <1

Answer: C

- Watch Video Solution

16. For which combination of working temperatures, the efficiency of 'Carnot's engine' is the least?
A. $40 \mathrm{~K}, 20 \mathrm{~K}$
B. $60 \mathrm{~K}, 40 \mathrm{~K}$
C. $100 \mathrm{~K}, 80 \mathrm{~K}$
D. $80 \mathrm{~K}, 60 \mathrm{~K}$

Answer: C

D Watch Video Solution
17. The mean energy of a molecule of an ideal
gas is
A. kT
B. $\frac{1}{2} k T$
C. $\frac{3}{2} k T$
D. 2 kT

Answer: C

D Watch Video Solution

18. Hydraulic lift works on the basis of
A. Stoke's-slaw
B. Bernoulli s law
C. Toricelli s law
D. Pascal's law

Answer: D

D Watch Video Solution

19. A car moving with a velocity of $20 \mathrm{~ms}^{-1}$ is stopped in a distance of 40 m . If the same car is travelling at double the velocity, the distance travelled by it for same retardation is
A. 640 m
B. 320 m
C. 1280 m
D. 160 m

Answer: D

D Watch Video Solution

20. Of the following graphs, the one that correctly represents the I-V characteristics of a Ohmic device is

C.

D.

Answer: A

- Watch Video Solution

21. In a system of two crossed polarisers, it is
found that the intensity of light from the second polariser is half from that of first polariser. The angle between their pass axes is
A. 30°
B. 0°
C. 45°
D. 60°

- Watch Video Solution

22. The magnetic field at the center of a current carrying loop of radius 0.1 m is $5 \sqrt{5}$ times that at a point along its axis. The distance of this point from the centre of the loop is
A. 0.2 m
B. 0.05 m
C. 0.1 m
D. 0.25 m

Answer: A

D Watch Video Solution

23. A proton, at deuteron and an α-particle are projected perpendicular to the direction of a uniform magnetic field with same kinetic energy. The ratio of the radii of the circular paths described by them is
A. $1: \sqrt{2}: \sqrt{2}$
B. $1: \sqrt{2}: 1$
C. $\sqrt{2}: \sqrt{2}: 1$

D. $\sqrt{2}: 1: 1$

Answer: B

D Watch Video Solution

24. The angle between velocity and acceleration of a particle describing uniform circular motion is
A. 180°
B. 45°
C. 90°
D. 60°

Answer: C

D Watch Video Solution

25. Two point charges $A=+3 n C$ and $B=+1 n C$
are placed 5 cm apart in air. The work done to
move charge B towards A by 1 cm is
A. $2.0 \times 10^{-7} J$
B. $1.35 \times 10^{-7} J$
C. $2.7 \times 10^{-7} J$
D. $12.1 \times 10^{-7} J$

Answer: B

D Watch Video Solution
26. During scattering of light, the amount of scattering is inversely proportional to
A. square
B. half
C. cube
D. fourth power

Answer: D

D Watch Video Solution

27. Two simple pendulums A and B are made to oscillate simultaneously and it is found that A
completes 8 oscillations in 10 s . The ratio of
the lengths of A and B is

$$
\begin{aligned}
& \text { A. } \frac{5}{4} \\
& \text { B. } \frac{8}{5} \\
& \text { C. } \frac{25}{64} \\
& \text { D. } \frac{64}{25}
\end{aligned}
$$

Answer: D
(Watch Video Solution
28. A particle is dropped from a height ' H '. The de Broglie wavelength of the particle depends on height as
A. H
B. $H^{-1 / 2}$
C. H^{0}
D. $H^{1 / 2}$

Answer: B

D Watch Video Solution
29. The waves set up in a closed pipe are
A. longitudinal and progressive
B. longitudinal and stationary
C. transverse and stationary
D. transverse and progressive

Answer: B
30. According to Cartesian sign convention, in ray optics
A. all distances in the direction of incident ray are taken positive
B. all distances are taken negative
C. all distances in the direction of incident
ray are taken negative
D. all distances are taken positive
31. A straight wire of length 50 cm carrying a current of 2.5 A is suspended in mid-air by a uniform magnetic field of 0.5 T (as shown in figure). The massof the wire is ($g=10 \mathrm{~ms}^{-2}$)
A. 100 gm
B. 125 gm
C. 62.5 gm
D. 250 gm

Answer: C

D Watch Video Solution

32. A magnetic dipole of magnetic moment $6 \times 10^{-2} A m^{2}$ and moment of inertia $12 \times 10^{-6} \mathrm{kgm}^{2}$ performs oscillations in a magnetic field of $2 \times 10^{-2} T$. The time taken
by the dipole to complete 20 oscillations is ($\pi=3$)
A. 6 s
B. 12 s
C. 36 s
D. 18 s

Answer: B
(Watch Video Solution
33. The working of magnetic braking of trainsis based on
A. steady current
B. eddy current
C. eddy current
D. pulsatingcurrent

Answer: B
(D) Watch Video Solution
34. The value of I in the figure shown below is

A. 19 A
B. 21 A
C. 8 A
D. 4 A

Answer: B

D Watch Video Solution

35. The output of a stepdown transformer is
measured to be 48 V when connected to a 12

W bulb. The value of peak current is
A. $\sqrt{2} A$
B. $\frac{1}{2 \sqrt{2}} A$
C. $\frac{1}{4} A$
D. $\frac{1}{\sqrt{2}} A$

Answer: B

D Watch Video Solution

36. A linear objectof height 10 cm is kept in
front of a concave mirror of radius of curvature 15 cm , at a distance of 10 cm . The image formed is
A. magnified and erect
B. magnified and inverted
C. diminished and erect

D. diminished and inverted

Answer: B

D Watch Video Solution

37. In a nuclear reactor the function of the

Moderator is to decrease
A. number of neutrons
B. speed of neutrons
C. escape of neutrons

D. temperature of the reactor

Answer: B

D Watch Video Solution

38. From the following graph of photo current against collector plate potential, for two different intensities of light I_{1} and I_{2}, one can
A. $I_{1}=I_{2}$
B. $I_{1}>I_{2}$
C. $I_{1}<I_{2}$
D. Comparison is not possible

Answer: C

- Watch Video Solution

39. The power dissipated in 3Ω resistance in
the following circuit is

A. 1 W
B. 0.5 W
C. 0.25 W
D. 0.75 W

Answer: D

D Watch Video Solution

40. A body of mass 50 kg is suspended using aspring balance inside a lift at rest. If the lift
starts falling freely, the reading of the spring balance is
A. 0
B. $<50 \mathrm{~kg}$
C. 50 kg

D. $>50 \mathrm{~kg}$

Answer: A

D Watch Video Solution
41. In the three parts of a transistor, 'Emitter' is of
A. moderate size and heavily doped
B. large size and lightly doped
C. thin size and heavily doped
D. large size and moderately doped

Answer: A
(D) Watch Video Solution
42. A piece of copper is to be shaped into a conducting wire of maximum resistance. The suitable length and diameter are and respectively.
A. L and d
B. 2 L and $d / 2$
C. $L / 2$ and 2 d
D. 2 L and d

Answer: B
43. If $\vec{A}=2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to $\vec{B}=4 \hat{j}-4 \hat{i}+\alpha \hat{k}$, then the value of α
A. 1
B. $\frac{1}{2}$
C. -1
D. $-\frac{1}{2}$

Answer: D

D Watch Video Solution
44. Which of the following properties is 'False' for a bar magnet?
A. It doesn t produce magnetic held.
B. Its poles cannot be separated.
C. It points in North-South direction when
suspended
D. Its like poles repel and unlike poles
attract.

Answer: A

Watch Video Solution

45. The energy gap in case of which of the following is less than 3 eV ?
A. Aluminium
B. Iron
C. Germanium
D. Copper

Answer: C
46. The energy (in W) required to excite an electron from $\mathrm{n}=2$ to $\mathrm{n}=4$ state in hydrogen atom
A. +2.55
B. -3.4
C. +4.25
D. -0.85

Answer: A
47. According to Huygens' principle, during refraction of light from air to a denser medium
A. wavelength and speed increase
B. wavelength decreases but speed
increases
C. wavelength and speed decrease

D. wavelength increases but speed

 decreases
Answer:

D Watch Video Solution

48. The value of acceleration due to gravity at
a depth of 1600 km is equal to [Radius of earth
$=6400 \mathrm{~km}$]
A. $9.8 m s^{-2}$
B. $4.9 m s^{-2}$
C. $7.35 m s^{-2}$
D. $19.6 m s^{-2}$

Answer: C

- Watch Video Solution

49. A jet plane of wing span 20 m is travelling towards west at a speed of $400 \mathrm{~ms}^{-1}$. If the earth's total magnetic field is $4 \times 10^{-4} \mathrm{~T}$ and the dip angle is 30°, at that place, the voltage
difference developed across the ends of the wing is
A. 3.2 V
B. 6.4 V
C. 1.6 V
D. 0.8 V

Answer: C
(Watch Video Solution
50. A cylindrical conductor of diameter 0.1 mm
carries a current of 90 mA . The current density (in $A m^{-2}$) is $\pi=3$
A. 1.2×10^{7}
B. 6×10^{6}
C. 3×10^{6}
D. 2.4×10^{7}

Answer: A

- Watch Video Solution

51. Two balls are thrown simultaneously in air.

The acceleration of the centre of mass of the two balls when in air,
A. is equal to g (Acceleration due to gravity)
B. depends on the masses of the two balls
C. depends on the direction of motion of
the two balls.
D. depends on the speeds of the two balls.

- Watch Video Solution

52. The scientist who is credited with the discovery of 'nucleus' in an atom is
A. Niels Bohr
B. Rutherford
C. J.JThomson
D. Balmer

Answer: B

- Watch Video Solution

53. Three point charges of $+2 q,+2 q$ and $-4 q$ are placed at the corners A, B and C of an equilateral triangle $A B C$ of side ' x '. The magnitude of the electric dipole moment of this system is.
A. $2 \sqrt{3} q x$
B. 2 qx
C. $3 q x$
D. $3 \sqrt{2} q x$

Answer: A

D Watch Video Solution

54. The mass defect of ${ }_{2}^{4} \mathrm{He}$ is 0.03 u . The
binding energy per nucleon of helium (in MeV) is
A. 69.825
B. 6.9825
C. 2.793
D. 27.93

Answer: B

D Watch Video Solution

55. Young's modulus' is defined as the ratio of
A. bulk stress and longitudinal strain
B. hydraulic stress and hydraulic strain
C. shearing stress and shearing strain
D. tensile stress and longitudinal strain

Answer: D

D Watch Video Solution

56. A motor pump lifts 6 tonnes of water from
a well of depth 25 m to the first floor of height
35 m from the ground floor in 20 minutes. The power of the pump (in kW) is [$g=10 m s^{-2}$]
A. 6
B. 1.5
C. 12
D. 3

Answer: D

D Watch Video Solution

57. A substance of mass 49.53 g occupies
$1.5 \mathrm{~cm}^{3}$ of volume. The density of the
substance (in gcm^{-3}) with correct number of significant figures is
A. 3.3
B. 3.302
C. 3.30
D. 3.300

Answer:
(Watch Video Solution
58. A galvanometer of resistance 50Ω is connected to a battery of 3 V along with a resistance of 2950Ω in series shows full-scale deflection of 30 divisions. The additional series resistance required to reduce the deflection to 20 divisions is
A. 4440Ω
B. 1500Ω
C. 7400Ω
D. 2950Ω

Answer: B

D Watch Video Solution

59. If \vec{E} and \vec{B} representelectric and magnetic field vectors of an electromagnetic wave, the direction of propagation of the wave is along
A. $\vec{B} \times \vec{E}$
B. \vec{B}
C. \vec{E}
D. $\vec{E} \times \vec{B}$

Answer: D

D Watch Video Solution

60. The minimum value of effective
capacitance that can be obtained by
combining 3 capacitors of capacitances 1 pF, 2
pF and 4 pF is
A. $\frac{7}{4} p F$
B. $\frac{4}{7} p F$
C. 1 pF
D. 2 pF

Answer: B

- Watch Video Solution

