©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

MAXIMA AND MINIMA

Others

1. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to
the straight line $y=3 x-3$.

- Watch Video Solution

2. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum values, as the case
may be: $f(x)=\frac{x}{2}+\frac{2}{x}, x>0$

D Watch Video Solution

3. An open tank is to be constructed with square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead will be least, if depth is made half of width.

- Watch Video Solution

4. Find the points of local maxima or local minima, if any, of the following function, using
the first derivative test. Also, find the local
maximum or local minimum values, as the case may be: $f(x)=\sin 2 x-x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

D Watch Video Solution

5. Find the maximum slope of the curve
$y=-x^{3}+3 x^{2}+2 x-27$.

D Watch Video Solution

6. The total cost of producing x radio sets per day is $R s \frac{x^{2}}{4} 35 x+25$ and the price per set at
which they may be sold is $R s 50-\frac{x}{2}$. Find the daily output to maximize the total profit.

D Watch Video Solution

7. A box of constant volume c is to be twice as
long as it is wide. The material on the top and
four sides cost three times as much per
square metre as that in the bottom. What are the most economic dimensions?
8. The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

D Watch Video Solution

9. Find the maximum and the minimum values,
if any, without using derivatives of the following functions: $f(x)=|x+2|$ on R
10. Find the maximum and the minimum values, if any, without using derivatives of the following functions: $f(x)=4 x^{2}-4 x+4$ on R

D Watch Video Solution

11. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $500 \pi \mathrm{~cm}^{3}$.
12. Find the maximum and the minimum values, if any, without using derivatives of the following functions: $f(x)=2 x^{3}+5$ on R

D Watch Video Solution

13. Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the given
function. Also, find the points of inflection, if any: $f(x)=x e^{x}$
14. Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the following functions. Also, find the points of inflection, if any
$f(x)=x^{4}-62 x^{2}+120 x+9$
15. The function $y=a \log x+b x^{2}+x$ has extreme values at $x=1,2$. Find a and b

D Watch Video Solution

16. Find the absolute maximum and the absolute minimum values of the following function in the given intervals:
$f(x)=(x-2) \sqrt{x-1}$ in $[1,9]$
17. A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find also the area.

- Watch Video Solution

18. A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle
that will produce the largest area of the window.

D Watch Video Solution

19. Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.

- Watch Video Solution

20. A closed cylinder has volume $2156 \mathrm{~cm}^{3}$.

What will be the radius of its base so that its
total surface area is minimum?

- Watch Video Solution

21. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: $f(x)=x^{3}(x-1)^{2}$
22. Show that among all positive numbers x and y with $x^{2}+y^{2}=r^{2}$, the sum $x+y$ is largest when $x=y=\frac{r}{\sqrt{2}}$.

- Watch Video Solution

23. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local
maximum or local minimum values, as the case
may be: $f(x)=(x-5)^{4}$

D Watch Video Solution

24. Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is $\cot ^{-1}(\sqrt{2})$.

D Watch Video Solution
25. Show that the cone of the greatest volume
which can be inscribed in a given sphere has
an altitude equal to $2 / 3$ of the diameter of the sphere.

D Watch Video Solution

26. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of
$f(x)=(x-1)(x+2)^{2}$
27. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: $‘ f(x)=\cos x, 0$

D Watch Video Solution

28. Determine the points on the curve $x^{2}=4 y$
which are nearest to the point $(0,5)$.
29. The total area of a page is $150 \mathrm{~cm}^{2}$. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm . What must be the dimensions of the page in order that the area of the printed matter may be maximum?
30. A straight line is drawn through a given
point $P(1,4)$. Determine the least value of the
sum of the intercepts on the coordinate axes.

- Watch Video Solution

31. The strength of a beam varies as the product of its breadth and square of its depth.

Find the dimensions of the strongest beam which can be cut from a circular log of radius a.
32. The given quantity of metal is to be cost into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum, the ratio of the length of the cylinder to the diameter of its semi-circular ends is $\pi:(\pi+2)$.

D Watch Video Solution
33. A particle is moving in a straight line such
that its distance s at any time t is given by
$s=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}-7 . \quad$ Find when its
velocity is maximum and acceleration
minimum.

- Watch Video Solution

34. A wire of length 20 m is to be cut into two
pieces. One of the places will be bent into
shape of a square and the other shape of an
equilateral triangle. Where the wire should be cut so that the sum of the areas of the square and triangle is minimum?

D Watch Video Solution

35. A beam is supported at the two ends and is
uniformly loaded. The bending moment M at
a distance x from one end is given by
$M=\frac{W L}{2} x-\frac{W}{2} x^{2} \quad M=\frac{W x}{3}-\frac{W}{3} \frac{x^{3}}{L^{2}}$
Find the point at which M is maximum in each case.

D Watch Video Solution

36. Determine two positive numbers whose sum is 15 and the sum of whose squares is minimum.

D Watch Video Solution

37. Show that the right circular cylinder, open
at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.

- Watch Video Solution

38. Find the volume of the largest cylinder that
can be inscribed in a sphere of radius rcm .

- Watch Video Solution

39. A rectangular sheet of fixed perimeter with sides having their lengths in the ratio $8: 15$ is converted into anopen rectangular box by folding after removing squares of equal area
from all four corners. If the total area of removed squares is 100 , the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are 24 (b) 32 (c) 45 (d) 60

D Watch Video Solution

40. A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the
flaps to form the box. What should be the side
of the square to be cut off so that the volume of the box is the maximum possible?

D Watch Video Solution

41. Find both the maximum and the minimum
value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the
interval $[1,4]$.

D Watch Video Solution
42. Show that $f(x)=\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$ in the interval $[0, \pi]$.

D Watch Video Solution

43. Show that the triangle of maximum area
that can be inscribed in a given circle is an equilateral triangle.

D Watch Video Solution
44. The sum of the surface areas of a cuboid with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.

- Watch Video Solution

45. Find the maximum and minimum value of
$f(x)=\sin x+\frac{1}{2} \cos 2 \xi n\left[0, \frac{\pi}{2}\right]$.
46. Prove that $f(x)=\sin x+\sqrt{3} \cos x$ has
maximum value at $x=\frac{\pi}{6}$.

D Watch Video Solution

47. Find the difference between the greatest
and least values of the function
$f(x)=\sin 2 x-x o n\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
48. Find the maximum and minimum values of
$f(x)=x^{50}-x^{20}$ in the interval $[0,1]$.

D Watch Video Solution
49. If $f(x)=a \log |x|+b x^{2}+x$ has extreme
values at $x=-1$ and at $x=2$, then find a and b.

D Watch Video Solution
50. At what points, the slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is maximum?

Also, find the maximum slope.

D Watch Video Solution

51. Show that the maximum value of $\left(\frac{1}{x}\right)^{x}$ is $e^{\frac{1}{e}}$.

D Watch Video Solution

52. If $y=\frac{a x-b}{(x-1)(x-4)}$ has a turning point
$P(2,-1)$, find the value of a and b.

- Watch Video Solution

53. A metal box with a square base and vertical
sides is to contain 1024 cm 3 of water, the material for the top and bottom costs Rs 5 per cm 2 and the material for the sides costs Rs
2.50 per cm 2 . Find the least cost of the box.

- Watch Video Solution

54. OR An open box with a square base is to be made out of a given quantity of cardboard of area c^{2} square units. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.

D Watch Video Solution

55. Find the point on the curve $y^{2}=4 x$ which
is nearest to the point $(2,1)$.
56. A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs. 300 per subscriber. The company proposes to increase the annual subscription and it is believed that every increase of Rs. 1 one subscriber will discontinue the services. Find what increase will bring maximum revenue?
57. The maximum value of
$f(x)=\frac{x}{4-x+x^{2}}$ on $[-1,1]$ is (a) $\frac{1}{4}$ (b)
$-\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$

- Watch Video Solution

58. The function $f(x)=\sum_{r=1}^{5}(x-r)^{2}$ assuming minimum value at $x=$ (a)5 (b) $\frac{5}{2}$ (c) 3 (d) 2

D Watch Video Solution

59. The least value of the function
$f(x)=x^{3}-18 x^{2}+96 x$ in the interval $[0,9]$
is 126 (b) 135 (c) 160 (d) 0

D Watch Video Solution

60. The maximum value of $x^{\frac{1}{x}}, x>0$ is (a) $e^{\frac{1}{e}}$
(b) $\left(\frac{1}{e}\right)^{e}$ (c) 1 (d) none of these

D Watch Video Solution

61.

$f(x)=(x-a)^{2}+(x-b)^{2}+(x-c)^{2}$.
Then, $f(x)$ has a minimum at $x=\frac{a+b+c}{3}$
(b) $\frac{1}{2}$ (c) $\frac{1}{8}$ (d) none of these

- Watch Video Solution

62. Show that of all the rectangles inscribed in
a given fixed circle, the square has the maximum area.
63. $A B$ is a diameter of a circle and C is any point on the circumference of the circle. Then
a) the area of $A B C$ is maximum when it is
isosceles b) the area of $A B C$ is minimum when it is isosceles c) the perimeter of $A B C$ is minimum when it is isosceles d) none of these

- Watch Video Solution

64. Find the points of local maxima and local minima, if any, $y=3 x^{3}+12 x^{2}+7$. Find also
the local maximum and local minimum values, as the case may be:

D Watch Video Solution

65. Find the local maximum and local minimum
value
$f(x)=\sec x+\log \cos ^{2} x, 0<x<2 \pi$

D Watch Video Solution
66. Amongst all pairs of positive numbers with product 256 , find those whose sum is the least.

D Watch Video Solution

67. Find two positive numbers whose sum is 14
and the sum of whose squares in minimum.

D Watch Video Solution

68. A beam is supported at the two ends and is
uniformly loaded. The bending moment M at
a distance x from one end is given by
$M=\frac{W L}{2} x-\frac{W}{2} x^{2}$
$M=\frac{W x}{3}-\frac{W}{3} \frac{x^{3}}{L^{2}}$ Find the point at which
M is maximum in each case.

- Watch Video Solution

69. Show that all the rectangles with a given perimeter, the square has the largest area.
70. Find all the points of local maxima and local minima of the function
$f(x)=x^{3}-6 x^{2}+12 x-8$.

D Watch Video Solution
71. Show that the function
$f(x)=4 x^{3}-18 x^{2}+27 x-7$ has neither maxima nor minima.
72. Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function
$f(x)=-\frac{3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.

- Watch Video Solution

73. Find all the points of local maxima and minima and the corresponding maximum and
minimum values of the function
$f(x)=2 x^{3}-21 x^{2}+36 x-20$.

D Watch Video Solution

74. Find the points of local maxima, local minima and the points of inflection of the
function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also,
find the corresponding local maximum and local minimum values.
75. Find the point of local maxima or local minima of the function
$f(x)=\left(\sin ^{4} x+\cos ^{4} x\right)$ in $0<x<\frac{\pi}{2}$

- Watch Video Solution

76. Prove that the area of right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

- Watch Video Solution

77. Show that the total surface area of a closed
cuboid with square base and given volume is minimum, when it is a cube.

- Watch Video Solution

78. Find the maximum and the minimum
values, if any, of the following functions
$f(x)=3 x^{2}+6 x+8, x \in R$

- Watch Video Solution

79. Find the maximum and the minimum values, if any, of the following functions $f(x)=-|x-1|+5 f$ or allx $\in R$

D Watch Video Solution

80. Find the maximum and the minimum
values, if any, of the following functions
$f(x)=\sin 3 x+4, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
81. Find the maximum and the minimum values, if any, of the following functions $\mathrm{f}(\mathrm{x})=|\mathrm{x}+3|$ for all $x \in R$.

- Watch Video Solution

82. A rectangle is inscribed in a semi-circle of
radius r with one of its sides on diameter of
semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find also the area.
83. A wire of length 36 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

D Watch Video Solution

84. Find the maximum and the minimum
values of $f(x)=3 x^{2}+6 x+8, x \in R$, if any.

D Watch Video Solution

85. Find the maximum and the minimum
values of $f(x)=-|x-1|+5$ for all $x \in R$
, if any.

- Watch Video Solution

86. Find the maximum and the minimum

values

$f(x)=\sin 3 x+4, x \in(-\pi / 2, \pi / 2)$, if any.

- Watch Video Solution

87. Find the maximum and the minimum
values of $f(x)=x^{3}+1$ for all $x \in R$, if any.
88. Find the maximum and the minimum
values of $f(x)=\sin (\sin x)$ for all $x \in R$, if any.

D Watch Video Solution

89. Find the maximum and the minimum
values of $f(x)=|x+3|$ for all $x \in R$, if any.

- Watch Video Solution

90. Find the maximum and minimum values of
$f(x)=4 x^{2}-4 x+4$ on R, if any, without using derivatives.

D Watch Video Solution

91. Find the maximum and minimum values of
$f(x)=-(x-1)^{2}+2$ on R, if any, without
using derivatives.

D Watch Video Solution
92. Find the maximum and minimum values of
$f(x)=|x+2|$ on R, if any, without using derivatives.

- Watch Video Solution

93. Find the maximum and minimum values of
$f(x)=\sin 2 x+5$ on R, if any, without using derivatives.
94. Find the maximum and minimum values of
$f(x)=|\sin 4 x+3|$ on R, if any, without using derivatives.

D Watch Video Solution

95. Find the maximum and minimum values of
$f(x)=2 x^{3}+5$ on R, if any, without using derivatives.

D Watch Video Solution
96. Find the maximum and minimum values of
$f(x)=-|x+1|+3$ on R, if any, without using derivatives.

D Watch Video Solution

97. Find the maximum and minimum values of
$f(x)=16 x^{2}-16 x+28$ on R, if any,
without using derivatives.

D Watch Video Solution
98. Find the maximum and minimum values of
$f(x)=x^{3}-1$ on R, if any, without using derivatives.

- Watch Video Solution

99. Find all the points of local maxima and

> minima of \quad the $f(x)=x^{3}-6 x^{2}+9 x-8$
100. Find all the points of local maxima and local minima as well as the corresponding local maximum and local minimum values for the function $f(x)=(x-1)^{3}(x+1)^{2}$.

D Watch Video Solution

101. Find all the points of local maxima and
local minima of the function
$f(x)=x^{3}-6 x^{2}+12 x-8$.

D Watch Video Solution

102. Show that the function

$f(x)=4 x^{3}-18 x^{2}+27 x-7$ has neither maxima nor minima.

- Watch Video Solution

103. Find the points of local maxima, local minima and the points of inflection of the
function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also,
find the corresponding local maximum and local minimum values
104. Find the local maxima or local minima, if any, of the function $` \mathrm{f}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}, \backslash \backslash 0$

D Watch Video Solution

105. Find the local maximum or local minimum,
if any, of the function $\mathrm{f}(\mathrm{x})=\sin ^{4} x+\cos ^{4} x$,
where x belongs to $\left[\begin{array}{ll}0, & \frac{\pi}{2}\end{array}\right]$
106. Find the points at which the function f given by $f(x)=(x-2)^{4}(x+1)^{3}$ has(i) local maxima (ii) local minima (iii) point of inflexion

- Watch Video Solution

107. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=(x-5)^{4}$
108. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}-3 x$

D Watch Video Solution

109. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}(x-1)^{2}$
110. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=(x-1)(x+2)^{2}$

- Watch Video Solution

111. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=\frac{1}{x^{2}+2}$

D Watch Video Solution
112. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=x^{3}-6 x^{2}+9 x+15$

D Watch Video Solution
113. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\sin 2 x, 0<x<\pi$

D Watch Video Solution

114. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\sin x-\cos x, x \in(0,2 \pi)$
115. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\cos x, \mathrm{x}$ belongs to $(0, \pi)$

- Watch Video Solution

116. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=\sin 2 x-x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

D Watch Video Solution

117. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=\sin 2 x, 0<x<\pi$

D Watch Video Solution
118. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x \sqrt{1-x}, \quad x>0$

D Watch Video Solution

119. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}(2 x-1)^{3}$
120. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\frac{x}{2}+\frac{2}{x}, x>0$

- Watch Video Solution

121. Find all the points of local maxima and minima and the corresponding maximum and
minimum values of the function
$f(x)=-\frac{3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.

D Watch Video Solution
122. Find all the points of local maxima and minima and the corresponding maximum and

$$
\begin{aligned}
& \text { minimum values of the function } \\
& f(x)=2 x^{3}-21 x^{2}+36 x-20
\end{aligned}
$$

D Watch Video Solution

123. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin 2 x-x$, where -pi/2

- Watch Video Solution

124. Find maximum and minimum values of
$f(x)=\sin x+\frac{1}{2} \cos 2 x$, where `o
125. Find the points of local maxima and local
minima, if any, and local maximum and local
minimum values of $f(x)=\sin ^{4} x+\cos ^{4} x,{ }^{\prime}$ ○

D Watch Video Solution

126. Find the points of local maxima or local minima, if any, and local maximum or local minimum values of $f(x)=\sin x+\cos x$, where ` 0
127. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin x-\cos x$,where $0<x<2 \pi$

D Watch Video Solution

128. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin 2 x$, where $0<x<\pi$
129. Find the second order derivative of $f(x)=2 \cos x+x$ with respect to x

D Watch Video Solution

130. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=2 \sin x-x$,
$-\frac{\pi}{2}<x<\frac{\pi}{2}$
131. Find the local maximum and local minimum
values
$f(x)=\sec x+\log \cos ^{2} x, \quad 0<x<2 \pi$

D Watch Video Solution

132. Show that none of the following functions
has a local maximum or a local minimum:
$x^{3}+x^{2}+x+1$ (ii) e^{x}
133. Show that none of the following functions
has a local maximum or a local minimum: $\log x$
(ii) $\cos x, \quad 0<x<\pi$

D Watch Video Solution

134. Find the maximum profit that a company
can make, if the profit function is given
$P(x)=41+24 x-18 x^{2}$.
135. At what points, the slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is maximum.

D Watch Video Solution

136. If $f(x)=a \log |x|+b x^{2}+x$ has extreme
values at $x=-1$ and at $x=2$, then find a and b.

D Watch Video Solution
137. It is given that at $x=1$, the function
$x^{4}-62 x^{2}+a x+9$ attains its maximum
value on the interval $[0,2]$. Find the value of a.

- Watch Video Solution

138. If $y=\frac{a x-b}{(x-1)(x-4)}$ has a turning
point $P(2,-1)$, find the values of a and b and show that y is maximum at P.
139. Show that the maximum value of $\left(\frac{1}{x}\right)^{x}$
is $e^{1 / e}$.

D Watch Video Solution

140. Show that $\sin ^{p} \theta \cos ^{q} \theta$ attains a maximum, when $\theta=\tan ^{-1} \sqrt{\frac{p}{q}}$.

- Watch Video Solution

141. Find the points of local maxima or minima and corresponding local maximum and minimum values of
$f(x)=x^{4}-62 x^{2}+120 x+9$. Also, find the points of inflection, if any:

- Watch Video Solution

142. Find the points of local maxima or minima and corresponding local maximum and
$f(x)=x^{3}-6 x^{2}+9 x+15$. Also, find the points of inflection, if any:

D Watch Video Solution

143. Find the points of local maxima or minima and corresponding local maximum and minimum values of $f(x)=(x-1)(x+2)^{2}$.

Also, find the points of inflection, if any:

- Watch Video Solution

144. Find the points of local maxima or minima and corresponding local maximum and minimum values
$f(x)=x^{5}-5 x^{4}+5 x^{3}-1$

- Watch Video Solution

145. Find the points of local maxima or minima and corresponding local maximum and minimum values of $f(x)=x e^{x}$. Also, find the points of inflection, if any:
146. Find the points of local maxima or minima and corresponding local maximum and minimum values
$f(x)=x / 2+2 / x, x>0$. Also, find the points of inflection, if any:

D Watch Video Solution

147. Find the points of local maxima or minima and corresponding local maximum and
$f(x)=(x+1)(x+2)^{1 / 3}, \quad x \geq-2$. Also,
find the points of inflection, if any:

D Watch Video Solution

148. Find the points of local maxima or minima
and corresponding local maximum and
minimum
values
of
$f(x)=x \sqrt{32-x^{2}},-5 \leq x \leq 5$. Also, find
the points of inflection, if any:
149. Find the points of local maxima or minima and corresponding local maximum and minimum values of $f(x)=x \sqrt{1-x}, \quad x \leq 1$,
$x>0, x \in R$. Also, find the points of inflection, if any:

D Watch Video Solution

150. Find the points of local maxima or minima and corresponding local maximum and
$f(x)=x+\frac{a^{2}}{x}, \quad a>0, \quad x \neq 0$. Also, find the points of inflection, if any:

D Watch Video Solution

151. Find the points of local maxima or minima and corresponding local maximum and minimum values of
$f(x)=x \sqrt{2-x^{2}}-\sqrt{2} \leq x \leq \sqrt{2}$. Also,
find the points of inflection, if any:

- Watch Video Solution

152. Find the points of local maxima or minima and corresponding local maximum and minimum values
$f(x)=x+\sqrt{1-x}, \quad x \leq 1$

D Watch Video Solution

153. Find the local extremum values of the following functions: $f(x)=(x-1)(x-2)^{2}$

D Watch Video Solution

154. The function $y=a \log x+b x^{2}+x$ has extreme values at $x=1$ and $x=2$. Find a and b.

D Watch Video Solution

155. Show that $\frac{\log x}{x}$ has a maximum value at $x=e$.

- Watch Video Solution

156. Find the maximum and minimum values of
the function $f(x)=\frac{4}{x+2}+x$.

D Watch Video Solution

157. Find the maximum and minimum values of
the function $f(x)=\tan x-2 x$.

D Watch Video Solution
158. If $f(x)=x^{3}+a x^{2}+b x+c$ has a maximum at $x=-1$ and minimum at $x=3$
. Determine a, b and c.

D Watch Video Solution

159. Prove that $f(x)=\sin x+\sqrt{3} \cos x$ has
maximum value at $x=\frac{\pi}{6}$.

D Watch Video Solution
160. Find the maximum and minimum values of
$f(x)=2 x^{3}-24 x+107$ in the interval $[1,3]$

D Watch Video Solution

161. Find the second order derivative of $f(x)=\sin x$ with respect to x.

D Watch Video Solution
162. Find the maximum and minimum values of
$f(x)=\sin x+\frac{1}{2} \cos 2 x$ in $\left[0, \frac{\pi}{2}\right]$.

D Watch Video Solution

163. Find the maximum and minimum values of $f(x)=x^{50}-x^{20}$ in the interval $[0,1]$.

D Watch Video Solution

164. Find the maximum and minimum values of
$f(x)=x+\sin 2 x$ in the interval $[0,2 \pi]$

D Watch Video Solution

165. Find the difference between the greatest and least values of the function
$f(x)=\sin 2 x-x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

D Watch Video Solution

166. Show that $f(x)=\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$ in the interval $[0, \pi]$.

D Watch Video Solution

167. Find the absolute maximum value and the

$$
\begin{aligned}
& \text { absolute } \quad \text { minimum } \\
& f(x)=(1 / 2-x)^{2}+x^{3} \text { in }[-2,2.5]
\end{aligned}
$$

D Watch Video Solution

168. Find the absolute maximum value and the absolute minimum value
$f(x)=\sin x+\cos x$ in $[0, \pi]$

D Watch Video Solution

169. Find both the maximum and the minimum
value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the interval $[1,4]$.
170. Find the absolute maximum and absolute minimum values of $f(x)=4 x-\frac{x^{2}}{2}$ in $[-2,4.5]$

- Watch Video Solution

171. Find the absolute maximum and absolute minimum values of $f(x)=(x-1)^{2}+3$ in $[-3,1]$
172. Find the absolute maximum and absolute

minimum

 values$f(x)=3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$
$[0,3]$

D Watch Video Solution

173. Find the absolute maximum and the absolute minimum values of the following function in the given intervals:
$f(x)=(x-2) \sqrt{x-1}$ in $[1,9]$
174. Find the maximum value of
$2 x^{3}-24 x+107$ in the interval $[1,3]$.

D Watch Video Solution

175. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$.

D Watch Video Solution

176. Find absolute maximum and minimum
values of a function f given by
$f(x)=12 x^{4 / 3}-6 x^{1 / 3}, x \in[-1,1]$.

D Watch Video Solution

177. Find the absolute maximum and minimum
values of a function f given by
$f(x)=2 x^{3}-15 x^{2}+36 x+1$ on the interval
$[1,5]$.

D Watch Video Solution

178. Find two numbers whose sum is 24 and whose product is as large as possible.

D Watch Video Solution
179. Find two positive numbers x and y such
that $x+y=60$ and $x y^{3}$ is maximum.

D Watch Video Solution
180. Find two positive numbers x and y such
that their sum is 35 and the product $x^{2} y^{5}$ is a maximum.

D Watch Video Solution

181. Amongst all pairs of positive numbers with
product 64, find those whose sum is the least.

D Watch Video Solution

182. Find two positive numbers whose sum is

14 and the sum of whose squares is minimum.

D Watch Video Solution

183. Find the second order derivative of
$x^{19}+\cos x$ with respect to x

D Watch Video Solution

184. Find the second order derivative of $f(x)=x^{7}+\tan x$ with respect to x

- Watch Video Solution

185. Find the minimum value of $a x+b y$, where $x y=c^{2}$ and a, b, c are positive.

- Watch Video Solution

186. Show that all the rectangles with a given

 perimeter, the square has the largest area.
D Watch Video Solution

187. Show that of all the rectangles of given area, the square has the smallest perimeter.

D Watch Video Solution

188. Show that of all the rectangles inscribed
in a given circle, the square has the maximum area.

D Watch Video Solution

189. Find the second order derivative of
$f(x)=(\tan x)^{2}$ with respect to x

D Watch Video Solution
190. Find the second order derivative of x^{100} with respect to x

D Watch Video Solution
191. Find the derivative of $x^{2}+y^{2}=a^{2}$ with respect to x .
(D) Watch Video Solution
192. Find the derivative of $x^{3}+y^{3}=\sin x$ with respect to x .

- Watch Video Solution

193. Find the derivative of $x^{4}+y^{4}=\cos x$ with respect to x

D Watch Video Solution
194. Show that the surface area of a closed
cuboid with square base and given volume is minimum, when it is a cube.

D Watch Video Solution

195. Find the derivative of $x+y^{6}=\tan x$ with respect to x

D Watch Video Solution

196. Find the derivative of $\tan (x+y)=y^{3}$ with respect to x

D Watch Video Solution
197. Find the derivative of $x^{2}+y^{3}=\sin 2 x$ with respect to x
198. Find the derivative of $x y+y^{2}=\sin x$ with respect to x

D Watch Video Solution
199. Find the second order derivative of $x^{2} y$ with respect to x

200. Find the second order derivative of x^{10}

 with respect to xD Watch Video Solution
201. Find the second order derivative of $x^{3} y=8$ with respect to x
202. Find the second order of $x+2 y^{2}$ with respect to x

- Watch Video Solution

203. Find the derivative of $e^{x} \tan x$ with respect to x
(D) Watch Video Solution
204. Find the derivative of $e^{x} \log x$ with respect to x

D Watch Video Solution
205. Find the derivative of $e^{x} . x$ with respect to x

D Watch Video Solution
206. Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base.

- Watch Video Solution

207. Find $\frac{d y}{d x}$ if $x^{3}+x y+y^{3}=40$
208. Find the derivative of $e^{x} \cdot \tan x$ with respect to x.

D Watch Video Solution
209. Find the derivative of $\tan ^{-1} \sqrt{x}$ with respect to x .
(Watch Video Solution
210. Find the derivative of $\sin ^{-1}(x)$ with respect to x

- Watch Video Solution

211. Find the derivative of $e^{\sin x} \cdot \cos x$ with
respect to x

D Watch Video Solution
212. Find the derivative of $\log x . e^{x}$ with respect to x

D Watch Video Solution
213. Find the derivative of $e^{\log x}$ with respect to X

- Watch Video Solution

214. Find the derivative of $x y=x+\sin y$ with

 respect to x- Watch Video Solution

215. Find the derivative of $x y=\sin x+y$ with
respect to x
(D) Watch Video Solution

216. Find the derivative of x^{1000} with respect to

X

- Watch Video Solution

217. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.
218. A jet of enemy is along the curve $y=x^{2}+2$ and a soldier is placed at (3,2).Find the minimum distance between the jet and soldier.

- Watch Video Solution

219. The shortest distance between line
$y-x=1$ and curve $x=y^{2}$ is (a) $\frac{3 \sqrt{2}}{8}$
$\frac{8}{3 \sqrt{2}}$ (c) $\frac{4}{\sqrt{3}}$ (d) $\frac{\sqrt{3}}{4}$

D Watch Video Solution
220. Find the shortest distance of the point (0 ,
c) from the parabola $y=x^{2}$, where
$0 \leq c \leq 5$.

- Watch Video Solution

221. Find the derivative of the function
$\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ with respect to x

- Watch Video Solution

222. Find the derivative of the function
$\frac{x}{a^{2}}+\frac{y}{b^{2}}=1$ with respect to x

D Watch Video Solution

223. Find the differentiation of $x=\sin y+y$
with respect to x

- Watch Video Solution

224. Find the second order derivative of $x^{1000}+5 x$ with respect to x

D Watch Video Solution

225. Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
226. Find the second order derivative of $e^{\sin x}$ with respect to x

- Watch Video Solution

227. Divide 15 into two parts such that product of square of one part and cube of other is maximum

- Watch Video Solution

228. Find the derivative of $x^{\tan x}$ with respect to x

D Watch Video Solution

229. A beam is supported at the two ends and is uniformly loaded. The bending moment M at a distance x from one end is given by
$M=\frac{W L}{2} x-\frac{W}{2} x^{2}$. Find the point at which M is maximum.
230. A beam is supported at the two ends and is uniformly loaded. The bending moment M at a distance x from one end is given by
$M=\frac{W x}{3}-\frac{W}{3} \frac{x^{3}}{L^{2}}$. Find the point at which
M is maximum.

- Watch Video Solution

231. Find $\frac{d y}{d x}$ if $x^{2} y=e^{y}$
232. Find the derivative of $x y=e^{x}$ with respect to x

D Watch Video Solution
233. Find the derivative of $x y=e^{y}$ with
respect x
(Watch Video Solution
234. Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.

- Watch Video Solution

235. Find the derivative of $e^{y}+y=\sin x$ with
respect to x

- Watch Video Solution

236. Find the derivative of $\sin x . e^{x}$ with respect to x

- Watch Video Solution

237. Find $\frac{d y}{d x}$ if $y=\sin 2 x . e^{x}$

D Watch Video Solution
238. Find $\frac{d y}{d x}$ if $y=\log x . e^{x}$
239. Find $\frac{d y}{d x}$ if $y=\frac{\sin x}{\cos x}$

D Watch Video Solution
240. Find $\frac{d y}{d x}$ if $y=\frac{\cos x}{x}$

- Watch Video Solution

241. Show that the height of the cylinder of maximum volume that can be inscribed in a
sphere of radius R is $\frac{2 R}{\sqrt{3}}$.

D Watch Video Solution

242. Find $\frac{d y}{d x}$ if $y=\frac{\tan x}{\sin x}$

D Watch Video Solution

243. Prove that a conical tent of given capacity
will require the least amount of canvas when
the height is $\sqrt{2}$ times the radius of the base.
244. Find $\frac{d y}{d x}$ if $y=\frac{x+\sin x}{\cos x}$

- Watch Video Solution

245. Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is $\cot ^{-1}(\sqrt{2})$.
246. An isosceles triangle of vertical angle 2θ is
inscribed in a circle of radius a. Show that the area of the triangle is maximum when $\theta=\frac{\pi}{6}$.

D Watch Video Solution

247. Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is $6 \sqrt{3} r$
248. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides.

D Watch Video Solution

249. Find $\frac{d y}{d x}$ if $y=\frac{\tan x}{\sec x}$

D Watch Video Solution

250. Find $\frac{d y}{d x}$ if $y=\frac{\log x}{e^{x}}$

- Watch Video Solution

251. Find $\frac{d y}{d x}$ if $y=\frac{e^{x}}{x}$

- Watch Video Solution

252. Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=r^{2}$.
253. Find $\frac{d y}{d x}$ if $x^{2}=4 y$

- Watch Video Solution

254. Find $\frac{d y}{d x}$ if $y^{2}=4 x$.

- Watch Video Solution

255. Find the point on the curve $x^{2}=8 y$ which is nearest to the point $(2,4)$.
256. Find the point on the parabolas $x^{2}=2 y$ which is closest to the point $(0,5)$.

D Watch Video Solution

257. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to the straight line $y=3 x-3$.

D Watch Video Solution

258. Find the point on the curve $y^{2}=2 x$ which is at a minimum distance from the point
$(1,4)$.

- Watch Video Solution

259. Find $\frac{d y}{d x}$ if $y=-x^{3}+3 x^{2}+2 x-27$.

D Watch Video Solution

260. Find $\frac{d y}{d x}$ if $y=\frac{e^{x}}{\sin x}$
261. A manufacturer can sell x items at a price of Rs. $\left(5-\frac{x}{100}\right)$ each. The cost price of x items is Rs. $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit.

D Watch Video Solution

262. An open tank is to be constructed with square base and vertical sides so as to contain a given quantity of water. Show that the
expenses of lining with lead will be least, if depth is made half of width.

D Watch Video Solution

263. Find $\frac{d y}{d x}$ if $x+y=e^{y}+\sin x$

D Watch Video Solution

264. The sum of the surface areas of a sphere and a cube is given. Show that when the sum
of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

D Watch Video Solution

265. The given quantity of metal is to be cost into a half cylinder with a rectangular base and semicircular ends. Show that in order that
the total surface area may be minimum, the ratio of the length of the cylinder to the diameter of its semi-circular ends is $\pi:(\pi+2)$.

Watch Video Solution

266. Find $\frac{d y}{d x}$ if $y=x \cdot \sin y$

- Watch Video Solution

267. A straight line is drawn through a given
point $P(1,4)$. Determine the least value of the
sum of the intercepts on the coordinate axes.
268. The total area of a page is $150 \mathrm{~cm}^{2}$. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm . What must be the dimensions of the page in order that the area of the printed matter may be maximum?

D Watch Video Solution

269. The space s described in time t by a particle moving in a straight line is given by
$s=t^{5}-40 t^{3}+30 t^{2}+80 t-250$. Find the minimum value of acceleration.

D Watch Video Solution

270. A particle is moving in a straight line such
that its distance s at any time t is given by
$s=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}-7 . \quad$ Find when its
velocity is maximum

D Watch Video Solution

271. Write necessary condition for a point $x=c$ to be an extreme point of the function $f(x)$.

D Watch Video Solution

272. Write sufficient conditions for a point $x=c$ to be a point of local maximum.

D Watch Video Solution

273. If $f(x)$ attains a local minimum at $x=c$,
then write the values of $f^{\prime}(c)$ and $f^{\prime \prime}(c)$.

- Watch Video Solution

274. Write the minimum value of
$f(x)=x+\frac{1}{x}, x>0$

- Watch Video Solution

275. Write the maximum value of
$f(x)=x+\frac{1}{x}, x<0$.

D Watch Video Solution
276. Write the point where $f(x)=x(\log)_{e} x$ attains minimum value.

D Watch Video Solution
277. Find the least value of $f(x)=a x+\frac{b}{x}$, where $a>0, \quad b>0$ and $x>0$.

D Watch Video Solution
278. Write the minimum value of $f(x)=x^{x}$.

D Watch Video Solution

279. Write the maximum value of $f(x)=x^{1 / x}$

- Watch Video Solution

280. Write the maximum value of
$f(x)=\frac{\log x}{x}$, if it exists.

- Watch Video Solution

281. The maximum value of $x^{\frac{1}{x}}, x>0$ is (a) $e^{\frac{1}{e}}$
(b) $\left(\frac{1}{e}\right)^{e}$ (c) 1 (d) none of these

D Watch Video Solution

282. If $a x+\frac{b}{x} \geq c$ for all positive x where
$a, b,>0$, then $a b<\frac{c^{2}}{4}$ (b) $\geq \frac{c^{2}}{4}$
$a b \geq \frac{c}{4}$ (d) none of these

- Watch Video Solution

283. The minimum value of $\frac{x}{(\log)_{e} x}$ is $e(\mathrm{~b})$
$1 / e(c) 1(\mathrm{~d})$ none of these

D Watch Video Solution
284. For the function $f(x)=x+\frac{1}{x} x=1$ is
a point of maximum (b) $x=-1$ is a point of minimum (c) maximum value $>$ minimum value (d) maximum value < minimum value

D Watch Video Solution

285. Let $f(x)=x^{3}+3 x^{2}-9 x+2$. Then,
$f(x)$ has a maximum at $x=1$ (b) a minimum
at $x=1$ (c) neither a maximum nor a minimum at $x=-3(\mathrm{~d})$ none of these
286. The minimum value of
$f(x)=x^{4}-x^{2}-2 x+6$ is (a) 6 (b) 4 (c) 8
(d) none of these

- Watch Video Solution

287. The number which exceeds its square by
the greatest possible quantity is $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{3}{4}$
(d) none of these
288.

Let
$f(x)=(x-a)^{2}+(x-b)^{2}+(x-c)^{2}$
Then, $f(x)$ has a minimum at $x=\frac{a+b+c}{3}$
(b) $3 \sqrt{a b c}$ (c) $\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$ (d) none of these

D Watch Video Solution

289. The sum of two non-zero numbers is 8 ,
the minimum value of the sum of their reciprocals is $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{8}$ (d) none of these

- Watch Video Solution

290. The function $f(x)=\sum_{r=1}^{5}(x-r)^{2}$ assuming minimum value at $x=$ (a)5 (b) $\frac{5}{2}$ (c) 3 (d) 2

D Watch Video Solution

291. At $x=\frac{5 \pi}{6}, f(x)=2 \sin 3 x+3 \cos 3 x$ is (a) 0 (b) maximum (c) minimum (d) none of these

- Watch Video Solution

292. If x lies in the interval $[0,1]$, then the least value of $x^{2}+x+1$ is (a) 3 (b) $3 / 4$ (c) 1 (d) none of these

D Watch Video Solution

293. The least value of the function
$f(x)=x^{3}-18 x^{2}+96 x$ in the interval $[0,9]$ is 126 (b) 135 (c) 160 (d) 0

294.
 The
 maximum
 value
 of
 $f(x)=\frac{x}{4+x+x^{2}}$ on $[-1,1]$ is (a) $\frac{1}{4}$ (b)
 $-\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$

- Watch Video Solution

295. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.
296. If $x+y=8$, then the maximum value of $x y$ is (a) 8 (b) 16 (c) 20 (d) 24

D Watch Video Solution

297. The least and greatest values of
$f(x)=x^{3}-6 x^{2}+9 x$ in $[0,6]$, are $3,4(\mathrm{~b})$
0,6 (c) 0,3 (d) 3,6

D Watch Video Solution
298. $f(x)=\sin +\sqrt{3} \cos x$ is maximum when
$x=\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) 0

D Watch Video Solution

299. If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is $3 / 4$ (b) $1 / 3$ (c) $1 / 4$ (d) $2 / 3$
300. The minimum value of $\left(x^{2}+\frac{250}{x}\right)$ is (a)

75 (b) 50 (c) 25 (d) 55

- Watch Video Solution

301. If $f(x)=x+\frac{1}{x}, x>0$, then its greatest value is -2 (b) 0 (c) 3 (d) none of these

- Watch Video Solution

302. If $f(x)=\frac{1}{4 x^{2}+2 x+1}$, then its maximum value is $\frac{4}{3}$ (b) $\frac{2}{3}$ (c) 1 (d) $\frac{3}{4}$

D Watch Video Solution

303. Let x, y be two variables and $x>0, x y=1$, then minimum value of $x+y$ is (a) 1 (b) 2 (c) $2 \frac{1}{2}$ (d) $3 \frac{1}{3}$

D Watch Video Solution

304.

$f(x)=1+2 \sin x+3 \cos ^{2} x, 0 \leq x \leq \frac{2 \pi}{3}$
is (a)Minimum at $x=\pi / 2$ (b) Maximum at
$x=\sin ^{-1}(1 / \sqrt{3})$ (c) Minimum at $x=\pi / 6$
(d) Maximum at $\sin ^{-1}(1 / 6)$

- Watch Video Solution

305.

The
function
$f(x)=2 x^{3}-15 x^{2}+36 x+4$ is maximum at
$x=(\mathrm{a}) 3$ (b) 0 (c) 4 (d) 2

$f(x)=\frac{x}{4-x+x^{2}}$ on $[-1,1]$ is (a) $\frac{1}{4}$
 $-\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$

- Watch Video Solution

307. Let $f(x)=2 x^{3}-3 x^{2}-12 x+5$ on
$[-2,4]$. The relative maximum occurs at
$x=-2(\mathrm{~b})-1(\mathrm{c}) 2(\mathrm{~d}) 4$
308. The minimum value of $x(\log)_{e} x$ is equal to $e(\mathrm{~b}) 1 / e(\mathrm{c})-1 / e$ (d) $2 e$ (e) e

D Watch Video Solution

309. The minimum value of the function
$f(x)=2 x^{3}-21 x^{2}+36 x-20$ is -128
-126 (c) -120 (d) none of these

