©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

KARNATAKA CET 2019

Physics

1. Which one of the following nuclei has

A. C
B. A
C. Same for all
D. B

Answer: B
(Watch Video Solution
2. The conductivity of semiconductor increases with increase in temperature because
A. both number density of charge carriers
and relaxation time increase
B. number density of charge carriers
increases
C. number density of current carriers increases,relaxation time decreases but
effect of decrease in relaxation time is much less than increase in number density
D. relaxation time increases.

Answer: C

D Watch Video Solution

3. For a transistor amplifier, the voltage gain
A. is low at high and low frequencies and constant at mid frequencies
B. remains constant for all frequencies
C. constant at high frequencies and low at low frequencies
D. is high at high and low frequencies and
constant in the middle frequency range.

Answer: A

D Watch Video Solution

4. In the following circuit, what are Pand Q ?

A. $P=0, Q=1$
B. $P=0, Q=0$
C. $P=1, Q=1$
D. $P=1, Q=0$

Answer: A
5. An antenna uses electromagnetic waves of frequency 5 MHz . For proper working, the size of the antenna should be
A. 15 km
B. 15 m
C. 3 km
D. 300 m

- Watch Video Solution

6. A magnetic needle has a magnetic moment of $5 \times 10^{-2} A m^{2}$ and moment of inertia $8 \times 10^{-6} \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$. It has a period of oscillation of $2 s$ in a magnetic field \vec{B}. The magnitude of magnetic field is approximately
A. $3.2 \times 10^{-4} \mathrm{~T}$
B. $1.6 \times 10^{-4} \mathrm{~T}$
C. $0.8 \times 10^{-4} \mathrm{~T}$

D. $0.4 \times 10^{-4} \mathrm{~T}$

Answer:

D Watch Video Solution

7. A toroid has 500 turns per metre length. If it

carries a current of 2 A , the magnetic energy density inside the toroid is
A. $6.28 \mathrm{~J}^{-3}$
B. $0.628 \mathrm{~J} \mathrm{~m}^{-3}$
C. $3.14 \mathrm{~J}^{-3}$
D. $0.314 \mathrm{~J} \mathrm{~m}^{-3}$

Answer: B

D Watch Video Solution

8. Consider the situation given in figure. The
wire $A B$ is slide on the fixed rails with a constant velocity. If the wire $A B$ is replaced by
a semicircular wire, the magnitude of the induced current will
A. decrease
B. increase
C. increase or decrease depending on
whether the semicircle bulges towards
the resistance or away from it

D. remain the same.

Answer: D

D Watch Video Solution

9. The frequency of an alternating current is

50 Hz . What is the minimum time taken by
current to reach its peak value from rms value
?
A. 0.02 s
B. $5 \times 10^{-3} \mathrm{~s}$
C. $10 \times 10^{-3} \mathrm{~s}$
D. $2.5 \times 10^{-3} \mathrm{~s}$

Answer: D
10. The readings of ammeter and voltmeter in
the following circuit are respectively

A. 2.7 A, 220 V
B. 1.2 A, 120 V
C. 2.2 A, 220 V

D. $1.5 \mathrm{~A}, 100 \mathrm{~V}$

Answer: C

D Watch Video Solution

11. Two metal plates are separated by 2 cm . The potentials of the plates are -10 V and +30 V .

The electric field between the two plates is
A. $2000 \vee m^{-1}$
B. $500 \vee m^{-1}$
C. $3000 \vee m^{-1}$
D. $1000 \vee m^{-1}$

Answer: A
(D) Watch Video Solution
12. The equivalent capacitance between A and

B is,
A. 150 pF
B. 50 pF
C. 300 pF
D. $\frac{100}{3} \mathrm{pF}$

Answer: D

D Watch Video Solution

13. A capacitor of capacitance C charged by an amount Q is connected in parallel with an
uncharged capacitor of capacitance 2C. The
final charges on the capacitors are
A. $\frac{Q}{3}, \frac{2 Q}{3}$
B. $\frac{Q}{2}, \frac{Q}{2}$
C. $\frac{Q}{5}, \frac{4 Q}{5}$
D. $\frac{Q}{4}, \frac{3 Q}{4}$

Answer: A

D Watch Video Solution

14. Though the electron drift velocity is small and electron charge is very small, a conductor can carry an appreciably large current because
A. electron number density depends on
temperature
B. electron number density is very large
C. relaxation time is small
D. drift velocity of electron is very large.

Answer: B
15. Masses of three wires of copper are in the ratio 1:3:5 and their lengths are in the ratio $5: 3: 1$ The ratio of their electrical resistance are
A. $1: 15: 125$
B. 1:3:5
C. $125: 15: 1$
D. $5: 3: 1$

Answer: C

D Watch Video Solution

16. If P, Q and Rare physical quantities having different dimensions, which of the following combinations can never be a meaningful quantity?
A. $\frac{P Q}{R}$
B. $\frac{P-Q}{R}$
C. $\frac{P R-Q^{2}}{R}$

D. PQ-R

Answer: B

D Watch Video Solution

17. The given graph shows the variation of
velocity (v) with position (x) for a particle moving along a straight line. Which of the following graph shows the variation of
acceleration (a) with position (x)?

Answer: A
(Watch Video Solution
18. The trajectory of a projectile projected
from origin is given by the equation
$y=x-\frac{2 x^{2}}{5}$.The initial velocity of the projectile is
A. $25 \mathrm{~m}^{-1}$
B. $\frac{2}{5} \mathrm{~m} s^{-1}$
C. $\frac{5}{2} m s^{-1}$
D. $5 \mathrm{~m} s^{-1}$

Answer: D
19. An object with mass 5 kg is acted upon by a
force, $\vec{F}=(-3 \hat{i}+4 \hat{j})$ N. If its initial velocity at $\mathrm{t}=0$ is $\vec{v}=(6 \hat{i}-12 \hat{j}) \mathrm{m} \mathrm{s}^{-1}$, the time at which it will just have a velocity along y-axis is
A. 2 s
B. 5 s
C. 15 s
D. 10 s

Answer: D

D Watch Video Solution

20. During inelastic collision between two objects, which of the following quantity always remains conserved?
A. Total linear momentum
B. Total kinetic energy
C. Speed of each body
D. Total mechanical energy

Answer: A

- Watch Video Solution

21. In Rutherford experiment, for head-on
collision of α particles with a gold nucleus, the impact parameter is
A. of the order of $10^{-10} \mathrm{~m}$
B. zero
C. of the order of $10^{-6} \mathrm{~m}$
D. of the order of $10^{-14} \mathrm{~m}$

Answer: B

- Watch Video Solution

22. Frequency of revolution of an electron
revolving in $n^{\text {th }}$ orbit of H -atom is
proportional to
A. n independent of n
B. $\frac{1}{n^{2}}$
C. $\frac{1}{n^{3}}$
D. n

Answer: C

- Watch Video Solution

23. A hydrogen atom in ground state absorbs
10.2 eV of energy. The orbital angular momentum of the electron is increased by
A. $3.16 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
B. $1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
C. $4.22 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
D. $2.11 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Answer: B

D Watch Video Solution

24. The end product of decay of ${ }_{90} T h^{232}$ is
${ }_{82} P b^{208}$. The number of α and β particles
emitted are respectively
A. 6,0
B. 3, 3
C. 4,6
D. 6,4

Answer: D

D Watch Video Solution

25. Two protones are kept at a separation of 10
nm. Let F_{n} and F_{e} be the nuclear force and the elctromagnetic force between them .
A. $F_{e} \ll F_{n}$
B. $F_{e}=F_{n}$
C. F_{e} and F_{n} differ only slightly
D. $F_{e} \gg F_{n}$

Answer: D

D Watch Video Solution

26. Two particles which are initially at rest move towards each other under the action of their mutual attraction. If their speeds are v and $2 v$ at any instant, then the speed of center of mass of the system is,
A. 1.5 v
B. 2 v
C. V

D. zero

Answer: D

- Watch Video Solution

27. A particle is moving uniformly along a straight line as shown in the figure. During the motion of the particle from A to B, the angular
momentum of the particle about 'O'

A. remains constant
B. increases
C. first increases then decreases
D. decreases.

Answer: A

- Watch Video Solution

28. A satellite is orbiting close to the earth and
has a kinetic energy K. The minimum extra kinetic energy required by it to just overcome the gravitation pull of the earth is
A. $\sqrt{3} K$
B. K
C. $2 \sqrt{2} K$

D. 2 K

Answer: B

D Watch Video Solution

29. A wire is stretched such that its volume
remains constant. The Poisson's ratio of the material of the wire is
A. 0.25
B. 0.50

C. -0.25

$$
\text { D. }-0.500
$$

Answer: D

D Watch Video Solution

30. A cylindrical container containing water has a small hole at height of $\mathrm{H}=8 \mathrm{~cm}$ from the bottom and at a depth of 2 cm from the top surface of the liquid. The maximum horizontal distance travelled by the water before it hits
the

A. 4 cm
B. 8 cm
C. 6 cm
D. $4 \sqrt{2} \mathrm{~cm}$

Answer: B
31. A transparent medium shows relation between i and r as shown. If the speed of light in vacuum is c, the Brewster's angle for the

A. 60°
B. 30°
C. 90°

D. 45°

Answer: A

D Watch Video Solution

32. In Young.s double slit experiment, using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ is K units. The intensity of light at a point where path difference is $\lambda / 3$ is.
A. 4 K
B. K
C. 2 K
D. $\frac{K}{4}$

Answer: D

D Watch Video Solution

33. Due to Doppler's effect, the shift in wavelength observed is $0.1 \AA$ for a star
producing wavelength 6000 Å. Velocity of recession of the star will be
A. $5 \mathrm{~km} s^{-1}$
B. $25 \mathrm{~km} \mathrm{~s}{ }^{-1}$
C. $20 \mathrm{~km} \mathrm{~s}^{-1}$
D. $10 \mathrm{~km} \mathrm{~s}{ }^{-1}$

Answer: A

D Watch Video Solution
34. An electron is moving with an initial velocity $\vec{v}=\vec{v}_{0} \hat{i}$ and is in a uniform magnetic field $\vec{B}=B_{0} \hat{j}$.

Then its de Broglie wavelength
A. decreases with time
B. remains constant
C. increase and decreases periodically
D. increases with time.

Answer: B
35. Light of certain frequency and intensity incident on a photosensitive material causes photoelectric effect. If both the frequency and intensity are doubled, the photoelectric saturation current becomes
A. halved
B. quadrupled
C. unchanged
D. doubled

Answer: D

D Watch Video Solution

36. A certain charge $2 Q$ is divided at first into
two parts q_{1} and q_{2}. Later the charges are placed at a certain distance. If the force of interaction between two charges is maximum
then $\frac{Q}{q_{1}}=$
A. 1
B. 4
C. 0.5
D. 2

Answer: A

D Watch Video Solution

37. A particle of mass m and charge q is placed at rest in uniform electric field E and then released. The kinetic energy attained by the particle after moving a distance y is
A. qEy
B. $q E y^{2}$
C. $q^{2} E y$
D. $q E^{2} y$

Answer: A

D Watch Video Solution

38. An electric dipole is kept in non-uniform electric field. It generally experiences
A. A torque but not a force
B. A force and torque
C. Neither a force nor a torque
D. A force but not a torque

Answer: B

D Watch Video Solution
39. The figure gives the electric potential V as
a function of distance through four regions, on x-axis. Which of the following is true for the
magnitude of the electric field E in these

regions?
A. $E_{B}=E_{D}$ and $E_{A}<E_{C}$
B. $E_{A}>E_{B}>E_{C}>E_{D}$
C. $E_{A}<E_{B}<E_{C}<E_{D}$
D. $E_{A}=E_{C}$ and $E_{B}<E_{D}$

Answer: D

D Watch Video Solution

40. A system of two charges separated by a certain distance apart stores electrical potential energy. If the distance between them is increased, the potential energy of the system,
A. may increase or decrease
B. increases in any case

C. remains the same

D. decreases in any case

Answer: A

D Watch Video Solution

41. In a cyclotron a charged particle
A. speeds up in dee
B. undergoes acceleration all the time

C. slows down within a dee and speeds up

between dees

D. speeds up between the dees because of

the magnetic field.

Answer: B

D Watch Video Solution

42. The number of turns in a coil of

Galvanometer is tripled, then
A. Both voltage and current sensitivity remains constant
B. Voltage sensitivity increases 3 times and
current sensitivity remains constant
C. Both voltage and current sensitivity
decreases by 33%
D. Voltage sensitivity remains constant and
current sensitivity increases 3 times.

Answer: D

43. A circular current loop of magnetic moment M is in an arbitrary orientation in an external uniform magnetic field \vec{B}. The work done to rotate the loop by 30° about an axis perpendicular to its plane is
A. $\frac{M B}{2}$
B. MB
C. Zero
D. $\sqrt{3} \frac{M B}{2}$

Answer: C

- Watch Video Solution

44. In a permanent magnet at room temperature
A. domains are partially aligned
B. magnetic moment of each molecule is
zero
C. domains are all perfectly aligned

D. the individual molecules have non zero

magnetic moment which are all perfectly
aligned.

Answer: A

D Watch Video Solution

45. Coercivity of a magnet where the ferromagnet gets completely demagnetized is 3×10^{3} A m^{-1}, The minimum current required to be passed in a solenoid having

1000 turns per metre, so that the magnet gets completely demagnetized when placed inside the solenoid is
A. $3 A$
B. 30 mA
C. $6 A$
D. 60 mA

Answer: A

D Watch Video Solution
46. An inductor of inductance L and resistor R are joined together in series and connected by a source of frequency ω. The power dissipated in the circuit is

$$
\begin{aligned}
& \text { A. } \frac{V}{R^{2}+\omega^{2} L^{2}} \\
& \text { B. } \frac{R^{2}+\omega^{2} L^{2}}{V} \\
& \text { C. } \frac{V^{2} R}{\sqrt{R^{2}+\omega^{2} L^{2}}} \\
& \text { D. } \frac{V^{2} R}{R^{2}+\omega^{2} L^{2}}
\end{aligned}
$$

Answer: D
47. An electromagnetic wave is travelling in x direction with electric field vector given by, $\vec{E}_{y}=E_{A} \sin (k x=\omega t) J$. The correct expression for magnetic field vector is.

$$
\begin{aligned}
& \text { А. } \vec{B}_{y}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{j} \\
& \text { В. } \vec{B}_{y}=E_{0} C \sin (k x-\omega t) \hat{j} \\
& \text { С. } \vec{B}_{z}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{k} \\
& \text { D. } \vec{B}_{z}=E_{0} C \sin (k x-\omega t) \hat{k}
\end{aligned}
$$

- Watch Video Solution

48. The phenomenon involved in the reflection of radio-waves by ionosphere is similar to
A. dispersion of light by water molecules during the formation of a rainbow
B. reflection of light by plane mirror
C. scattering of light by air particles
D. total internal reflection of light in air during a mirage.

Answer: D

D Watch Video Solution

49. A point object is moving uniformly towards
the pole of a concave mirror of focal length

25 cm along its axis as shown below. The speed of the object is 1 ms . At $\mathrm{t}=0$, the distance of
the object from the mirror is 50 cm . the average velocity of the image formed by the
mirror between time $t=0$ and $t=0.25 \mathrm{~s}$ is:

A. Zero
B. $40 \mathrm{~cm} \mathrm{~s}{ }^{-1}$
C. Infinity
D. $20 \mathrm{~cm} \mathrm{~s}{ }^{-1}$

Answer: C

D Watch Video Solution
50. A certain prism is found to produce a minimum deviation of 38° It produces a deviation of 44° when the angle of incidence is either 42° or 62°. What is the angle of incidence when it is undergoing minimum deviation?
A. 49°
B. 30°
C. 60°
D. 40°

Answer: A

- Watch Video Solution

51. In the given circuit, the current in the

A. $0.45 A$
B. $0.27 A$
C. $0.1 A$
D. $0.37 A$

Answer: A

D Watch Video Solution

52. Kirchhoff.s junction rule is a reflection of
A. Conservation of momentum
B. Conservation of current density vector
C. Conservation of charges

D. Conservation of energy.

Answer: C

D Watch Video Solution

53. The variation of terminal potential difference (V) with current flowing through a cell is as shown. The emf and internal
resistance of the cell are

A. $6 V, 2 \Omega$
B. $3 V, 2 \Omega$
C. $6 V, 0.5 \Omega$

D. $3 V, 0.5 \Omega$

Answer: D

D Watch Video Solution

54. In a potentiometer experiment, the balancing point with a cell is at a length 240 cm . on shunting the cell with a resistance of 2Ω the balancing length becomes 120 cm . The internal resistance of the cell is
A. 1Ω
B. 4Ω
C. 0.5Ω
D. 2Ω

Answer: D

D Watch Video Solution
55. The magnetic field at the centre ' O ' in the
given
figure is
A. $\frac{3}{10} \frac{\mu_{0} I}{R}$
B. $\frac{7}{14} \frac{\mu_{0} I}{R}$
C. $\frac{\mu_{0} I}{12 R}$
D. $\frac{5}{12} \frac{\mu_{0} I}{R}$

Answer: D

D View Text Solution

56. An aluminium sphere is dipped into water. Which of the following is true?
A. Buoyancy in water at $0^{\circ} \mathrm{C}$ will be same
as that in water at $4^{\circ} \mathrm{C}$
B. Buoyancy will be less in water at $0^{\circ} \mathrm{C}$
than that in water at $4^{\circ} \mathrm{C}$
C. Buoyancy may be more or less in water at $4^{\circ} \mathrm{C}$ depending on the radius of the sphere
D. Buoyancy will be more in water at $0^{\circ} \mathrm{C}$
than that in water at $4^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

57. A thermodynamic system undergoes a cyclic process $A B C$ as shown in the diagram.

The work done by the system per cycle is

A. -750 J
B. 750 J

C. 1250 J

D. -1250 J

Answer: A

D Watch Video Solution

58. One mole of O_{2} gas is heated at constant pressure starting at $27^{\circ} \mathrm{C}$. How much energy must be added to the gas as heat to double its volume?
A. 750 R
B. Zero
C. 1050 R
D. 450 R

Answer: C

D Watch Video Solution

59. A piston is performing S.H.M. in the vertical direction with a frequency of 0.5 Hz . A block of

10 kg is placed on the piston. The maximum
amplitude of the system such that the block remains in contact with the piston is.
A. 1.5 m
B. 1 m
C. 0.1 m
D. 0.5 m

Answer: B
(Watch Video Solution
60. The equation of a stationary wave is $y=2$
$\sin \left(\frac{\pi x}{15}\right) \cos (48 \pi t)$. The distance between a node and its next antinode is.
A. 22.5 units
B. 7.5 units
C. 30 units
D. 1.5 units

Answer: B

D Watch Video Solution

