©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER-8

Physics

1. Rate of normal flow of heat in Searle's method for thermal conductivity is

$$
\begin{aligned}
& \text { A. } Q / t=(K A d) /\left(\theta_{1}-\theta_{2}\right) \\
& \text { B. } Q / t=K a\left(\theta_{1}-\theta_{2}\right) / d \\
& \text { C. } Q / t=K\left(\theta_{1}-\theta_{2}\right) / A d \\
& \text { D. } Q / t=K A /\left[d\left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

Answer: b

D Watch Video Solution

2. The difference between the specific heat of a gas is independent of the gas constant
A. Per unit volume
B. Per mole
C. Per unit mass
D. None of these

Answer: B

D Watch Video Solution

3. If the temperature of a gas occupying volume V is raised from $27^{\circ} \mathrm{C} \rightarrow 627^{\circ} \mathrm{C}$ at constant pressure, its volume will become
A. 2 V
B. 4 V
C. 3V
D. 10 V

Answer: A

D Watch Video Solution

4. In an experiment to compare the magnetic moment of two magnets using a vibration magnetometer, the period of oscillation was
found to be 10 sec when the like poles were together and 20 sec when unlike poles were together. The moment of the magnets are in the ratio
A. $5: 3$
B. $1: 5$
C. $3: 5$
D. $1: 3$

Answer: A
5. Give the expression for period of oscillation of a magnctic dipole (magnetic needle) in an uniform magnetic field and the meaning of the symbols.

$$
\begin{aligned}
& \text { A. } T=\frac{1}{2 \pi} \sqrt{\frac{1}{M B}} \\
& \text { B. } T=4 \pi \sqrt{\frac{M I}{B}} \\
& \text { C. } T=2 \pi \sqrt{\frac{1}{M B}} \\
& \text { D. } T=2 \pi \sqrt{\frac{M B}{I}}
\end{aligned}
$$

6. Draw a line segment of length 7.6 cm and divide it in the ratio $3: 2$.
A. $5: 10$
B. $8: 1$
C. $1: 8$
D. 10:5

Answer: C
7. A tangent galvanometer has a reduction
factor of 1 A and it is placed with the plane of its coil perpendicular to the magnetic meridian. The deflection produced when a current of $I A$ is passed through it is
A. To make the axis of magnet and magnetic meridian parallel
B. To make the instrument look beautiful
C. To make the axis of magnet and magnetic meridian perpendicular D. Just for convenience

Answer: C

D Watch Video Solution

8. The magnetic moment of two magnets can be compared using.
A. A voltmeter
B. A voltmeter
C. An ammeter
D. A magnetometer

Answer: D

D Watch Video Solution

9. The equation of a stationary wavw is given by $\mathrm{y}=5 \cos (\pi x / 3) \sin 40 \pi t$, where y and x are given in metres and t in seconds, them the amplitude of the progressive wave is
A. 0.025 m
B. 0.01 m
C. 0.05 m
D. 0.03 m

Answer: A

D Watch Video Solution
10. A tuning fork of frequency 90 is sounded and moved towards an observer with a
velocity of sound, the note heard by the observer
A. 90
B. 95
C. 80
D. 100

Answer: D
(Watch Video Solution

11. Quality of a sound depends upon its

A. Wavelength
B. Overtones
C. Frequency
D. Velocity

Answer: C
12. A transverse wave of amplitude 0.5 m and wavelenght 1 m and frequency 2 Hz is propagating in a string in the negative direction. The expression for this wave is

$$
\begin{aligned}
& \text { A. } f(x, t)=0.5 \sin (2 \pi x-4 \pi t) \\
& \text { B. } f(x, t)=0.5 \cos (\pi x-2 \pi t) \\
& \text { C. } f(x, t)=0.5 \sin (2 \pi x+4 \pi t) \\
& \text { D. } f(x, t)=0.5 \cos (2 \pi x+2 \pi t)
\end{aligned}
$$

Answer: C

13. A man on the ground finds that when he sees a jet plane just over his head, the sound is heart at an angle of 30° with the vertical
from his left. If the velocity of sound is v, what
is the velocity of the jet plane?
A. $v / 2$
B. $2 \sqrt{3} / 2$
C. 2 v
D. $2 v / \sqrt{3}$

Answer: A

D Watch Video Solution

14. A vessel has a height of 50 cm . What is the
maximumn distance at which water can fall
from a hole on its side?
A. 25 cm
B. 40 cm
C. 33.3 cm
D. 50 cm

Answer: B

- Watch Video Solution

15. A block of wood floats in water in a vessel
$1 / 10$ of its volume exposed. Sufficient oil of density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ is poured into the vessel till
the block is completely submerged. What percentage of its volume in the water now?
A. 0.8
B. 0.6
C. 0.75
D. 0.5

Answer: D

D View Text Solution

16. A log of wood floats in water $\frac{3}{4}$ immersed.

What is its volume if it is just submerged when
a body of mass 50 kg stands on it?
A. $0.1 m^{3}$
B. $0.2 m^{3}$
C. $0.15 \mathrm{~m}^{3}$
D. $0.25 \mathrm{~m}^{3}$

Answer: B

D View Text Solution

17. In the determination of resistance R is
calculated from $R=V / I$ where V is the reading of the voltmeter and I is the reading of the ammeter. The values obtained are
$V=10 \pm 0.2 V$ and $I=0.5 \pm 0.01 \mathrm{~A}$. The maximum percentage error in the measurement of resistance is
A. 0.2%
B. 0.4%
C. 0.3%
D. 4%

Answer: D

- Watch Video Solution

18. In the equation $\mathrm{y}=\mathrm{a} \sin (k t-x / \lambda)$ the dimensions of k are
A. $M^{\circ} L^{\circ} T^{\circ}$
B. $M^{\circ} L^{\circ} T^{\circ}$
C. $M^{\circ} L^{\circ} t^{-2}$
D. $M^{\circ} L^{\circ} T^{-1}$

Answer: D

D Watch Video Solution

19. In a new system of units, the units of mass,
length and time are $\alpha \mathrm{kg}, \beta m$ and $\gamma \mathrm{s}$ respectively. In the new system a force of one newton (1 N) will have magnitude
A. $\alpha^{1} \beta^{1} \gamma^{-2}$
B. $\alpha^{1} \beta^{1} \gamma^{-1}$
C. $\alpha^{-1} \beta^{-1} \gamma^{-1}$
D. $\alpha \quad \beta \quad \gamma$

Answer: A

20. If the earth were to suddenly shrink to I / n of its present radius without any change in its mass the duration of the new day will be
A. $\frac{24}{n} h r s$
B. $24 \quad n^{2} \quad h r s$
C. $\frac{24}{n^{2}} h r s$
D. $\frac{24}{\sqrt{n}} h r s$.

Answer: C
21. Line spectrum is due to
A. A solid heated in incandescence
B. Gasses in molecular state
C. Gasses in atomic state
D. None of these

Answer: C

D Watch Video Solution
22. In the nuclear reaction,
${ }_{1} H^{2}+{ }_{1} H^{3}={ }_{2} H^{3}={ }_{2} H e^{4}+X$,
emitted particle X is
A. Proton
B. Positron
C. Electron
D. Neutron

Answer: D

D Watch Video Solution
23. The photoelectric threshold frequency for potassium is $3 \times 10^{14} \mathrm{~Hz}$. The work function for potassium is $\left(h=6.625 \times 10^{-34} J s\right)$
A. $1.987 \times 10^{-19} J$
B. $1.987 \times 10^{+19} \mathrm{~J}$
C. $1.987 \times 10^{-13} J$
D. $1.987 \times 10^{+13} \mathrm{~J}$

Answer: A

- Watch Video Solution

24. A radiation of wavelength 2000 A lies in
the
A. Infrared region
B. Visible region
C. Ultraviolet region
D. X-ray region

Answer: C
(Watch Video Solution
25. The mass of a neutron
A. Is exactly equal to that of a proton
B. Is slightly greater than that of a proton
C. Is exactly equal to that of an electron

D. Varies slightly depending on the nucelus,

in which it is present

Answer: B

D Watch Video Solution

26. The peack value of a certain sinusoidal AC is 1.414 amp . It r.m.s value is
A. $1.414 A$
B. $0.707 A$
C. $1 A$
D. None of these

Answer: C
(Watch Video Solution
27. In a balanced Wheatstone's network the galvanometer is replaced by another of lower resistance, then the network is
A. Balanced
B. May or may not be balanced
C. Not balanced
D. None of these

Answer: A

28. The insertion of a new metal into a thermocouple
A. Increases the thermo-emf
B. Does not alter the thermo-emf
C. Decreases the thermo-emf
D. Reverses the direction on the thermo-
emf

Answer: B

29. The resistance of a thermistor varies with
temperature according to the relation
A. $R=a e^{b T}$
B. $R=a e^{b / T^{2}}$
C. $R=a e^{b / T}$
D. $R=R=a e^{b / \sqrt{T}}$

Answer: C

D View Text Solution
30. A.T.G. gives a deflection of 30° for a certain
current at one place and a deflection of 45° at another place . The values of the horizontal component of the earth's fields at the two places and in the ratio of
A. $1: \sqrt{3}$
B. $\sqrt{3}: \sqrt{2}$
C. $2: \sqrt{3}$
D. $\sqrt{3}: 1$

Answer: D
31. A transformer is used to
A. Increase A C voltages only
B. Decreased AC voltages only
C. Either (a) or (b)
D. Increase or decrease DC voltages

Answer: C

D Watch Video Solution
32. The surface dencity of charges is maximum
A. At the curved surface
B. At a plane surface
C. At a pointed end

D. In none of these

Answer: C

33. Dip at the poles is

A. zero
B. 60°
C. 90°
D. 45°

Answer: C
34. The moment of the couple acting on a bar magnet of moment $0.2 A m^{2}$ inclined at an angle 30° to the direction of field 5 tesla is
A. 0.5 Nm
B. $5 \times 10^{-3} \mathrm{Nm}$
C. 0.05 Nm
D. 10 Nm

Answer: A

- Watch Video Solution
35.4×10^{-4} joules of work is done in moving
a charge of 5 microcoulomb from a point A to
another point B.
Then the potential difference between A and B
is
A. 80 volts
B. 800 volts
C. 8 volts
D. 0.8 volts

Answer: A
36. What is the resolving power of an instrument?
A. The limit of resolution
B. Square of the limit of resolution
C. The reciprocal of the limit of resolution
D. Square root of the limit of resolution

Answer: C
37. Interference of light can be explained by assuming light waves to be
A. Only transverse waves
B. Only longitudinal waves
C. Stationary waves
D. Either (a) or (b)

Answer: D

- Watch Video Solution

38. A thin prism of refracting angle 5° deviates the red and blue rays by
9.9° and 10.1°. The dispersive power of the material is
A. 0.2
B. 0.01
C. 0.02
D. 0.1
39. The intensity of illumination at a distances of 5 m from a 200 candela source is
A. 10 lux
B. 8 lux
C. 24 lux
D. 4 lux

Answer: B
40. The relation between the refractive index and the critical angle of a medium is
A. $u=\cos C$
B. $\mu=\cos e c C$
C. $\mu=\cot C$
D. $\mu=\sin C$

Answer: B

- Watch Video Solution

41. The majority charge carriers in P -type semiconductor are
A. Positrons
B. Protons
C. Electrons
D. Holes

Answer: D

42. A radioactive substance of mass 8 mg reduces to 1 mg after
A. 1 half-lives
B. 5 half-lives
C. 3 half-lives
D. 7 half-lives

Answer: C
(Watch Video Solution
43. The energy liberated by the annihilation of the mass of 1 micro gram is

$$
\text { A. } 9 \times 10^{-7} J
$$

B. $9 \times 10^{7} \mathrm{~J}$
C. $9 \times 10^{10} \mathrm{~J}$
D. $9 \times 10^{20} \mathrm{~J}$

Answer: B

D Watch Video Solution

44. A photon will have greater energy if it has

 greaterA. Wavelength
B. Amplitude
C. Frequency
D. Velocity

Answer: C
(Watch Video Solution
45. Calculate the num her of neutrons present
in ${ }_{92} U^{235}$ isotope.
A. 92
B. 143
C. 235
D. 327

Answer: B

D Watch Video Solution
46. The electric field due to a proton of charge $1.6 \times 10^{-19} C$ at a distance $1 \mathrm{~A}\left(10^{-10} \mathrm{~m}\right)$ from it is

A. $14.4 \times 10^{10} N / C$
B. $6.4 \times 10^{10} \mathrm{~N} / C$
C. $4 \times 10^{10} N / C$
D. $8 \times 10^{10} N / C$

Answer: A

- Watch Video Solution

47. The core of electromagnet is

A. Cobalt steel
B. Alnico
C. Soft iron

D. Copper

Answer: C

48. The effective capacitance of two capacitors

connected in series is

A. $C_{1}+C_{2}$
B. $\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
C. $C_{1}-C_{2}$
D. $\frac{C_{1}+C_{2}}{C_{1} C_{2}}$

Answer: B

D Watch Video Solution

49. The SI unit of resistivity is

A. ohm. m^{3}
B. ohm. m
C. ohm. m^{2}
D. ohm. m^{-1}

Answer: B
(Watch Video Solution
50. Two positive point charges Q and $4 Q$ are separted by a distance of 12 cm and from each other. The distance of the neutral point from Q is
A. 12 cm
B. 6 cm
C. 8 cm
D. 4 cm

Answer: D
51. The R.M.S. value of the voltage in an A.C.
circuit is 220 V . Its peak value is
A. $220 \sqrt{2}$
B. $220 \sqrt{2}$
C. $2 \sqrt{220}$
D. $\sqrt{2} / 220$

Answer: A
52. The reverse magnetising field required to wipe out residual magnetism is called
A. Hysteresis
B. Retentivity
C. Coercivity
D. Permeability

Answer: C

- Watch Video Solution

53. In a uniform magnetic field the freqency of
vibration of a magnetic is given by

> A. $2 \pi \sqrt{I / M B}$
> B. $1 / 2 \pi \sqrt{M B / I}$
> C. $1 / 2 \pi \sqrt{I / M B}$
> D. $2 \pi \sqrt{M B / I}$

Answer: B

D Watch Video Solution

54. The ratio of magnetic field due to a given
short bar magnet in $\tan \mathrm{A}$ and $\tan \mathrm{B}$ position for the same distance is
A. $2: 1$
B. 1:4
C. 1:2
D. $4: 11$

Answer: A

55. Emission of electrons from a metal surface

 due to incident radiation is calledA. Thermionic emission
B. Photo conductivity
C. Photoelectric emission
D. Seebeck effect

Answer: C

- Watch Video Solution

56. The refractive indices for two spectral lines
are 1.49 and 1.51 , then dispersive power of the material of the prism is
A. 0.02
B. 0.04
C. 0.03
D. 0.05

Answer: B

- Watch Video Solution

57. A glass prism is immersed in water. A ray of
light passing through it,
A. Bends away from the base
B. Does not bend
C. Bends towards the base

D. Always gets totally reflected

Answer: C

- Watch Video Solution

58. Double refraction may be observed in the following substance
A. Water
B. Crown glass
C. Flint glass
D. Calcite

Answer: D

D Watch Video Solution
59. If in a convex lens object and its image distances are each equal to d, the focal length of the lens is
A. 2d
B. $d / 2$
C. d
D. $d / 4$

Answer: B

D Watch Video Solution
60. Formation of mirages is due to
A. Interference
B. Refraction
C. Total internal reflection
D. Dispersion

Answer: C

