©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER 02

Physics

1. The position of a particle at time t, is given
by the relation :
$x(t)=\left(\frac{v_{0}}{\alpha}\right)\left(1-e^{-\alpha t}\right) \quad$ where $\quad v_{v} \quad$ is a
constant $\alpha>0$. The dimensions of v_{0} and α are respectively .
A. $M^{0} L^{1} T^{0}$ and T^{-1}
B. $M^{0} L^{1} T^{-1}$ and T^{-1}
C. $M^{0} L^{1} T^{-1}$ and T
D. $M^{0} L^{1} T^{-1}$ and T^{-2}

Answer: B

- Watch Video Solution

2. Spot the wrong statement : The acceleration of due to gravity, g , decreased if
A. We go down from the surface of the earth towards its centre
B. We go from the equator towards the poles on the surface of the earth
C. We go up from the surface of the earth
D. The rotational velocity of the earth is
increased

Answer: B

D Watch Video Solution

3. The critical angle of a medium-air interface
is 30°. The refractive index of the medium is
A. $1 / 2$
B. $3 / 2$
C. $2 / 3$
D. 2

Answer: D

- Watch Video Solution

4. Ray optics is valid , when characteristic dimensions are
A. Of the same order as the wavelength of light

B. Of the order of one millimetre

C. Much smaller than the wavelength of

light

D. Much larger than the wavelength of light

Answer: D

D Watch Video Solution

5. In an ideal gas the meaning of isothermal exapansion is
A. Its heat remains constant
B. Its temperature and pressure remain
constant
C. Its temperature and heat both remain
constant

D. Its temperature remains constant

Answer: D

D Watch Video Solution

6. If a given mass of gas occupies a volume of

100 cc at 1 atmosphere and at a temperature
of $100^{\circ} C$. What will be its volume at 4 atmospheres pressure, the temperature being constant
A. 100 cc
B. 400 cc
C. 105 cc
D. 25 cc

- Watch Video Solution

7. Two strings are attached to two nails in the same horizontal level and noted at a point . A mass of 2 kg is suspended from the knot. If the strings make angles of 30° and 60° respectively with the vertical the tensions in the strings are
A. $\sqrt{3} \mathrm{~kg} \mathrm{wt}, 1 \mathrm{~kg} w \mathrm{wt}$.
B. $1 / 2 \mathrm{~kg} \mathrm{wt} ., \sqrt{3} / 2 \mathrm{~kg} \mathrm{wt}$.
C. $\sqrt{3} \mathrm{~kg}$ wt.., 1 kg wt

D. $\sqrt{3} / 2 \mathrm{~kg}$ wt , $1 / 2 \mathrm{~kg} \mathrm{wt}$.

Answer: A

D Watch Video Solution

8. A body of mass 13 kg is suspended by two
strings of length 5 cm and 12 cm . The other ends of the strings are tied to two pegs 13 cm apart along a horizontal line. The tensions in the strings are

$$
\text { A. } 5 \mathrm{~kg} \text { wt , } 12 \mathrm{~kg} \text { wt. }
$$

B. 12 kg wt ., 5 kg wt .
C. $5 / 13 \mathrm{~kg}$ wt. , $12 / 13 \mathrm{~kg} \mathrm{wt}$.
D. $12 / 13 \mathrm{~kg} w \mathrm{t} ., 5 / 13 \mathrm{~kg} \mathrm{wt}$.

Answer: A

D Watch Video Solution

9. If the gravitional force between two objects

were proportional to $1 / R$ (and not as $1 R^{2}$)
where R is separation between them, then a
particle in circular orbit under such a force would have its orbital speed v proportional to
A. $1 / R^{2}$
B. R
C. R° (independent of R)
D. $1 / R$

Answer: C

D Watch Video Solution

10. If $x=4 t^{2}-5 t$ and $\mathrm{y}=6 \mathrm{t}$, then acceleration of a body is given by
A. 30 metre/sec
B. 8 metre/ sec^{2}
C. 16 metre / sec^{2}
D. none of these

Answer: B

D Watch Video Solution
11. A circular coil carrying a certain current produces a magnetic field B_{0} at its centre.The coil is now rewound so as to have 3 turns and the same current is psses through it.The new magnetic field at the centre is
A. Is the same
B. Increases to 4 times the value
C. Decreases to $1 / 4$ of the value
D. Increases to 16 times the value

Answer: D
12. The binding energy per nucleon curve is sharp for helium. This shows that helium is
A. Radioactive
B. Stable
C. Fissionable
D. Unstable

Answer: B
13. In the nuclear reaction ,
${ }_{1} H^{2}+{ }_{1} H^{3}={ }_{2} H e^{4}+\mathrm{X}$, the emitted particle
X is
A. Proton
B. Positron
C. Electron
D. Neutron

Answer: D

D Watch Video Solution
14. The mass of a neutron
A. Is exactly equal to that of a proton
B. Is slightly greater than that of a proton
C. Is exactly equal to that of an electron
D. Varies slightly depending on the nucleus
, in which is it present

Answer: B
15. Salol can be used as:
A. Pure semiconductor
B. N-type semiconductor
C. P-type semiconductor
D. P-N junction

Answer: D

D Watch Video Solution
16. The function of a moderator in a nuclear reactor is
A. To slow down the neutrons
B. To absorb neutrons
C. To speed up the neutrons
D. To stop the nuclear chain reaction

Answer: A

D Watch Video Solution
17. A candle flame gives
A. Line spectrum
B. Continuous emission spectrum
C. Band spectrum

D. Continuous absorption spectrum

Answer: B
18. A long wire carrying a steady current I lies
in the plant of a circular conducting loop placed at a certain distance from the wire . There will be an induced current in the loop if it is
A. Moved parallel to the wire
B. Rotated about an axis parallel to the
wire passing through the centre of the loop

C. Rotated about an axis perpendicular to

the plane of the loop.
D. Moved away from the wire .

Answer: B

D Watch Video Solution

19. When the key K is pressed at time $t=0$,
which one of the following statemens about
the current I in resistor $A B$ of the given circuits
is true?

A. At $t=0, I=2 \mathrm{~m} \mathrm{~A}$, and with time it goes
to 1 mA
B. I oscillates between 1 mA and 2 mA
C. $\mathrm{I}=2 \mathrm{~mA}$ at all t
D. $\mathrm{I}=1 \mathrm{~m} \mathrm{~A}$ at all t

Answer: A

- Watch Video Solution

20. Critical size is the minimum size of fissionable material for which fission reaction
A. Is not suitable
B. Has increasing rate with time
C. Is just sustained
D. Has decreasing rate with time

- Watch Video Solution

21. The R.M.S. value of the voltage in an A.C.
circuit is 220 V . Its peak value is
A. $220 \sqrt{2}$
B. $2 \sqrt{220}$
C. $220 / \sqrt{2}$
D. $\sqrt{2} / 220$

Answer: A

D Watch Video Solution

22. A current of 2 ampere passes through a
wire for 8 seconds . Number of electrons passing across the wire is (electronic charge 1.6×10^{-19} coulomb)
A. 3.2×10^{20}
B. 1×10^{20}
C. 3.2×10^{18}

D. 1×10^{18}

Answer: B

D Watch Video Solution
23. The measurement of voltmeter in the following circuit is

A. 2.3 volt
B. 6.0 volt
C. 4.0 volt
D. 2.5 volt

- Watch Video Solution

24. Light of wavelength $6328 \AA$ incident normally on a slit having a width of 0.2 mm

The width of the central maximum, measured from minimum to minimum of the diffraction pattern on a screen 9.0 metres away will be about
A. 0.36°
B. 0.72°
C. 0.18°

D. 0.09°

Answer: A

D Watch Video Solution

25. White light is used to illuminate the two
slits in Young's double slit experiment. The
separation between the slits is b and the screen is at a distance $d \gg b$) from the slits. At a point on the screen directly infront of one of
the slits, certain wavelengths are missing.

Some of these missing wavelengths are

$$
\begin{aligned}
& \text { A. } \lambda=b^{2} / d \\
& \text { B. } \lambda=b^{2} / 5 d \\
& \text { C. } \lambda=2 b^{2} / d \\
& \text { D. } \lambda=2 b^{2} / 3 d
\end{aligned}
$$

Answer: A

D Watch Video Solution

26. A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by blue light?
A. No change
B. Bands become broader and farther apart
C. Diffraction bands become narrower and
crowded together
D. Bands disappear

Answer: C
27. Sound waves cannot be polarised because their
A. Velocity is very small
B. Longitudinal nature
C. Frequency is very small
D. Requirement of material to propagate

Answer: B
28. In a Copper-Iron thermocouple the thermoelectric current flows from
A. Copper to iron at cold junction
B. Iron to copper at hot junction
C. Iron to copper at cold junction
D. none of these

Answer: C

- Watch Video Solution

29. A ferromagnetic substance when heated beyond the Curie temperature
A. Becomes diamagnetic
B. Becomes non-magnetic
C. Remains ferromagnetic
D. Becomes paramagnetic

Answer: D

- Watch Video Solution

30. Three resistance, each of 1 ohm are joined in parallel. Three such combinations are put in series , then the resultant resistance will be
A. 9 ohm
B. 1 ohm
C. 3 ohm
D. $1 / 3$ ohm

Answer: B

31. In L.C.R. circuit, phase difference between

voltage and current can be

A. 180°
B. 145°
C. -90° to 90°
D. 0°

Answer: A
(Watch Video Solution
32. Four resistors R_{1}, R_{2}, R_{3} and R_{4} are connected in parallel. The resultant resistance R is
A. Equal to the sum of the four resistance
B. Less than the sum of the four resistance
C. Greater than the sum of the resistances
D. Less than any of the four resistance

Answer: D

- Watch Video Solution

33. In a balanced Wheatstone's network the
galvanometer is replaced by another of lower resistance, then the network is
A. Balanced
B. May or may not be balanced
C. Not balanced
D. none of these

Answer: A

D Watch Video Solution
34. The insertion of a new metal into a thermocouple
A. Increases the thermo- emf
B. Does not after the thermo-emf
C. Decreases the thermo-emf
D. Reverses the direction of the thermo-
emf .

Answer: B

35. The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:
$R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$

The resistance is 101.6Ω at the triple-point of water $273.16 K$, and 165.5Ω at the normal melting point of lead $(600.5 K)$. What is the temperature when the resistance is 123.4Ω ?

$$
\text { A. } R=a e^{b / T}
$$

$$
\text { B. } R=a e^{b / T_{2}}
$$

C. $R=a e^{b / T}$
D. $R=a e^{h / \sqrt{T}}$

Answer: C

D Watch Video Solution

36. A.T.G. gives a deflection of 30° for a certain current at one place and a deflection of 45° at another place. The values of the horizontal component of the earth's fields at the two places and in the ratio of
A. $1: \sqrt{3}$
B. $3: \sqrt{2}$
C. $2: \sqrt{3}$
D. $\sqrt{3}: 1$

Answer: D

D Watch Video Solution

37. In Melde's experiment the number of loop

on the string changes from 4 to 3 by an
addition of $0.014 \mathrm{gm} . \mathrm{wt}$. what is the initial weight attached to the string ?
A. $0.0018 \mathrm{gm} w t$.
B. 0.18 gm wt .
C. 0.018 gm wt .
D. 1.8 gm wt .

Answer: B

- Watch Video Solution

38. The tension in a sonometer wire is increased by a factor of four. The fundamental
frequency of vibration changes by a factor of
A. 4
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution
39. There is no transmission of energy in
A. Electromagnetic waves
B. Longitudinal progressive waves
C. Transverse progressive waves
D. Stationary waves

Answer: D
40. A tuning fork of frequency 100 when sounded together with another tuning fork of unknown frequency produces 2 beats per sec.

On loading the second tuning fork, sounded together with first tuning fork, produces one beat, then the frequency of the second tuning fork is
A. 102
B. 99
C. 98

D. 101

Answer: A

D Watch Video Solution

41. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is
A. 0°
B. 90°
C. 45°
D. 180°

Answer: B

- Watch Video Solution

42. A calcite crystal is placed over a dot on a piece of paper and rotated . On seeing through the calcite, one will be
A. One dot
B. Two rotating dots
C. Two stationary dots
D. One dot rotating about the other

Answer: D

D Watch Video Solution

43. When viewed in white sight soap bubble show colour because of
A. Interference

B. Diffraction

C. Scattering
D. Dispersion

Answer: A

- Watch Video Solution

44. Which one of the following statements is
corrects ?
A. In vacuum, the speed of light depends
upon wavelength
B. In vacuum, the speed of light does not
depend upon frequency
C. In vacuum, the speed of light depends
upon frequency.
D. In vacuum , the speed of light is independent of frequency and
wavelength
45. Two charges q_{1}, q_{2} are placed in vacuum at
a distance d , and the force acting between them is F. If a medium of dielectric constant 4 is introduced around them , the force now will be
A. 4 F
B. $F / 2$
C. 2 F
D. F/4

Answer: D

D Watch Video Solution

46. A capacitor has a charge of $6 \times 10^{-4} \mathrm{C}$.

When the potential difference across the plates is 150 volts, its capacitance is
A. $250 \mu F$
B. $9 \mu F$

C. $0.25 \mu F$

D. $4 \mu F$

Answer: D

D Watch Video Solution

47. In the circuit shown

A. The charge on C_{2} is greater than that of
C_{1}
B. The potential drops across C_{1} and C_{2}
are the same .
C. The charges on C_{1} and C_{2} are the same
D. The potential drop across C_{1} is greater
than that across C_{2}.

Answer: A

48. An electron makes a transition from orbit n
$=4$ to the orbit $\mathrm{n}=2$ of a hydrogen atom . The wave number of the emitted radiations $(R=$ Rydberg's constant) will be
A. $4 \mathrm{R} / 16$
B. $2 \mathrm{R} / 16$
C. $5 \mathrm{R} / 16$
D. $3 \mathrm{R} / 16$

Answer: D

49. In the nuclear reaction

${ }_{1} H^{2}+{ }_{1} H^{3}={ }_{2} H e^{4}+\mathrm{X}$, the emitted particle
X is
A. Nitrogen of mass 16
B. Oxygen of mass 16
C. Nitrogen of mass 17
D. Oxygen of mass 17
50. The difference between U^{218} and U^{215} atoms is that
A. U^{238} contains 3 more protons
B. U^{238} contains 3 more neutrons and 3
more electrons
C. U^{238} contains 3 more protons and 3
more electrons
D. U^{238} contains 3 more neutrons

Answer: D

D Watch Video Solution

51. Atomic mass number of an element is 232
and its atomic number is 90 . The end of
radioactive disintegration we obtain an isotope of lead with $A=208$ and $Z=82$. Then
the number of emitted alpha and beta particles are

$$
\text { A. } \alpha=5, \beta=4
$$

$$
\begin{aligned}
& \text { B. } \alpha=5, \beta=5 \\
& \text { C. } \alpha=6, \beta=4 \\
& \text { D. } \alpha=4, \beta=6
\end{aligned}
$$

Answer: C

D Watch Video Solution

52. Of the following which one can penetrate
through 20 cm thick steel plate ?
A. α-particles
B. γ-rays
C. β-particles
D. ultra violet rays

Answer: B

- Watch Video Solution

53. Rutherfords experiments on scattering of α-particles proved that :
A. The atoms as a whole is positively charged
B. There is no charged particle inside the
atom
C. The atom consists of uniformly
distributed positive and negative
charged particles
D. The atom has a very small, positively
charged core at the centre
54. Select the correct statement (s) from the following
A.A fusion reactor requires a very high temperature, of the order of $10^{7} \mathrm{~K}$, while a fission reactor does not require such high temperatures .

B. Nuclear fusion involves a heavy nuclei ,

while nuclear fission occurs in light
elements .
C. Two hydrogen atoms combine to form a hydrogen molecule is an example of nuclear fusion .

D. None of the above

Answer: A

D View Text Solution
55. Draw a labeled diagram of cross section of a leaf.
A. Only single strand for d.c., either for a.c.
B. Either for d.c., only multiple strands for a.c.
C. Only single strand for a.c., either for d.c.
D. Only single strand for d.c., only multiple strands for a.c.
56. A current which varies periodically with time and reverse its direction every half a cycle is called ... current.
A. Transient
B. Steady
C. Eddy
D. Alternating

57. Rsistance of a conductor depends on its

A. Length

B. Density

C. Volume
D. Mass

Answer: A
58. The basic insutument employed to detect current is
A. Galvanometer
B. Wattmeter
C. Ammeter
D. Voltmeter

Answer: C
59. A moving coil galvanometer has a resistance of 9.8Ω and gives a full scale deflection when a current of 10 mA passes through it. The value of the shunt required to convert it into a milli-Ammeter to measure current up to 500 mA is
A. 0.02Ω
B. 2Ω
C. 0.2Ω
D. 0.4Ω

D Watch Video Solution

60. Which of the following quantities can be written in SI units in $\mathrm{kg} m^{2} A^{-2} S^{-3}$?
A. Resistance
B. Capacitance
C. Inductance
D. Magnetic flux

Answer: A
(Watch Video Solution

