©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER 3

Physics

1. Dimensions of light year is
A. $L T^{-1}$
B. T
C. L
D. LT

Answer: C

- Watch Video Solution

2. Obtain the value of specific heat of water in

 terms of $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.A. $45^{\circ} \mathrm{C}$
B. $50^{\circ} \mathrm{C}$
C. $55^{\circ} \mathrm{C}$
D. $35^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

3. Derive the expression for refractive index of
the material of the prism in terms of angle of
the prism and angle of minimum deviation.
A. $\frac{3}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}$
D. none of these

Answer: C

D Watch Video Solution
4. A person swimming at the bottom of a swimming pool looks up to the diving board.

The board.
A. Appears nearer
B. Appears at the correct position
C. Appears further
D. Is not seen at all

Answer: C

D Watch Video Solution
5. There are three Newton's laws of motion namely I, II and III : we can derive:-
A. Second and third law from the first law
B. First and second law from third law
C. Third and first law from the second law
D. All the laws are independent of each other

Answer: C

- Watch Video Solution

6. The length of a wire is increased by 1 mm on
the application of a given load. If a wire of the
same material, but of length and radius twice
that of the first, on application of the same
load, extension is
A. 2 mm
B. 4 mm
C. 0.5 mm
D. 0.25 mm

- Watch Video Solution

7. A car accelerates from rest at a constant rate for some time after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t , the maximum velocity acquired by the car is given by :

$$
\begin{aligned}
& \text { A. } \frac{\alpha+\beta}{\alpha \beta} \\
& \text { B. } \frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
& \text { C. } \frac{\alpha \beta}{\alpha+\beta} t
\end{aligned}
$$

D. $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} t$

Answer: C

D Watch Video Solution

8. कोणीय संवेग का विमीय सूत्र होता है :
A. $M L^{2} T^{-1}$
B. $M L T^{-1}$
C. $M L^{3} T^{-1}$
D. $M L^{3} T^{-2}$

D Watch Video Solution

9. An ideal gas of N molecules occupies a volume V . The average kinetic energy per molecule is u. If P denotes the pressure of the gas, then
A. $P=2 u / 3$
B. P is independent of u
C. $P=2 N u / 3 V$

D. P cannot be determined from the data

Answer: C

D Watch Video Solution

10. Coefficient of linear expansion of brass and
steel rods are α_{1} and α_{2}. Length of brass and
steel rods are l_{1} and l_{2} respectively. If $\left(l_{2}-l_{1}\right)$
is maintained same at all temperature, which
one of the following relations holds good?

$$
\text { A. } \alpha_{1} l_{2}=\alpha_{2} l_{1}
$$

$$
\begin{aligned}
& \text { B. } \alpha_{1}^{2} l_{2}=\alpha_{2}^{2} l_{1} \\
& \text { C. } \alpha_{1} l_{2}^{2}=a_{1}^{2}=a_{2} l_{1}^{2} \\
& \text { D. } \alpha_{1} l_{1}=\alpha_{2} l_{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution
11. The thermo-electric power P of a
thermocouple is given by

$$
\text { A. } P=a \theta+b \theta^{2}
$$

$$
\text { B. } P=\theta^{2}+b \theta^{3}
$$

C. $P=a+2 b \theta$

D. none of these

Answer: C

D View Text Solution

12. Unit of self inductance is
A. Faraday
B. Maxwell

C. Henry

D. Tesla

Answer: C

D Watch Video Solution

13. A six volt battery is connected with a resistance. A current of 2 amperes flows for 4 minutes. Which of the following statements is wrong?
A. Resistance is 3Ω
B. Heat produced is 12 joules
C. Power consumed is 12 Watts
D. Charge flowed is 480 coulombs

Answer: B

D Watch Video Solution
14. The galvanometer constant of a tangent galvanometer depends upon :
A. $I=K \sin \theta$
B. $I=K \tan \theta$
C. $I=K \cos \theta$
D. $I=K \cot \theta$

Answer: B

D Watch Video Solution
15. A unit cube of copper and iron have
A. Same R and same σ
B. Same R and different σ
C. Different R and different σ
D. Same σ and different R

Answer: C

D Watch Video Solution

16. At very low temperature, a semi-conductor becomes
A. Conductor

B. Superconductor

C. Insulator

D. Inductor

Answer: C

D Watch Video Solution

17. The resistance of a shunt which should be
connected across a galvanometer of
resistance 2100Ω, so that only 5% of current passes through it is
A. 220.5Ω

B. 55.27Ω

C. 110.5Ω
D. 95.27Ω

Answer: C

D Watch Video Solution

18. What is a magnet ?
A. G shows deflection to the left and right with constant amplitude
B. G shows no deflection
C. G shows deflection on one side
D. G shows deflection to the left and right,
but the amplitude decreases steadily

Answer: A

D Watch Video Solution

19. The susceptibility of a ferromagnetic substance is
A. $600^{\circ} \mathrm{C}$
B. $54^{\circ} \mathrm{C}$
C. $237^{\circ} \mathrm{C}$
D. $327^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution
20. Mention the SI unit of magnetising field.
A. Absolute permeability
B. Susceptibility
C. Relative permeability
D. Retentivity

Answer: A
(Watch Video Solution
21. The electric flux of a surface enclosing an electric dipole is
A. Maximum
B. Zero
C. Maximum or zero

D. None of these

Answer: B

D Watch Video Solution
22. A line joining places of equal declinaiton is called
A. Isoclinic
B. Isogonic
C. Agonic
D. Isodynamic

Answer: B

D Watch Video Solution
23. Give an example for a ferromagnetic substance.
A. Aluminum
B. Gold
C. Nickel
D. Copper

Answer: C

D Watch Video Solution

24. The unit of magnetic induction B in SI is :

A. A / m
B. Weber
C. Am
D. Tesla

Answer: D

- Watch Video Solution

25. Light waves can be polarised as they are
A. Have high frequencies
B. Are transverse
C. Have short wavelength
D. Can be reflected

Answer: B

D Watch Video Solution
26. Which one of the following is true?
A. Mercury light
B. Sodium light
C. White light
D. Neon light

Answer: B

D Watch Video Solution

27. Two monochromatic coherent point sources S_{1} and S_{2} are separated by a distance
L. Each sources emits light of wavelength λ, where $L \gg \lambda$. The line $S_{1} S_{2}$ when
extended meets a screen perpendicular to it at point A. Then
A. The interference fringes on the screen
are circular in shape
B. The point A is an intensity maximum if L
$=\mathrm{n} \lambda(\mathrm{n}=$ integer $)$.
C. The interference fringes on the screen
are straight lines perpendicular of the
lines $S_{1} S_{2} A$
D. both (a) \& (b)

Answer: D

D Watch Video Solution

28. A source of sound gives five beats per second when sounded with another source of
frequency $100 s^{-1}$. The second harmonic of
the source together with a source of frequency $205 s^{-1}$ gives five beats per second.

What is the ferquency of the source?
A. $100 s^{-1}$
B. $205 s^{-1}$
C. $105 s^{-1}$
D. $95 s^{-1}$

Answer: C

D Watch Video Solution

29. Two identical stringed instruments have a
frequency of 100 Hz . The tension in one of them is increased by 1%. If they are now
sounded together the number of beats produced is
A. 1
B. 4
C. 8
D. 2

Answer: D
(Watch Video Solution
30. Speed of sound in a gas is v and $r m s$
velocity of the gas molecules is c. The ratio of v to c is

> A. $\frac{3}{\gamma}$ В. $\frac{\gamma}{3}$ C. $\sqrt{\frac{3}{\gamma}}$ D. $\sqrt{\frac{\gamma}{3}}$

Answer: D
31. A source frequency f gives t beats when sounded with a frequency 200 Hz . The second
harmonic of same source gives 10 beats when
sounded with a source of frequency 420 Hz .

The value of f is
A. $105 s^{-1}$
B. $200 s^{-1}$
C. $210 s^{-1}$
D. $195 s^{-1}$

Answer: A
32. In a parallel arrangement if $\left(R_{1}>R_{2}\right)$,
then the power dissipated in resistance R_{1} will be
A. Less than R_{2}
B. More than R_{2}
C. Same as R_{2}
D. None of these

Answer: A
33. A uniform insulating rod of length L moves
with a velocity \bar{v} in a magnetic field B where \bar{v}
is perpendicular to both L and B . Then the induced EMF at the ends of the rod is given by
A. BL v
B. $2 \mathrm{BL} v$
C. BL
D. $B^{2} L v$

Answer: A

- Watch Video Solution

34. Energy required to store a current line an
inductor L is
A. $1 / 2\left(L I^{2}\right)$
B. 0
C. $1 / 2\left(I L^{2}\right)$
D. $I L^{2}$

Answer: A

D Watch Video Solution

35. In a $L C R$ circuit having $L=8.0$ henry,
$C=0.5 \mu F$ and $R=100$ ohm in series. The resonance frequency in per second is
A. 600 radian
B. 500 radian
C. 600 Hertz
D. 500 Hertz

Answer: B

D Watch Video Solution

36. L, C and R represent the physical quantities
inductance, capacitance and resistance
respectively. The combinations which have the dimensions of frequency are-
A. 1/RC
B. C/L
C. R/L

D. None of these

Answer: C

D Watch Video Solution

37. The number of turns in the primary and secondary turns of a transformer are 1000 and

3000 respectively. If 80 volt A.C. is applied to
the primary coil of the transformer, then the potential difference per turn of the secondary coil would be
A. 240 volt
B. 0.24 volt
C. 2400 volt
D. 0.08 volt

Answer: D

D Watch Video Solution

38. The photoelectric threshold frequency for potassium is $3 \times 10^{14} \mathrm{~Hz}$. The work function for potassium is $\left(h=6.625 \times 10^{-34} J s\right)$
A. 50 nm
B. 60 nm
C. 500 nm
D. 600 nm

Answer: A

D Watch Video Solution

39. Which of the following are not electromagnetic waves?
A. Energy
B. Frequency
C. Wavelength
D. Velocity

Answer: D

D Watch Video Solution
40. A transistor is used as
A. An oscillator
B. A detector
C. An amplifier
D. All of these

Answer: D

D Watch Video Solution

41. Half-life of a radioactive sample is 200 days.

Its decay constant is
A. 138.6/day

B. $3.465 \times 10^{-3} /$ day

C. 0.005/day
D. $3.545 \times 10^{-2} /$ day

Answer: B

- Watch Video Solution

42. P-type semi-conductor is
A. The concentration of holes increases
while that of conduction electrons
remains constant
B. The concentration of holes remains
constant while that of conduction
electron increases
C. The concentration of holes increases
while that of conduction electrons
decreases
D. The concentration of both holes and
conduction electrons increases

43. Which one of the following is true?

A. α-rays
B. γ - rays
C. β-rays
D. X- rays

Answer: B
44. In young's double slit experiment, if the distance between the slits is halved and the distance between the slits and the screen is doubled, the fringe width becomes
A. Unchanged
B. Double
C. Half
D. Four times

- Watch Video Solution

45. The total magnification produced by a compound microscope is 20. The magnification produced by the eye piece is 5 .

The microscope is focussed on a certain object. The distance between the objective and eyepiece is observed to be 14 cm .

If the least distance of distinct vision is 20 cm ,
calculate the focal length of the objective and
the eye piece.
A. $f_{0}=80 \mathrm{~cm}$ and $f_{e}=20 \mathrm{~cm}$
B. $f_{0}=95 \mathrm{~cm}$ and $f_{e}=5 \mathrm{~cm}$
C. $f_{0}=50 \mathrm{~cm}$ and $f_{e}=50 \mathrm{~cm}$
D. $f_{0}=5 \mathrm{~cm}$ and $f_{e}=95 \mathrm{~cm}$

Answer: B

D Watch Video Solution
46. If C is the critical angle for a medium and μ is its refractive index, then
A. $\mu=\cot C$
B. $\mu=\tan C$
C. $\mu=\operatorname{cosec} C$
D. $\mu=\sec C$

Answer: C

D Watch Video Solution

47. Which of the following relation hold good for refraction between a pair of media with
i_{1} and i_{2} as angles incidence and refraction
v_{1} and v_{2} as velocities of light in the media?
A. $v_{2} \sin i_{1}=v_{1} \sin i_{2}$
B. $v_{1} \cos i_{1}=v_{2} \cos i_{2}$
C. $v_{1} \cos e c i_{1}=v_{2} \cos e c i_{2}$
D. $v_{1} \sec i_{1}=v_{2} \sec i_{2}$

Answer: C

D Watch Video Solution

48. A galvanometer of resistance 25Ω gives full
scale deflection for a current of 10 milliampere
, is to be changed into a voltmeter of range 100 V by connecting a resistance of ' R ' in series with galvanometer. The value of resistance R in Ω is
A. 1000
B. 975
C. 10025
D. 9975

Answer: D

- Watch Video Solution

49. A moving charge produces
A. Electric field only
B. Magnetic field only
C. Both electric and magnetic field
D. Both electric and magnetic field
50. Two free paralell wires carrying currents in opposite direction
A. Attract each other
B. Do not affect each other
C. Repel each other
D. Get rotated, to be perpendicular to each
other

Answer: C

- Watch Video Solution

51. In the circuit shown in fig the heat produced in the 5 ohm resistor due to the current flowing through it is 10 calories per second.

The heat generated in the 4 ohms resistor is
A. 1 calorie/sec
B. 3 calories/sec
C. 2 calories/sec
D. 4 calories per sec

Answer: C

- Watch Video Solution

52. In the circuit shown

A. 50 amp
B. 2 amp
C. 0.5 amp
D. $(10 / 9) \mathrm{amp}$

Answer: D

- Watch Video Solution

53. When cells are arranged in parallel
A. The current capacity decreases
B. The e.m.f. increases
C. The current capacity increases
D. The e.m.f. decreases

- Watch Video Solution

54. The maximum velocity of a particle executing S.H.M is 0.08 mis. If its maximum acceleration is $0.32 \mathrm{~m} / \mathrm{s}^{2}$. Its period and and amplitude are given by
A. $\pi \sec 0.01 m$
B. $2 \pi \mathrm{sec}, 0.02 m$
C. $\frac{\pi}{2} \mathrm{sec}, 0.02 m$
D. $\frac{\pi}{3} \mathrm{sec}, 0.02 m$

D Watch Video Solution

55. The equation of a transverse wave is given by $y=20 \sin \pi(0.02 x-2 t)$ where y and x are in cm and t is in sec. The wavelength in cm will be
A. $200 \mathrm{~cm} / \mathrm{sec}$
B. $0.5 \mathrm{~cm} / \mathrm{sec}$
C. $400 \mathrm{~cm} / \mathrm{sec}$

D. $20 \mathrm{~cm} / \mathrm{sec}$

Answer: C

D Watch Video Solution

56. Quality of a sound depends upon its
A. Amplitude but not on frequency
B. Frequency but not on amplitude
C. Amplitude and frequency both
D. Neither amplitude nor frequency

Answer: C

D Watch Video Solution

57. First overtone frequency of a closed pipe of length l_{1} is equal to the $2^{n d}$ harmonic frequency of an l_{2} open pipe of length. The ratio $\frac{l_{1}}{l_{2}}=$
A. $v / 2 l$ hertz
B. v / l hertz
C. $v / 4 l$ hertz

D. $2 v / l$ hertz

Answer: C

D Watch Video Solution

58. Condenser A has a capacity of $15 \mu F$ when
it is filled with a medium of dielectric constant
59. Another condenser B has a capacity $1 \mu F$
with air between the plates. Both are charged
separately by a battery of 100 V . After
charging, both are connected in parallel
without the battery and the dielectric material being removed. The common potential now is
A. 400 V
B. 1200 V
C. 800 V
D. 1600 V

Answer: C
(Watch Video Solution
59. For a given surface the Gauss's law is stated as $\oint \vec{E} \cdot d \vec{A}=0$. From this we can conclude that
A. E is necessarily zero on the surface
B. The total flux, through the surface, is
zero
C. E is perpendicular to the surface at every
point
D. The flux is only going out of the surface

Answer: B

D Watch Video Solution

60. When air is replaced by a dielectric medium of constant K, the capacity of the condenser.
A. Remains unchanged
B. Decreases K times
C. Increases by K^{2} times
D. Increases K times

Answer: D

D Watch Video Solution

