©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

MODEL TEST PAPER 4

Physics

1. Why the amount of light emitted by the
fluorescent tubes is much larger as compared
to the filament lamps ?
A. Tube contains gas at low temperature B. Light is diffused through the walls of the tube
C. ultraviolet light is converted into visible
light by fluorescence
D. It consumes more power than bulb

Answer: C

2. A proton is accelerated through a potential difference of 1 V . Its energy is
A. 1 eV
B. 2 eV
C. 0
D. 4 eV

Answer: A

O
Watch Video Solution

3. The ratio of the inertial mass to gravitational

 mass is equal toA. $1 / 2$
B. 2
C. 1
D. no fixed number

Answer: D

0
Watch Video Solution
4. The ratio of maximum height reached by a particle projected under gravity to its horizontal range is $1: 4$ The angle of projection initially is
A. 90°
B. 37°
C. 60°
D. 45°

Answer: D
5. A pressure of 10^{6} dyne $/ \mathrm{cm}^{2}$ is equivalent to
A. $10^{5} n / m^{2}$
B. $10^{6} n / m^{2}$
C. $10^{4} n / m^{2}$
D. $10^{7} n / m^{2}$

Answer: A

D Watch Video Solution
6. A hydrogen atom is in p state. For this, values
of j are

$$
\begin{aligned}
& \text { A. }+\frac{1}{2},+\frac{3}{4} \\
& \text { B. } \frac{7}{2}, \frac{3}{2}, \frac{1}{2} \\
& \text { C. }-\frac{3}{2},-\frac{1}{2} \\
& \text { D. }-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}
\end{aligned}
$$

Answer: A

D View Text Solution
7. Post office box is a device for measuring resistances based on the principle of :
A. Producing a beam of white light
B. Producing a beam of high intensity in
coherent light
C. Producing a beam of monochromatic and
coherent light
D. Producing a beam of highly penetrating

X-rays

Answer: C

- Watch Video Solution

8. The refractive index of glass is 1.50 and the speed of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the speed of light in glass.
A. $24.2 \AA$
B. $3.92 \AA$
C. $2.42 \AA$
D. $3.992 \times 10^{7} \mathrm{~cm}$

Answer: C

- Watch Video Solution

9. If the distance between nuclei is 2×10^{-10}
cm . The density of nuclear material is

$$
\begin{aligned}
& \text { A. } 3.2 \times 10^{-12} \mathrm{~kg} \cdot \mathrm{~m}^{3} \\
& \text { B. } 1.6 \times 10^{-2} \mathrm{k} / \mathrm{m}^{2} \\
& \text { C. } 2.98 \times 10^{7} \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { D. } 4 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

10. The mass number of a nucleus is
A. always less than its atomic number
B. sometimes more that and sometimes
equal to its atomic number
C. Sometimes equal to its atomic number
D. Both (b) and (c)

Answer: D

D Watch Video Solution

11. In the reaction represented by,
$Z^{A} X \rightarrow \cdot Z-2{ }^{A-4} Y \rightarrow \cdot Z-2{ }^{A-4} Y \rightarrow \cdot Z-1{ }^{A-4} K$
the decays in the sequence are a) $\alpha, \beta, \gamma \mathrm{b}$)
$\beta, \gamma, \alpha \mathrm{c}) \gamma, \alpha, \beta \mathrm{d}) \alpha, \gamma, \beta$
A. α, β, γ
B. γ, α, β
C. β, γ, β

$$
\text { D. } \alpha, \gamma, \beta
$$

Answer: D

D Watch Video Solution

12. The relation between half-life T of a radioactive sample and its mean life τ is:
А. $T=0.693 \tau$
B. $\tau=T$
C. $\tau=0.693 T$

$$
\text { D. } \tau=2.718 T
$$

Answer: A

D Watch Video Solution

13. if the electron in hydrogen orbit jumps form third orbit to second orbit, the wavelength of the emitted radiation is given by

$$
\text { A. } \lambda=36 / 5 R
$$

$$
\text { B. } \lambda=5 / R
$$

$$
\text { C. } \lambda=5 R / 36
$$

D. $\lambda=R / 6$

Answer: C

- Watch Video Solution

14. The radius of the first orbit of electron in hydrogen atom `(e=1.6xx10^(-19)" coulomb,
A. $53 \AA$
B. $0.53 \AA$
C. $5.3 \AA$

$$
\text { D. } 53 \times 10^{2} \AA
$$

Answer: B

D Watch Video Solution

15. The frequency range of ultraviolet radiation
is
A. $3 \times 10^{3} \mathrm{~Hz}$
B. $7.5 \times 10^{12} \mathrm{~Hz}$

$$
\text { C. } 6 \times 10^{10} H z
$$

$$
\text { D. } 1.5 \times 10^{13} \mathrm{~Hz}
$$

Answer: D

D Watch Video Solution

16. Light of wavelength $4700 \AA$ is incident on a metal plate whose work function is 2 eV . Then maximum kinetic energy of the emitted photoelectron would be
B. 1.1 eV
C. 1.5 eV
D. 0.5 eV

Answer: B

D Watch Video Solution

17. Threshold wavelength for photoelectric emission from a metal surface is 5200 A . Photoelectrons will be emitted when this
surface is illuminated with monochromatic radiation from
A. 50 watt infrared lamp
B. 50 watt ultraviolet lamp
C. 1 watt infrared lamp
D. 10 watt infrared lamp

Answer: B

18. In frequency modulated wave

A. Amplitude varies with time
B. Amplitude and freuency both vary with
time
C. Frequency varies with time

D. Amplitude and frequesncy both are

constant

Answer: C

19. When a $p-n$ junction diode is reverse biased, the flow of current across the junction is mainly due to
A. Height of the potential barrier is reduced B. Electrons and holes move towards each other and towards the depletion region
C. Width of depletion region is reduced
D. All the above

D Watch Video Solution

20. Two coils of self-inductance L_{1} and L_{2} are placed closed to each other so that total flux in one coil is completely linked with other. If M is mutual inductance between them, then
A. $M=L_{1} L_{2}$
B. $M=\left(L_{1} L_{2}\right)^{2}$
C. $M=L_{1} / L_{2}$
D. $M=\sqrt{\left(L_{1} L_{2}\right)}$

Answer: D

- Watch Video Solution

21. What is the order of drift velocity of electrons?

A. 2×10^{-6}

B. 2×10^{-5}
C. 2×10^{-8}
D. 2×10^{-10}

Answer: D

- Watch Video Solution

22. The wings of an aeroplane are $I 0 m$ apart.

The plane is moving horizontally towards the north with a velocity of $200 \mathrm{~m} / \mathrm{sec}$ at a place where the vertical component of earth's magnetic field is $0.5 \times I 0^{-4} T$. The induced emf set up between the tips of the wings is

A. 0.01 V

B. 1 V

C. 0.1 V

D. 10 V

Answer: C

D Watch Video Solution

23. The natural frequency of a L-C circuit is equal to
A. $\pi \sqrt{(L C)}$

> B. $1 / 2 \pi \sqrt{(L / C)}$
> C. $\frac{1}{2 \pi \sqrt{L C}}$
> D. $1 / 2 \pi \sqrt{(C / L)}$

Answer: C

D Watch Video Solution

24. A 100 pF capacitor is connected to a 230 V , 50 Hz a.c. source, the r.m.s. value of the conduction current is
A. 1.90 A
B. 0.90 A
C. 6.28 A

D. 10.14 A

Answer: B

- Watch Video Solution

25. A step up transformer operates on a 230 V
line and a load current of 2 ampere. The ratio of
the primary and secondary windings is $1: 25$. What is the current in the primary?
A. 12.5 amp
B. 8.8 amp
C. 50 amp
D. 25 amp

Answer: C

26. A straight conductor of length 0.4 m is moved with a speed of $7 \mathrm{~m} / \mathrm{s}$ perpendicular to the magnetic field of intensity of $0.9 \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. across the conductor will be A. 5.04 V
B. 2.52 V
C. 1.26 V
D. 25.2 V

Answer: B
27. Best method to increase the sensitivity of the moving coil galvanometer is to increase :
A. The suspension wire should be made stiff B. The magnetic field should be increased
C. Area of the coil should be reduced
D. The number of turns in the coil should be
reduced

Answer: C
28. The hysteresis cylcle for the material of a permanent magnet is
A. Short and wide

B. Tall and wide

C. Tall and narrow

D. Short and narrow

Answer: C

29. The magnetic moment of atomic neon is
A. zero
B. μ_{B}
C. $\frac{1}{2} \mu_{B}$
D. $3 / 2 \mu_{B}$

Answer: A

D Watch Video Solution
30. The radius of curvature of the path of the charged particle in a uniform magnetic field is directly proportional to
A. The charge on the particle B. The energy of the particle
C. The momentum of the particle

D. The intensity of the field

Answer: C
31. An electric bulb is rated 220 volt -100 watt.

The power consumed by it when operated on 110 volt will be
A. 50 watt
B. 90 watt
C. 75 watt
D. 25 watt

Answer: D

32. The current in the circuit (see fig) is

A. 1/45 amps
B. $1 / 10 \mathrm{amps}$
C. $1 / 15 \mathrm{amps}$
D. $1 / 5 \mathrm{amps}$

Answer: B

33. Dry ice is

A. Zinc
B. Ammonium chloride
C. Supphuric acid
D. Manganese dioxide

Answer: C

34. A charged particle of mass m and charge q is released from rest in an electric field of constant magnitude E. The kinetic energy of the particle after time t is

$$
\begin{aligned}
& \text { A. } \frac{2 E^{2} t^{2}}{m g} \\
& \text { B. } \frac{E^{2} q^{2} t^{2}}{2 m} \\
& \text { C. } \frac{E q^{2} m}{2 t^{2}} \\
& \text { D. } \frac{E q m}{2 t}
\end{aligned}
$$

Answer: C

35. 64 small drops of mercury, each of radius r and charge q coalesce to form a big drop the ratio of the surface density of charge of each small drop with that of the big drop is
A. 1000
B. 100
C. 200
D. 1

- Watch Video Solution

36. Five capacitors of $20 \mu F$ capacity each are commected to a D.C potential of 100 volts
shown in the figure The equivalent capacitance
between the point A and B will be equal to

A. $40 \mu F$
B. $30 \mu F$

C. $50 \mu F$

D. $20 \mu F$

Answer: D

- Watch Video Solution

37. The insulated spheres of radii R_{1} and R_{2} having charges Q_{1} and Q_{2} respectively are connected to each other. There is
A. No change in the energy of the system
B. Always a decrease in the energy
C. An increase in energy of the system
D. A decrease in the energy of the system unless $Q_{1} R_{2}=Q_{2} R_{1}$

Answer: D

D Watch Video Solution

38. A particle of mass 2 g and charge $1 \mu C$ is held at rest on a frictionless surface at a distance of 1 m from a fixed charge of 1 mC . If
the particle is released it will be repelled. The speed of the particle when it is at distance of 10 m from fixed charge is :
A. $100 \mathrm{~m} / \mathrm{sec}$
B. $60 \mathrm{~m} / \mathrm{sec}$
C. $90 \mathrm{~m} / \mathrm{sec}$
D. $45 \mathrm{~m} / \mathrm{sec}$

Answer: C
(Watch Video Solution
39. The intensity of a sound wave gets reduced
by 20% on passing through a slab. The reduction intensity on passage through two such consecutive slabs
A. 40%
B. 30%
C. 36%
D. 50%

Answer: C
40. When temperature is increases, the frequency of organ pipe

A. Decreases

B. Remains the same
C. Increases
D. Becomes zero

Answer: C
(D) Watch Video Solution
41. The displacement of partcles in a string
streched in the x-direction is by y. Among the following expressions for y, those describing wave motion are :
A. $\cos k x \sin \omega t$
B. $\cos (k x+\omega t)$
C. $k^{2} x^{2}-\omega^{2} t^{2}$
D. $\cos \left(k^{2} x^{2}-\omega^{2} t^{2}\right)$

Answer: D
42. Two sources of sound are in resonance when
A. The look alike
B. They produce sound of same frequency
C. They are situated at a particular distance
from each other
D. They are excited by the same exciting
device

Answer: C

- Watch Video Solution

43. A transverse wave is described by the equation $\quad y=A \sin 2 \pi\left(v t-\frac{x}{\lambda}\right) . \quad$ The maximum particle velocity is equal to four times the wave velocity if

$$
\begin{aligned}
& \text { А. } \lambda=\pi Y_{0} / 4 \\
& \text { В. } \lambda=\pi Y_{0} \\
& \text { С. } \lambda=\pi Y_{0} / 2
\end{aligned}
$$

D. $\lambda=2 \pi Y_{0}$

Answer: C

D Watch Video Solution

44. Define the frequency of an Ac.
A. $3 \mathrm{Km} / \mathrm{sec}$
B. $4 \mathrm{~km} / \mathrm{sec}$
C. $2 \mathrm{~km} / \mathrm{sec}$
D. $0.5 \mathrm{~km} / \mathrm{sec}$

Answer: D

- Watch Video Solution

45. A tuning fork of frequency 480 Hz produces

10 beats per second when sounded with a vibrating sonometer string. What must have been the frequency of the string if a slight increase in tension produces lesser beats per second than before
A. 40 Hz
B. 480 Hz
C. 470 Hz
D. 490 Hz

Answer: C

(D) Watch Video Solution

46. A tuning fork of frequency 480 Hz produces

10 beats per second when sounded with a vibrating sonometer string. What must have been the frequency of the string if a slight
increase in tension produces lesser beats per second than before
A. 460 Hz
B. 470 Hz
C. 480 H
D. 490 Hz

Answer: D

D Watch Video Solution
47. The equation of a transverse wave is given
by $y=20 \sin \pi(0.02 x-2 t)$ where y and x are
in cm and t is in sec. The wavelength in cm will be
A. 50
B. 200
C. 100
D. 5

Answer: C
48. The first diffraction minima due to a single slit diffraction is at $\theta=30^{\circ}$ for a light of wavelength $5000 \AA$ The width of the slit is

$$
\text { A. } 5 \times 10^{-5} \mathrm{~cm}
$$

B. $2.5 \times 10^{-5} \mathrm{~cm}$
C. $1.0 \times 10^{-5} \mathrm{~cm}$
D. $1.25 \times 10^{-5} \mathrm{~cm}$

Answer: C

49. The wavelength of the light of a laser beam
can be used as a standard of
A. Time
B. Angle
C. Temperature
D. Length

Answer: D
50. Polarisation of light proves the -
A. Corpuscular nature of light
B. Transverse wave nature of light
C. Quantum nature of light
D. Longitudinal wave nature of light

Answer: B
51. An electron microscope is superior to an optical microscope in
A. Having better resolving power
B. Low cost
C. Being easy to handle
D. Quikness of observation

Answer: A
52. The intensity of illumination at a distances of 5 m from a 200 candela source is
A. 10 lumens $/ \mathrm{m}^{2}$
B. 24 lumens $/ \mathrm{m}^{2}$
C. 8 lumens $/ \mathrm{m}^{2}$
D. 4 lumens $/ \mathrm{m}^{2}$

Answer: B
53. A simple telescope consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focused on a distant object in such a way that parallel rays emerge from eye lens. If the object subtends an angle of 2° at the objective, the angular width of the image is (Let $\tan \theta=\theta$ assuming θ small).
A. 10°
B. 50°
C. 24°
D. $1 / 60^{\circ}$

Answer: C

- Watch Video Solution

54. Two lenses of power +12 and -2 dioptres
are placed in contact. The combined focal
length of the combination will be
A. 10 cms
B. 16.6 cms
C. 12.5 cms
D. 8.33 cms

Answer: A

- Watch Video Solution

55. A rayt of light passes through an equilateral
prism (refrective index $=1.5$) The angle of deviation (minimum) is
A. 45°
B. 20°
C. $37^{\circ} 12^{\prime}$
D. 30°

Answer: C

- Watch Video Solution

56. A body cools from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 6 minutes Under the saame external conditions to cool from $60^{\circ} C$ to $50^{\circ} C$ it will take
A. Less than 6 minutes
B. 6 minutes
C. More than 6 minutes
D. Cannot be predicted

Answer: C

- Watch Video Solution

57. Explain internal energy as a state function.
A. Does not depend upon path
B. Corresponds to an adiabatic process
C. Depends upon path
D. Corresponds to an isothermal process
58. The work done by the string of a simple pendulum during one complete oscillation is
A. Total energy of the pendulum
B. Potential energy of the pendulum
C. Kinetic energy of the pendulum
D. Zero

Answer: D
59. A stone released with zero velocity from the top of a water, reaches the ground in 4s. The height of the tower is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 20 m
B. 80 m
C. 40 m
D. 160 m

Answer: B
60. If c and R denote capacity and resistance the dimensions of CR are :
A. $\left[M^{0} L^{0} T\right]$
B. $\left[M^{0} L^{2} T^{-2}\right]$
C. $\left[M^{1} L^{0} T^{2}\right]$
D. Not expressible in terms of [MLT]

Answer: A

