© ${ }^{\text {T doubtnut }}$

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

PHYSICS

Mcqs

1. A metal rod of length of 10 cm and a rectangular cross - section of $1 \mathrm{~cm} \times \frac{1}{2} \mathrm{~cm}$ is
connected to a battery across apposite face .

The resistance will be .'
A. same irrespective of the three faces
B. maximum when the battery is connected
across $1 \mathrm{~cm} \times \frac{1}{2} \mathrm{~cm}$ faces
C. maximum when the battery is connected
across $10 \mathrm{~cm} \frac{1}{2} \mathrm{~cm}$ faces
D. maximum when the battery is connected across $10 \mathrm{~cm} \times 1 \mathrm{~cm}$ faces.
2. A car has a fresh storage battery of e.m.f 12

V and internal resistance $2 \times 10^{-2} \Omega$. If the starter motor draws a current of 80 A . Then the terminal voltage when the starter is on is .
A. 9.3 V
B. 12 V
C. 8.4 V
D. 10.4 V

Answer:

D Watch Video Solution

3. When a soap bubble is charged ?
A. Its radius may increases or decrease .
B. Its radius increase
C. Its radius decreases
D. The radius remain the same .
4. A hot filamnet liberates an electron with
zero intital velocity . The andoe potential is
1200 V . The speed of the electron when is strikes the anode is .
A. $2.5 \times 10^{8} \mathrm{~ms}^{-1}$
B. $1.5 \times 10^{5} \mathrm{~ms}^{-1}$
C. $2.5 \times 10^{6} \mathrm{~ms}^{-1}$
D. $2.1 \times 10^{7} \mathrm{~ms}^{-1}$

Answer:

- Watch Video Solution

5. Each resistance is the given cubical network
has resistance of 1Ω and equivalent resistance between A and B is .

A. $\frac{12}{5} \Omega$
B. $\frac{5}{6} \Omega$
C. $\frac{6}{5} \Omega$
D. $\frac{5}{12} \Omega$

Answer:

- Watch Video Solution

6. A potentiometer has a uniform wire of
length 5 m . A battery of emf 10 V and negligible interal resistance is connected
between its ends. A secondary cell connected
to the circuit gives balancing length at 200 cm
. The emf of the secondary cell is .
A. 8 V
B. 4 V
C. 6 V
D. 2 V

Answer:

D Watch Video Solution
7. The colour code for a carbon resistor of resistance $0.28 k \Omega \pm 10 \%$ is
A. Red, Green , Silver
B. Red, Grey, Brown , Silver
C. Red, Green , Brow , sliver
D. Red , Grey , silver , Silver

Answer: Red, Grey, Brown , Silver

- Watch Video Solution

8. The magnetic field at the orgini due to a current element $\overrightarrow{i d l}$ placed at a point with vector position \vec{r} is
A. $\frac{\mu_{0} i}{4 \pi} \frac{\vec{r} \times \overrightarrow{d l}}{r^{2}}$
B. $\frac{\mu_{0} i}{4 \pi} \frac{\vec{d} l \times \vec{r}}{r^{3}}$
C. $\frac{\mu_{0} i}{4 \pi} \frac{\vec{r} \times \overrightarrow{d l}}{r^{3}}$
D. $\frac{\mu_{0} i}{4 \pi} \frac{\overrightarrow{d l} \times \vec{r}}{r^{2}}$

Answer:

9. I- V characteristic of a copper wire of length
of L and area of cross - section A is shown in
figure. The slope of the curve becomes.

A. Less if the length of the wire is increased
B. More if experiment is performed at higher temperature
C. More if a wire of steel of same dimesion
is used
D. Less if the area o the wire is increased

Answer:

- Watch Video Solution

10. In the given figure, the magnetic field at 'O'.

A. $\frac{3}{8} \frac{\mu_{o} I}{r}-\frac{\mu_{o} I}{4 \pi r}$
B. $\frac{3}{4} \frac{\mu_{o} I}{r}+\frac{\mu_{o} I}{4 \pi r}$
C. $\frac{3}{10} \frac{\mu_{0} I}{r}-\frac{\mu_{0} I}{4 \pi r}$
D. $\frac{3}{8} \frac{\mu_{o} I}{r}+\frac{\mu_{o} I}{4 \pi r}$

- Watch Video Solution

11. A paramagentic sample shows a net magnetization of $8 \mathrm{Am}^{-1}$ when placed in an external magentic field of 0.6 T at a temperature of 4 k . When the same sample is placed in a external magnetic field of 0.2 T at temperature of 16 K . The magnetization will be .

$$
\text { A. } 2.4 A m^{-1}
$$

$$
\text { B. } \frac{32}{3} A m^{-1}
$$

C. $\frac{2}{3} A m^{-1}$

$$
\text { D. } 6 A m^{-1}
$$

Answer:

D Watch Video Solution

12. A long cylinder wire of radius R carries a unifrom current I flowing through it. The varaiaiton of magnetic field with distance ' r ' from the axis of the wire is shown by .
A.
CricR
B.

C.

Answer:

- Watch Video Solution

13. A cylotron is used to accelearate protons
$\left({ }_{1}^{1} H\right)$. Deuterons $\left({ }_{1}^{2} H\right)$ and α - particles
$\left({ }_{2}^{4} \mathrm{He}\right)$. While exiting under similar conditions,
the minimum K. E is gained by .
A. same for all
B. α-particle
C. proton
D. deuteron

Answer:
14. A rod of length 2 m slides with a speed of
$5 m s^{-1}$ on a rectangle conducting farme as
shown in figure. There exists a unifrom magnetic field of 0.04 T perpendicular to the plane of the figure. If the resistance of the rod is 3Ω. The current through the rod is .

A. 1.33 A
B. 75 mA
C. 133 mA
D. 0.75 A

Answer:

- Watch Video Solution

15. The ratio of magnetic field at the centre of
a current carrying circular coil to its magnetic
moment is ' r '. If the current and the radius both are doubled. The new ratio will become
A. $\frac{x}{8}$
B. $2 x$
C. $4 x$
D. $\frac{x}{4}$

Answer:

D Watch Video Solution

16. In a permanent magnet at room temperature
A. Domains are all perfectly aligned.
B. Magnetic moment of each molecule is
zero.
C. The individual molecules have non-zero
magnetic moment which are all perfectly aligned.
D. Domains are partially aligned.

Answer:

17. The power factor of $R-L$ circuit is $\frac{1}{\sqrt{3}}$.lf the inductive reactance is 2Ω. The value of resistance is
A. $\frac{1}{\sqrt{2}} \Omega$
B. 2Ω
C. $\sqrt{2} \Omega$
D. 0.5Ω

Answer:

18. In the given circuit, the resonamt frequency is

A. 15910 Hz
B. 15.92 Hz
C. 159.2 Hz
D. 1592 Hz

Answer:

D Watch Video Solution

19. The current in a coil of inductance 0.2 H
changes from 5 A to 2 A in 0.5 sec . The magnitude of the average induced emf in the coil is
A. 0.3 V
B. 0.6 V
C. 1.2 V
D. 30 V

Answer:

D Watch Video Solution

20. In the given circuit the peak voltages across C, L and Rare $30 \mathrm{~V}, 110 \mathrm{~V}$ and 60 V respectively. The rms value of the applied
voltage is .

A. 141 V
B. 100 V
C. 200 V
D. 70.7 V

Answer:

- Watch Video Solution

21. The refracting angle of a prism is A and refractive index of material of prism is $\cot \frac{A}{2}$.

The angle of minimum deviation is
A. $180^{\circ}-2 A$
B. $180^{\circ}-3 A$
C. $180^{\circ}+2 A$
D. $90^{\circ}-A$

Answer:
22. A light beam of intensity $20 \mathrm{~W} / \mathrm{cm}^{2}$ is incident normally on a perfectly reflecting surface of sides $25 \mathrm{~cm} \times 15 \mathrm{~cm}$. The momentum imparted to the surface by the light per second is

> A. $1.2 \times 10^{-5} \mathrm{kgms}^{-1}$
> B. $2 \times 10^{-5} \mathrm{kgms}^{-1}$
> C. $1 \times 10^{-5} \mathrm{kgms}^{-1}$
> D. $5 \times 10^{-5} \mathrm{kgms}^{-1}$

Answer:

D Watch Video Solution

23. An object approaches a convergent lens from the left of the lens with a uniform speed
$5 \mathrm{~m} / \mathrm{s}$ and stops at the focus, the image
A. moves towards the lens with a non-
uniform acceleration.
B. moves away from the lens with an
uniform speed $5 \mathrm{~m} / \mathrm{s}$.
C. moves away from the lens with an uniform acceleration.
D. moves away from the lens with a nonuniform acceleration.

Answer:

D Watch Video Solution

24. Two poles are separated by a distance of
3.14 m . The resolving power of humna eye is 1 minute of an arc. The maximum distance from
which he can identify the two poles distinctly is .
A. 376 m
B. 10.8 km
C. 5.4 km
D. 188 m

Answer:
(Watch Video Solution
25. The following figure shows a beam of light converging at point P . When a concave lens of
focal length 16 cm is introudced in the path of the beam at a place shown by the dotted line such that OP becomes the axis of the lens, the becam converges at a distane x from the lens.

The vlaue of x will be equal to

A. 48 cm
B. 12 cm
C. 24 cm
D. 36 cm

Answer:

D Watch Video Solution

26. Three polaroid sheets P_{1}, P_{2} and P_{3} are kept parallel to each other such that the angle between pass axes of P_{1} and P_{2} is 45° and
between P_{2} and P_{3} is 45°. If unpolarised beam of light of intensity $128 W m^{-2}$ is incident on P_{1}. What is the intensity of light coming out of P_{3} ?
A. $64 W^{-2}$
B. $128 \mathrm{Wm}^{-2}$
C. 0
D. $16 \mathrm{Wm}^{-2}$

Answer:

27. The following graph represents the variation of photo current with anode potential for a metal surface. Here l_{1}, l_{2} and l_{3} represents intensities and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ respectively, them .

A. $\gamma_{2}=\gamma_{3}$ and $I_{1} \neq I_{3}$
B. $\gamma_{1}=\gamma_{2}$ and $I_{1} \neq I_{2}$

$$
\begin{aligned}
& \text { C. } \gamma_{1}=\gamma_{3} \text { and } I_{1}=I_{3} \\
& \text { D. } \gamma_{1}=\gamma_{2} \text { and } I_{1}=I_{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

28. In Young's Double Slit Experiment the distance between the slits and the screen is
$1.2 m$ and the distance between the two slits is
2.4 mm . If a thin transparent mica sheet of
thickness $1 \mu m$ and $R . I .1 .5$ is introduced
between one of the interfering beams, the shift in the position of central bright fringer is
A. 0.25 mm
B. 2 mm
C. 0.5 mm
D. 0.125 mm

Answer:

D Watch Video Solution

29. The de - Broglie wavelenght assoicated
with electron of hydrogen atom in ths ground
state is .
A. $10 \AA$
B. $0.3 \AA$
C. $3.3 \AA$
D. $6.26 \AA$

Answer:

D Watch Video Solution
30. Name the parts A, B and C shown in the following diagram and state one function of each.

A. C^{\prime} will be minimum and in B maximum
B. B' will be minimum and in C maximum
C. A^{\prime} will be maximum and in B^{\prime} minimum
D. A^{\prime} will be minimum and in C maximum

Answer:

D Watch Video Solution

31. The period of revolution of an electron revolving in $n^{\text {th }}$ orbit of H - atom is propportinal to .
A. Independent of n
B. n°
C. $\frac{1}{n}$
D. n^{3}

Answer:

D Watch Video Solution

32. Angular momentum of an electron in hydrogen atom is $\frac{3 h}{2 \pi}$ (h is the Planck's constant). The K. E of the electron is
A. 6.8 eV
B. 4.35 eV
C. 1.51 eV
D. 3.4 eV

Answer:

- Watch Video Solution

33. A radio - active element has half - life of 15
years. What is the fractional that will decay in

30 years ?
A. 0.85
B. 0.25
C. 0.5
D. 0.75

Answer: 0.75

D Watch Video Solution

34. Two protones are kept at a separation of

10 nm . Let F_{n} and F_{e} be the nuclear force and the elctromagnetic force between them .
A. F_{e} and F_{n} differe only slightly
B. $F_{e}=F_{n}$
C. $F_{e} \gg F_{n}$
D. $F_{e} \ll F_{n}$

Answer:

D Watch Video Solution

35. During a β-decay
A. A proton in the nuclesus decays emitting
electorn
B. an atomic electron is ejected
C. an electron which is already present
within the nucleus is
D. A neutron in the nucleus decays
emitting an electron

Answer:

D Watch Video Solution

36. A positive hole in a semiconductor is
A. an articially created particles
B. an anti - particle of electron
C. a vacany created when an electron

leaves covalent bond

D. absence of free electrons.

Answer:

D Watch Video Solution

37. A 220 V A. C supply is connected between points A and B as shown in figure what will be the potential differnece V across the capacitor

A. $220 \sqrt{2} V$
B. 220 V
C. 110
D. 0

Answer:

38. In the following circuit what are P and Q :

A. $P=1, Q=1$
B. $P=1, Q=0$
C. $P=0, Q=1$
D. $P=0, Q=0$

Answer: $P=0, Q=1$

- Watch Video Solution

39. A body is intially at rest. It undergos one dimensional motion with constant acceleration. The power delivered to it at time 't' is proportianal to .
A. $t^{1 / 2}$
B. t
C. $t^{3 / 2}$
D. t^{2}

Answer:

D Watch Video Solution

40. A thin uniform rectangular plate of mass 2
kg is placed X - Y plane as shown in figure. The moment of intertia about x - axis is
$I_{x}=0.2 \mathrm{kgm}^{2}$ and the moment of inertia about y -axis is $I_{y}=0.3 \mathrm{kgm}^{2}$. The radius of gyration of the plate about the axis passing
throught O and perpendicular to the plane of the plate is .

A. 50 cm
B. 5 cm
C. 38.7 cm
D. 31.6 cm

Answer:

D Watch Video Solution

41. One end of a string of length ' l ' is connected to a particle of mass m and the other to a small peg on a smooth horizontal table. If the particle moves in a circle with speed ' v ', the net force on the particle (directed towards the centre) is :(T is the tension in the string).
A. T
B. $T-\frac{m v^{2}}{l}$
C. $T+\frac{m v^{2}}{l}$
D. 0

Answer:

- Watch Video Solution

42. Young 's modulus of a perfect rigied body is
A. zero
B. unity
C. infinity
D. between zero and unity

Answer:

D Watch Video Solution
43. A wheel starting from rest gains an angular velcoity of $10 \mathrm{rad} / \mathrm{s}$ after uniformly accelerated
for 5 sec . The total angle throught which it has turned is .
A. 25 rad
B. 100 rad
C. $25 \pi \mathrm{rad}$

D. 50π rad about a vertical axis

Answer:
(Watch Video Solution
44. Iceberg floats in water with part of it submerged. What is the fraction of the volumes of iceberg submerged if the density of ice is $\rho_{i}=0.917 \mathrm{gcm}^{-3}$?
A. 0.917
B. 1
C. 0.458
D. 0

Answer:

45. The value of acceleartion due to gravity at a height of 10 km from the surface of earth is
x. At what depth inside the ea rth is the value of the acceleration due to gravity has the same value x ?
A. 5 km
B. 20 km
C. 10 km
D. 15 km

Answer:

D Watch Video Solution

46. In an adiabatic expansion of an ideal gas
the product of pressure and volume .
A. Decreases
B. Increases
C. Remains constant
D. At first increase and then decrease

Answer:

- Watch Video Solution

47. A certain amount of heat energy is
supplied to a monoatomic ideal gas which expands ta constant pressure. What fration of
the heat energy is conveted into work?
A. 1
B. $\frac{2}{3}$
C. $\frac{2}{5}$

Answer:

D Watch Video Solution

48. A sphere, a cube and a thin circular plate
all of same material and same high
temperatue are allowed to cool down under similar condition. Then the
A. plate will cool the faster and cube the slowest
B. sphere will cool the faster and cube the
slowest
C. plate will cool the faster and sphere the
slowest
D. cube will cool the faster and plate the
slowest

Answer:

49. A thin unifrom reactangular plate of mass

2 kg placed in $\mathrm{X}-\mathrm{Y}$ planes as shown in figure.
The moment of inertia about x - axis is
$I_{x}=0.2 \mathrm{kgm}^{2}$ and the moment of intertia about y -axis is $I_{y}=0.3 \mathrm{kgm}^{2}$. The radius of gyration of the plate about the axis passing through O and peprendicular to the plane of
the plate is

A. 31.6 cm
B. 50 cm
C. 5 cm
D. 38.7 cm

Answer:
50. One end of a string of length 'I' is connected to a particle of mass m and the other to a small peg on a smooth horizontal
table. If the particle moves in a circle with speed ' v ', the net force on the particle
(directed towards the centre) is :(T is the tension in the string).
A. 0
B. T
C. $T-\frac{m v^{2}}{l}$
D. $T+\frac{m v^{2}}{l}$

Answer:

D Watch Video Solution

51. A body is intially at rest. It undergos one dimensional motion with constant acceleration. The power delivered to it at time 't' is proportianal to .
A. t^{2}
B. $t^{1 / 2}$
C. t
D. $t^{3 / 2}$

Answer:

D Watch Video Solution

52. A wheel starting from rest gains an angular velcoity of $10 \mathrm{rad} / \mathrm{s}$ after uniformly accelerated
for 5 sec . The total angle throught which it has

turned is .

A. 50π rad about a vertical axis
B. $25 \pi \mathrm{rad}$
C. 100 rad
D. 25 rad

Answer:
(Watch Video Solution
53. Iceberg floats in water with part of it submerged. What is the fraction of the volumes of iceberg submerged if the density of ice is $\rho_{i}=0.917 \mathrm{gcm}^{-3}$?
A. 0
B. 0.917
C. 1
D. 0.458

Answer:

54. The value of acceleration due to gravity at a height of 10 km form the surface of earth is x . At what depth inside the earth is the value of the acceleration due to gravity has the same value x ?
A. 15 Km
B. 5 Km
C. 20 Km
D. 10 Km

Answer:

D Watch Video Solution

55. Young 's modulus of a perfect rigied body is
A. between zero and unity
B. zero
C. unity
D. infinity

Answer:

- Watch Video Solution

56. A certain amount of heat energy is supplied to a monoatomic ideal gas which expands ta constant pressure. What fration of the heat energy is conveted into work?
A. $\frac{5}{7}$
B. 1
C. $\frac{2}{3}$
D. $\frac{2}{5}$

Answer:

D Watch Video Solution

57. A sphere, a cube and a thin circular plate all
of same material and same high temperatue are allowed to cool down under similar condition. Then the
A. cube will cool the fastest and plate the slowest
B. plate will cool the fastest and cube the
slowest
C. sphere will cool the fastest and cube the
slowest
D. plate will cool the faster and sphere the
slowest

Answer:

58. In an adiabatic expansion of an ideal gas
the product of pressure and volume .
A. At first increase and then decreaes
B. Decreases
C. Increases
D. Reamains constant

Answer:

59. A tray of mass 12 kg is supported by tow identical spring as shown in figure. When the tray is pressed down slightly and then relased , it executes SHM with a time peroid of 1.5 s.The spring constant of each spring is .

A. ∞

$$
\text { B. } 50 \mathrm{Nm}^{-1}
$$

C. 0

$$
\text { D. } 105 \mathrm{Nm}^{-1}
$$

Answer:

D Watch Video Solution

60. A train whistling at constant frequency ' n '
is moving towards a station at a constant
speed V. The train goes past a stationary
observr on the station. The frequecy ' n ' of the
sound as heard by the observe is plotted as
function of time 't' . Identify the correct curve .

c.

D.

Answer:

D Watch Video Solution

61. An infinitely long the thin strainght wire has uniform charge density of $\frac{1}{4} \times 10^{-2} \mathrm{~cm}^{-1}$ what is the magnitude of elctric field at a distance 20 cm form the axis of the wire ?

$$
\text { A. } 9 \times 10^{8} N C^{-1}
$$

$$
\text { B. } 1.12 \times 10^{8} N C^{-1}
$$

C. $4.5 \times 10^{8} N C^{-1}$

$$
\text { D. } 2.25 \times 10^{8} N C^{-1}
$$

Answer:

- Watch Video Solution

62. A point charge ' q ' is palced at the corner fo
cube of side of as shown in the figure. What
ist he electic flux throught the face $A B C D$?

A. $\frac{q}{72 \varepsilon_{0}}$
B. 0
C. $\frac{q}{24 \varepsilon_{0}}$
D. $\frac{q}{6 \varepsilon_{0}}$

Answer:

- Watch Video Solution

63. The electric filed lines on the left have twice the sepration on those on the right as
shown in figure. If the magntiude of the filed at A is $40 \mathrm{Vm}^{-1}$.what is the force on $20 \mu \mathrm{C}$ charge kept at B ?

A. $1 \times 10^{-4} N$
B. $4 \times 10^{-4} N$
C. $8 \times 10^{-4} N$
D. $16 \times 10^{-4} N$

Answer:

D Watch Video Solution

64. Figure showns three point A, B and C in a region of uniform electric field \vec{E}. The line AB
is perpendicualr and $B C$ is parallel to the filed
line. Then which of the following holds good?
$\left(V_{A}, V_{B}\right)$ and V_{C} represent the electric potential at point A, B and C respectively).

A. $V_{A}>V_{B}=V_{C}$
B. $V_{A}=V_{B}=V_{C}$
C. $V_{A}=V_{B}>V_{C}$
D. $V_{A}=V_{B}<V_{C}$

Answer:

D Watch Video Solution

65. A dipole of dipole moment P and moment
of inertia I is placed in an unifrom electric filed \vec{E}. If it is displaced slighty from its stable equilibrium position, then the period of the oscillation of dipole is .
A. $\pi \sqrt{\frac{1}{P E}}$
B. $\sqrt{\frac{P E}{I}}$
C. $2 \pi \sqrt{\frac{I}{P E}}$
D. $\frac{1}{2 \pi} \sqrt{\frac{P E}{I}}$

Answer:

D Watch Video Solution

66. The difference between equivalent
capacitances of two identical capacitors
connected in parallel to that in series is $6 \mu F$.
The value of capacitances of each capacitior is
A. $6 \mu F$
B. $2 \mu F$
C. $3 \mu F$
D. $4 \mu F$

Answer: $4 \mu F$

- Watch Video Solution

