©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KCET PREVIOUS YEAR PAPERS

SOLVED PAPER 2011

Physics

1. If C be the capacitance and V be the electric potential ,then the dimensional formula of
$C V^{2}$ is
A. $M^{1} L^{2} T^{-2} A^{\circ}$
B. $M^{1} L^{1} T^{-2} A^{-1}$
C. $M^{0} L^{1} T^{-2} A^{\circ}$
D. $M^{1} L^{-3} T^{1} A^{-1}$

Answer: A

D Watch Video Solution
2. The displacement-time graphs of two moving particles makes anlges of 30° and 45°
with the X -axis.The ratio of their velocities is

A. $\sqrt{3}: 2$
B. $1: 1$
C. 1:2
D. $1: \sqrt{3}$

Answer: D

D Watch Video Solution

3. Block A of mass 2 kg is placed over block B of mass 8 kg . The combination is placed over a rough horizonatal surface .Cofficient of friction between B and the floor is 0.5
.Coefficient of friction berween A and B is 0.4
.A horizontal force of 10 N is applied on block B.The force of friction between A and B is
$\left(\mathrm{g}=10 \mathrm{~m} s^{-2}\right)$

A. 100 N
B. 40 N
C. 50 N
D. zero

Answer: D

D Watch Video Solution
4. The height y and the distance x along the horizontal plane of a prohectile on a certain planet (with no surrounding atmosphere) are given by $\mathrm{y}=8 \mathrm{t}-5 t^{2}$ meter and $\mathrm{x}=6 \mathrm{t}$ meter, where t is in seconds.The velocity with which the projectile is projected is
(Acceleration due to gravity $=9.8 \mathrm{~m} \mathrm{~s}^{-2}$)
A. $6 \mathrm{~m} s^{-1}$
B. $8 \mathrm{~m} s^{-1}$
C. $10 \mathrm{~m}^{-1}$

D. $14 \mathrm{~m}^{-1}$

Answer: C

D Watch Video Solution

5. A body of mass 5 kg is thrown vertically up
with a kinetic energy of 490 J.The height at which the kinetic energy of the body becomes half of the origibnal value is
A. 5 m
B. 2.5 m
C. 10 m
D. 12.5 m

Answer: A

D Watch Video Solution

6. A solid sphere of mass m rolls down an inclined plane without slipping from rest at the top of an inclined plane.The linear speed of the sphere at the bottom of the inclined
plane is v. The kinetic energy of the sphere at the bottom is
A. $\frac{1}{2} m v^{2}$
B. $\frac{5}{3} m v^{2}$
C. $\frac{2}{5} m v^{2}$
D. $\frac{7}{10} m v^{2}$

Answer: D

- Watch Video Solution

7. Two satellites of mass m and $9 m$ are orbiting

a planet in orbits of radius R.Their periods of revolution will be in the ratio of
A. $9: 1$
B. $3: 1$
C. $1: 1$
D. $1: 3$

Answer: C

D Watch Video Solution
8. The following four wires of length L and
radius r are made of the same material .Which
of these will have the largest extension,when
the same tension is applied?
A. $\mathrm{L}=100 \mathrm{~cm}, \mathrm{r}=0.2 \mathrm{~mm}$
B. $L=200 \mathrm{~cm}, r=0.4 \mathrm{~mm}$
C. $\mathrm{L}=300 \mathrm{~cm}, \mathrm{r}=0.6 \mathrm{~mm}$
D. $\mathrm{L}=400 \mathrm{~cm}, \mathrm{r}=0.8 \mathrm{~mm}$

Answer: A
9. The resultant of two forces acting an angle of 120° is 10 kg wt and is perpendicular to one of the forces. That force is
A. $1-\sqrt{3} \mathrm{~kg}$ wt
B. $20 \sqrt{3} \mathrm{~kg}$ wt
C. 10 kg wt

$$
\text { D. } \frac{10}{\sqrt{3}} k g w t
$$

Answer: D
10. Eight equal drops of water are falling through air with a steady velocity of $10 \mathrm{cms}^{-1}$.If the drops combine to form a single drop big in size,then the terminal velocity of this big drop is
A. $40 \mathrm{~cm}^{-1}$
B. $10 \mathrm{~cm} S^{-1}$
C. $30 \mathrm{~cm} \mathrm{~s}^{-1}$
D. $80 \mathrm{~cm}^{-1}$

Answer: A

D Watch Video Solution

11. Two capillary tubes of different diameters are dipped in water.The rise of water is
A. The same in both tubes
B. Greater in the tube of larger diameter
C. Greater in the tube of smaller diameter
D. Independent of the diameter of the tube

Answer: C

- Watch Video Solution

12. A perfect gas at $27^{\circ} \mathrm{C}$ uis heated at constant pressure so as to double its volume
.The increase in temprature of the gas will be
A. $600^{\circ} \mathrm{C}$
B. $327^{\circ} \mathrm{C}$
C. $54^{\circ} \mathrm{C}$
D. $300^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

13. Three identical rods A, B and C are placed end to end. A temperature difference is maintained between the free ends of A and C.

The thermal conductivity of B is thrice that of
C and half of that of A. The effective thermal conductivity of the system is (K_{A} is the thermal conductivity of rod A).
A. $\frac{1}{3} K_{A}$
B. $3 K_{A}$
C. $2 K_{A}$
D. $\frac{2}{3} K_{A}$

Answer: A

D Watch Video Solution

14. The quantities of heat required to raise the tempratures of two copper spheres of radii r_{1} $r_{2}\left(r_{1}=1.5 r_{2}\right)$ through 1 K are in the ratio of
A. $\frac{27}{8}$
B. $\frac{9}{4}$
C. $\frac{3}{2}$
D. 1

Answer: A

D Watch Video Solution
15. Which one of the following is $v_{m}-T$ graph for perfectly black body ? v_{m} is the frequency of radition with maximum intensity.

T is the absolute temperature

A. A
B. B
C. C
D. D

Answer: C

D Watch Video Solution

16. A particle executing a simple harmonic motion has a period of 6 sec . The time taken by
the particle to move from the mean position to half the amplitude is
A. $\frac{3}{2} \mathrm{sec}$
B. $\frac{1}{2} \mathrm{sec}$
C. $\frac{3}{4} \mathrm{sec}$

D. $\frac{1}{4} \mathrm{sec}$

Answer: B

D Watch Video Solution

17. The equation of a wave is given by
$y=10 \sin \left(\frac{2 \pi}{45} t+\alpha\right)$
If the displacement is 5 cm at $\mathrm{t}=0$, then the total phase at $\mathrm{t}=7.5 \mathrm{sec}$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. π

Answer: B

D Watch Video Solution

18. Two tuning forks, A and B produce notes of
frequencies 258 Hz and $262 \mathrm{~Hz} . A n$ unknown
note sounded with A produces certain beats.When the same note is sounded with B
,th beat frequeny gets doubled.The unknown

frequency

A. 250 Hz
B. 252 Hz
C. 254 Hz
D. 256 Hz

Answer: C

- Watch Video Solution

19. A wire under tension vibrates with a
fundamental frequency of 600 Hz .If the length
of the wire is doubled,the radius is halved and
the wire is made to vibrate under one-ninth
the tension.Then the fundamental frequency
will become
A. 200 Hz
B. 300 Hz
C. 600 Hz
D. 400 Hz

- Watch Video Solution

20. Faintest stars are called
A. Zero magnitude stars
B. Second magniture stars
C. Sixth magnitude stars

D. Dwarfs

21. Wavelength of given light waves in air and in a medium are $6000 \AA$ and $4000 \AA$ respectively the critical angle is

> A. $\tan ^{-1}\left(\frac{2}{3}\right)$
> B. $\tan ^{-1}\left(\frac{3}{2}\right)$
> C. $\sin ^{-1}\left(\frac{2}{3}\right)$
> D. $\sin ^{-1}\left(\frac{3}{2}\right)$
22. The time required for the light to pass
through a glass slab (refractive index=1.5) of thickness 4 mm is
(C=3 $\times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$,speed of light in free space)
A. $10^{-11} \mathrm{sec}$
B. $2 \times 10^{-11} \mathrm{sec}$
C. $2 \times 10^{+11} \mathrm{sec}$
D. $2 \times 10^{-5} \mathrm{sec}$

Answer: B

- Watch Video Solution

23. A prism having refractive index 1.414 and refracting angle 30° has one of the refracting
sufraces silvered .A beam of light incident on
the other refracting surface will retrace its path, if the angle of incidence is
A. 0°
B. 30°
C. 60°

D. 45°

Answer: D

D Watch Video Solution

24. A planoconvex lens has a maximum
thickness of 6 cm . When placed On a horizontal table with the curved surface in contact with the table surface, the apparent depth of the bottommost point of the lens is
found to be 4 cm . If the lens is inverted such
that the plane face of the lens is in contact with the surface of the table, the apparent depth of the center of the plane face is found to be $\left(\frac{17}{4}\right) c m$. The radius of curvature of the lens is
A. 68 cm
B. 75 cm
C. 128 cm
D. 34 cm

Answer: D

D Watch Video Solution

25. Two thin lenses have a combined power of
+9 D.When they are sparated by a distance of

20 cm .
Their equivalent power becomes $+\frac{27}{5} D$.Their individual powers (in diopters)are
A. 1,8
B. 2,7

C. 3,6

D. 4,5

Answer: C

- Watch Video Solution

26. Wavefront is the locus of all points, where
the particles of the medium vibrate with the
same
A. Phase

B. Amplitude

C. Frequency

D. Period

Answer: A

- Watch Video Solution

27. Two monochromatic light waves of amplitudes 3 A and 2 A interfering at a point
have a phase difference of 60°. The intensity at that point will be proportional to
A. $5 A^{2}$
B. $13 A^{2}$
C. $7 A^{2}$
D. $19 A^{2}$

Answer: D

D Watch Video Solution

28. Consider the following statements in case of young's double slit experiment.
(1)A slit S is necessary if we use an ordinary
extended source of light.
(2)A slit S is not needed if we use an ordinary but well collimated beam of light.
(3)A slit S is not needed if We use a spatially
coherent source of light. Which of the above statements are correct?
A. (1),(2) and (3)
B. (1) and (2)
C. (2) and (3)
D. (1) and (3)

- Watch Video Solution

29. A parallel beam of light of wavelength 6000 Å gets diffracted by a single slit of width
0.3 mm.The angular position of the first minima of diffracted light is
A. $2 \times 10^{-3} \mathrm{rad}$
B. $3 \times 10^{-3} \mathrm{rad}$
C. $1.8 \times 10^{-3} \mathrm{rad}$
D. $6 \times 10^{-3} \mathrm{rad}$

D Watch Video Solution

30. The critical angle of a certain medium is $\sin ^{-1}\left(\frac{3}{5}\right)$

The polarizing angle of the medium is
A. $\sin ^{-1}\left(\frac{4}{5}\right)$
B. $\tan ^{-1}\left(\frac{5}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{4}\right)$
D. $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: B

D Watch Video Solution

31. Two identical charged spheres of material density ρ, suspended from the same point by inextensible strings of equal length make an angle θ between the string. When suspended in a liquid of density σ the angle θ remains the same. The dielectric constant K of the liquid is
A. $\frac{\rho}{\rho-\sigma}$
B. $\frac{\rho-\sigma}{\rho}$
C. $\frac{\rho}{\rho+\sigma}$
D. $\frac{\rho+\sigma}{\rho}$

Answer: A

- Watch Video Solution

32. The electric field at a point due to an electric dipole,on an axis inclined at an angle $\theta\left(<90^{\circ}\right)$
to the dipole axis, is perpendicular to the dipole axis , if the angle θ is

> A. $\tan ^{-1}(2)$
> B. $\tan ^{-1}\left(\frac{1}{2}\right)$
> C. $\tan ^{-1}(\sqrt{2})$
> D. $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Answer: C

D Watch Video Solution

33. In the circuit shown ,the currents i_{1} and i_{2}
are

$$
\begin{aligned}
& \text { A. } i_{l}=1.5 \mathrm{~A}, i_{2}=0.5 \mathrm{~A} \\
& \text { B. } i_{1}=0.5 \mathrm{~A}, i_{2}=1.5 \mathrm{~A} \\
& \text { C. } i_{l}=\mathrm{IA}, i_{2}=3 \mathrm{~A} \\
& \text { D. } i_{1}=3 \mathrm{~A}, i_{2}=1 \mathrm{~A}
\end{aligned}
$$

Answer: B

D View Text Solution
34. In the given network, the value of C, so that an equivalent capacitance between A and B is $3 \mu F$,is

A. $\frac{1}{5} \mu F$
B. $\frac{31}{5} \mu F$

C. $48 \mu F$

D. $36 \mu F$

Answer: C

- Watch Video Solution

35. A conductor wire having 10^{29} free electrons $/ m^{3}$ carries a current of 20 A.If the cross-section of the wire is $1 \mathrm{~mm}^{2}$, then the drift velocity of electrons will be (e= $1.6 \times 10^{-19} C$)
A. $1.25 \times 10^{-4} \mathrm{~ms}^{-1}$
B. $1.25 \times 10^{-3} m S^{-1}$
C. $1.25 \times 10^{-5} \mathrm{~ms}^{-1}$
D. $6.25 \times 10^{-3} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

36. A resistor has a colour code of green ,blue,brown and silver .What is its resistance?
A. $56 \Omega \pm 5 \%$
B. $560 \Omega \pm 10 \%$
C. $560 \Omega \pm 5 \%$
D. $5600 \Omega \pm 10 \%$

Answer: B

D Watch Video Solution

37. The voltage V and current I graphs for a conductor at two different tempratures T_{1} and T_{2} are shown in the figure . The relation
between T_{1} and T_{2} is

A. $T_{1}>T_{2}$
B. $T_{1}<T_{2}$
C. $T_{1}=T_{2}$
D. $T_{1}=\frac{1}{T_{2}}$

Answer: A

- Watch Video Solution

38. Consider the following statement regarding the network shown in the figure.

(1)The equivalent resistance of the network
between points A and B independent of value of G.
(2)The equivalent resistance of the network between points A and B is $\frac{4}{3} R$.
(3)The current through G is zero.Which of the above statements is/are true?
A. (1)alone
B. (2)alone
C. (2) and (3)
D. (1),(2) and (3)

- Watch Video Solution

39. The torque required to hold a small circular coil of 10 turns, area $1 \mathrm{~mm}^{2}$ and crying a current of $\left(\frac{21}{44}\right) \mathrm{A}$ in the middle of a long solenoid of 10^{3} turns $/ \mathrm{m}$ carrying a current of 2.5 A, with its axis perpenducular to the axis of the solenoid is

$$
\text { A. } 1.5 \times 10^{-6} \mathrm{Nm}
$$

B. $1.5 \times 10^{-8} \mathrm{Nm}$
C. $1.5 \times 10^{+6} \mathrm{Nm}$
D. $1.5 \times 10^{+8} \mathrm{Nm}$

Answer: B

- Watch Video Solution

40. A particle of charge e and mass m moves
with a velocity v in a magnetic field B applied
perpendicular to the motion of the particle
.The radius r of its path in the field is
A. $\frac{m v}{B e}$
B. $\frac{B e}{m v}$
C. $\frac{e v}{B m}$
D. $\frac{B v}{e m}$

Answer: A

D Watch Video Solution

41. A neutron, a proton, an electron and an
α-particle enter a region of uniform
magnetic field with equal velocities. The
magnetic field is perpendicular to the paper and directed into it. The tracks of particles are labeled in Fig. 1.132. The neutron follows the track

A. A
B. B
C. C
D. D

Answer: D

- Watch Video Solution

42. The deflection in a moving coil galvanometer is reduced to half when it is
shunted with a 40Ω coil.The resistance of the galvanometer is
А. 80Ω
B. 40Ω
C. 20Ω
D. 15Ω

Answer: B

- Watch Video Solution

43. A current of $\left(\frac{2}{\sqrt{3}}\right)$ A produces a deflection of 60° in a tangent
galvanometer.The reduction factor is
A. $\left(\frac{2}{\sqrt{3}}\right)$ A
B. $\left(\frac{2}{3}\right) \mathrm{A}$
C. 2A
D. $\left(\frac{3}{2}\right) A$

Answer: B
44. In an A.C. Circuit ,V and I are given by $V=150$ \sin (150t) volt and $\mathrm{I}=150 \sin \left(150 t+\frac{\pi}{3}\right)$ ampere.The power dissipated in the circuit is
A. 106 W
B. 150 W
C. 5625 W
D. zero

Answer: C

- Watch Video Solution

45. In the series L-C-R circuit shown ,the impedance is

A. 200Ω
B. 100Ω
C. 300Ω
D. 500Ω

Answer: D

D Watch Video Solution

46. The energy stored in an inductor of self-
inductance L henry carrying a current of I ampere is
A. $\frac{1}{2} L^{2} I$
B. $\frac{1}{2} L I^{2}$
C. $L I^{2}$
D. $L^{2} I$

- Watch Video Solution

47. A transformer works on the principle of
A. Self induction
B. Electrical inertia
C. Mutual induction
D. Magnetic effect of the electrical current

Answer: C
48. Flash spectrum confirms a/an
A. Total solar eclipse
B. Iunar eclipse
C. Earthquake
D. Magnetic storm

Answer: A
49. The photoelectric threshold wavelength
for silver in λ_{0}.The energy of the electron ejected from the surface of silver by an incident wavelength $\lambda\left(\lambda<\lambda_{0}\right)$ will be
A. $\mathrm{hc}\left(\lambda_{0}-\lambda\right)$
B. $\frac{h c}{\lambda-\lambda}$
C. $\frac{h}{C}\left(\frac{\lambda_{\lambda}}{\lambda \lambda_{0}}\right)$
D. hc $\frac{\lambda-\lambda}{\lambda \lambda_{0}}$
50. Rutherford's atomic model could account for
A. Stability of atoms
B. Origin of spectra
C. The positively chaged central core of an
atom
D. Concept of stationary orbits
51. When an electron jumps from the orbit $\mathrm{n}=2$
to $n=4$,then wavelength of the radiations
absorbed will be
(R is Ryberg's constant)
A. $\frac{16}{3 R}$
B. $\frac{16}{5 R}$
C. $\frac{5 R}{16}$
D. $\frac{3 R}{16}$

Answer: A

D Watch Video Solution

52. The thermonuclear reaction of hydrogen
inside the stars is taking place by a cycle of operations. The particular element which acts as catalyst is
A. Nitrogen
B. Oxygen
C. helium
D. Carbon

Answer: D

- Watch Video Solution

53. The ration of minimum wavelengths of Lyman and Balmer series will be
A. 1.25
B. 0.25
C. 5

D. 10

Answer: B

D Watch Video Solution

54. The fraction of the initial number of radioactive nuclei which remain undercayed after half of a half-life of the radioactive sample is

$$
\text { A. } \frac{1}{4}
$$

> B. $\frac{1}{2 \sqrt{2}}$
> C. $\frac{1}{2}$
> D. $\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

55. 1 curie represents
A. 3.7×10^{7} disintergations per second
B. 3.7×10^{10} disintegrations per second

C. 10^{6} disintegration per second

D. 1 disintegration per second

Answer: B

- Watch Video Solution

56. An n-p-n transistor can be considered to be equivalent to two diodes, connected. Which of the following figures is the correct one?
A.

Answer: B

- Watch Video Solution

57. In the case of forward biasing of $P N$ junction, which one of the following figures
correctly depicts the direction of flow of carriers?

Answer: D

- Watch Video Solution

58. An electron of mass m_{e} and a proton of mass m_{p} are moving with the same speed.The ration of their de-Broglie's wavelengths $\frac{\lambda_{e}}{\lambda_{p}}$ is
A. 1
B. 1836
C. $\frac{1}{1836}$
D. 918

Answer: B
59. The output of given logic circuit is

A. $A(B+C)$
B. $A(B . C)$
C. $(A+B) \cdot(A+C)$
D. $A+B+C$

Answer: C

D Watch Video Solution

60. If the scattering intensity of a liquid is 8 units at a wavelength of 500 nm,then the
scattering intensity at a wavelength of 400 nm
will be approximately
A. 13 units
B. 16 units
C. 20 units
D. 24 units

Answer: C

- Watch Video Solution

