

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

MEAN VALUE THEOREMS

Others

1. Using Lagranges mean value theorem, show that sinx < x for x > 0.

Watch Video Solution

2. Using mean value theorem, prove that $\tan x > x$ for all $x\left(0,\frac{\pi}{2}\right)$.

Watch Video Solution

3. Using Lagranges mean value theorem, find a point on the curve $y = \sqrt{x-2}$ defined on the interval [2,3], where the tangent is parallel to the chord joining the end points of the curve.

Watch Video Solution

4. Verify Lagranges mean value theorem for the following functions on the indicated intervals.

$$f(x) = x - 2\sin x on[-\pi,\pi]$$

$$f(x) = 2\sin x + \sin 2x on[0, \pi]$$

$$f(x) = (\log_e xon[1, 2])$$

$$f(x) = ig\{2 + x^3, \;\; ext{if} \;\; x \leq 13x, x > 0on[-1,2]$$

5. Verify lagranges mean value theorem for the function f(x) = (x-3)(x-6)(x-9)on[3,5]

6. Verify lagranges mean value theorem for the following functions on the indicated intervals.

Also, find a point c in the indicated interval:

$$f(x)=x(x-2)on[1,3]$$

$$f(x)=x(x-1)(x-2)oniggl[0,rac{1}{2}iggr].$$

7. Find the point on the curve $y=\cos x-1, x\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ at which the tangent in parallel to the x-axis.

8. It is given that the Rolles' theorem holds for the function $f(x)=x^3+bx^2+cx, x\in [1,2]$ at the point $x=\frac{4}{3}$. Find the values of b and c

Watch Video Solution

9. Using Lagranges mean value theorem, prove

that
$$\dfrac{b-a}{b} < \log \left(\dfrac{b}{a}\right) < \dfrac{b-a}{a}$$
 ,where

Watch Video Solution

10. Let fandg be differentiable on [0,1] such that f(0)=2, g(0)=0, f(1)=6andg(1)=2. Show that there exists $c\in (0,1)$ such that f'(c)=2g'(c).

11. If the value of c prescribed inRolles theorem for the function $f(x)=2x(x-3)^n$ on the interval $\left[0,2\sqrt{3}\right]is\frac{3}{4}$, write the value of n (a positive integer).

12. Using Lagranges mean value theorem, prove that

$$(b-a)\mathrm{sec}^2\,a < (an b - an a) < (b-a)\mathrm{sec}^2\,b$$
 , where $0 < a < b < rac{\pi}{2}$

13. It is given that for the function $f(x)=x^3-6x^2+ax+bon[1,3]$, Rolles theorem holds with $c=2+rac{1}{\sqrt{3}}.$ Find the values of aandb , if f(1)=f(3)=0.

14. Verify Rolles theorem for each of the following functions on the indicated intervals:

$$f(x) = x(x+3)e^{-rac{x}{2}}on[\,-3,0]$$

$$f(x) = e^x(\sin x - \cos x)on\left[rac{\pi}{4}, rac{5\pi}{4}
ight]$$

15. Find a point on the curve $y=x^2+x$, where the tangent is parallel to the chord joining (0,0) and (1,2).

16. find the percentage error in calculating the volume of the cubical box if an error of $1\,\%$ is made in measuring the length of the edges of the cube.

17. Verify Rolles theorem for the function $f(x) = x^2 - 5x + 6$ on the interval [2,3].

18. Discuss the applicability of Rolles theorem on function the

$$f(x) = \left\{ egin{array}{ll} x^2+1 & & ext{if} \quad 0 \leq x \leq 1 \ 3-x & & ext{if} \quad 1 < x \leq 2 \end{array}
ight.$$

Watch Video Solution

19. Verify Rolles theorem for the function $f(x) = (x-a)^m (x-b)^n$ on the interval [a,b], where m, n are positive integers.

Watch Video Solution

20. Verify Rolls theorem for the function $f(x) = x^3 - 6x^2 + 11x - 6$ on the interval [1, 3].

Watch Video Solution

21. Verify Rolle's theorem for each of the following functions on indicated intervals;

$$f(x) = \sin^2 x$$

$$0 \le x \le \pi$$

$$f(x) = \sin x + \cos x - 1$$

on
$$\left[0, \frac{\pi}{2}\right]$$

$$f(x) = \sin x - \sin 2x$$
 on $[0,\pi]$

/atch Video Solution

22. Verify Rolle theorem for the function $f(x)=\log\Bigl\{rac{x^2+ab}{x(a+b)}\Bigr\}on[a,b],$ where 'O

23. Differentiate ysiny = x+y with respect to x

24. Differentiate xy = siny with respect to x

25. Differentiate $y = x \sin y$ with respect to x

Watch Video Solution

26. Differentiate $y\cos x = x$ with respect to x

Watch Video Solution

27. Verify Rolles theorem for the function $f(x) = x^2 - 5x + 6$ on the interval [2, 3].

watch video Solution

28. Verify Rolles theorem for the function $f(x) = x(x-3)^2, \ 0 \le x \le 3$.

29. Verify Rolles theorem for the function $f(x) = x^3 - 6x^2 + 11x - 6$ on the interval [1, 3].

30. Find the second order derivative of tanx= x+ y with respect to x

Watch Video Solution

31. Verify Rolles theorem for the function $f(x)=\sqrt{4-x^2}$ on $[\,-2,\,\,2]$.

Watch Video Solution

32. Find the second order differentiation of cotx with respect to x.

33. Find the derivative of sinxcosx=x+y with respect to x

34. Verify Rolles theorem for the function:

$$f(x)=\sin x+\cos x-1$$
 on $[0,\;\pi/2]$.

35. Verify Rolles theorem for the function: $f(x) = \sin x - \sin 2x$ on $[0, \pi]$

Watch Video Solution

36. Find the differentiation for the function: $f(x) = (x+3)e^{-x}$.

37. Find dy/dx for the function: $f(x) = e^x(\sin x - \cos x) .$

38. Find the derivative of the function $f(x) = x^3 - 6x^2 + ax + b$

39. Find the differentiation for the function f given by $f(x) = x^3 + bx^2 + ax$

40. Find the derivative of y=cosx-1 with respect to

X

+cosx

41. Find the derivative for the function $f(x) = 3 + (x-2)^{2/3}$ with respect to x

42. Find the second order derivative of y= sinx

43. Find f '(x) If
$$f(x) = \frac{\sin x}{x}$$

44. Find the derivative for the function $f(x) = 2x^2 - 5x + 3$ with respect to ${\sf x}$

45. Discuss the applicability of Rolles theorem for the function $f(x)=x^{2/3}$ on $[-1,\ 1]$

46. Discuss the applicability of Rolle's theorem for the function $f(x)=\{-4x+5,0\leq x\leq 1,2x-3,1\leq x\leq 2.$

47. Verify Rolles theorem for function $f(x) = x^2 - 8x + 12$ on $[2,\ 6]$

48. Verify Rolles theorem for function $f(x) = x^2 - 4x + 3$ on $[1,\ 3]$

49. Verify Rolles theorem for function $f(x) = (x-1)(x-2)^2 ext{ on } [1,\ 2]$

50. Verify Rolles theorem for function $f(x) = x(x-1)^2 ext{ on } [0,\ 1]$

51. Verify Rolles theorem for function $f(x) = ig(x^2-1ig)(x-2ig)$ on $[-1,\ 2]$

52. Verify Rolles theorem for function $f(x) = x(x-4)^2$ on $[0,\ 4]$

53. Verify Rolles theorem for function $f(x) = x(x-2)^2$ on $[0,\ 2]$

54. Verify Rolles theorem for function $f(x) = x^2 + 5x + 6$ on [-3, -2]

55. Verify Rolles theorem for function $f(x) = \cos 2(x - \pi/4)$ on $[0, \ \pi/2]$.

56. Find the second oder derivative for function $f(x) = \sin 2x$ with respect to x

57. find the second order derivative for function $f(x) = \cos 2x$ with respect to x

Watch Video Solution

58. Find the derivative for function $f(x) = e^x \sin x$ with respect to x

Watch Video Solution

59. Find the derivative for function $f(x) = e^x \cos x$ with respect to x

60. Find the second order derivative for function

 $f(x) = \cos 2x$ with respect to x

61. Find the derivative for function $f(x) = \frac{\sin x}{e^x}$ with respect to x

62. Find the second order derivative for function $f(x) = \sin 3x$ with respect to x

Watch Video Solution

63. Find the derivative for function $f(x) = e^1 - x^2$ with respect to x

64. Find the derivative for function $f(x) = \log(x^2 + 2) - \log 3$ with respect to x

65. Find the derivative for function $f(x) = \sin x + \cos x$ with respect to x

66. Find the derivative for function $f(x) = 2\sin x + \sin 2x$ with respect to x

67. Find the derivative for function f(x) = x/2 - sinxcosx with respect to x

Watch Video Solution

68. Find the second order derivative for function f(x) = 6x - 4 with respect to x

Watch Video Solution

69. Find the derivative for function $f(x) = 4^{\sin x}$

with respect to x

70. Find the second order derivative for function

$$f(x) = x^2 - 5x + 4$$
 with respect to ${\sf x}$

71. Find the derivative for function xy = tan(x+y) with respect to x

72. Verify Rolles theorem for the function:

$$f(x) = \sin x - \sin 2x$$
 on $[0, \pi]$

73. find the second order derivative of $y=16-x^2$ with respect to x .

74. At what points on the curve $y=x^2$ on

 $[\;-2,\;2]$ is the tangent parallel to x-axis?

75. At what points on the curve $y=e^1-x^2$ on

$$[\,-1,\ 1]$$
 is the tangent parallel to x-axis?

76. At what points on the curve y=12(x+1)(x-2) is the tangent parallel to x-axis on $[\,-1,\,\,2]$.

77. If $f\colon [-5,\ 5] o R$ is differentiable and if f'(x) doesnt vanish anywhere, then prove that $f(-5) \neq f(5)$.

78. Examine if Rolle's theorem is applicable to any one of the following functions: f(x)=[x] for $x\in[5,\ 9]$ (ii) f(x)=[x] for $x\in[-2,\ 2]$ Can you say something about the converse of Rolle's Theorem from these functions?

79. It is given that the Rolles theorem holds for the function $f(x) = x^3 + bx^2 + cx$, $x \in [1, 2]$ at the point $x=rac{4}{3}$. Find the values of b and c .

Watch Video Solution

80. Verify lagranges mean value theorem for the function f(x) = (x-3)(x-6)(x-9)on the interval [3, 5].

Watch Video Solution

81. Verify Lagranges mean value theorem for f(x)=x(x-1) on $[1,\ 2]$ on the indicated intervals. Also, find a point c in the indicated interval:

Watch Video Solution

82. Verify Lagranges mean value theorem for f(x) = x(x-1)(x-2) on $\left[0, \ \frac{1}{2}\right]$

Watch Video Solution

83. Find the derivative of $y = \sqrt{x-2}$ with respect to x

Watch Video Solution

84. Verify Lagranges mean value theorem for $f(x) = x - 2\sin x$ on $[-\pi, \ \pi]$

85. Verify Lagranges mean value theorem for $f(x) = 2\sin x + \sin 2x$ on $[0, \pi]$

86. Find the second order derivative of $f(x) = \log x$ with respect to x

87. Find the second order derivative of tanx with respect to x

88. Find the derivative of $\cos(x + y) = y$ with respect to x.

Watch Video Solution

89. Find the derivative of sin(x + y) = 80 with respect to x

90. Find the derivative of cot(x+y) = xy with respect to x.

91. Find the second order derivative of $y = \sin x + \cos x$ with respect to x.

92. Find the derivative of tanxy = sinx with respect to x .

93. Find the second order derivative for function $f(x) = x^2 - 1$ with respect to x

Watch Video Solution

94. Find the derivative for function $f(x) = x^3 - 2x^2 - x + 3$ with respect to x

95. Find the derivative for function f(x) = x(x-1) with respect to x

96. Find the derivative for function $f(x) = x^2 - 3x + 2$ with respect to x

97. Find the derivative for function $f(x) = 2x^2 - 3x + 1$ with respect to x

98. Find the derivative for function $f(x) = x^2 - 2x + 4$ with respect to x

Watch Video Solution

99. Find the second order derivative for function $f(x) = 2x - x^2$ with respect to x

Watch Video Solution

f(x) = (x-1)(x-2)(x-3) with respect to x

100. Find the derivative for function

101. Find the derivative for function
$$f(x) = \sqrt{25 - x^2}$$
 with respect to x

102. Find the second order derivative for function $f(x) = \tan^{-1} x$ with respect to x

103. Find the derivative for function $f(x) = x + rac{1}{x}$ with respect to x

Watch Video Solution

104. Find the derivative for function $f(x) = x(x+4)^2$ with respect to x

Watch Video Solution

105. Find the derivative for function $f(x) = \sqrt{x^2 - 4}$ with respect to x

106. Find the second order derivative for function

$$f(x) = x^2 + x - 1$$
 with respect to x

107. Find the second order derivative for function

$$f(x) = \sin x - \sin 2x - x$$
 with respect to x

108. Find the derivative for function $f(x) = x^3 - 5x^2 - 3x$ with respect to x

109. Find the derivative of $f(x) = x \cos x$ with respect to x.

110. Find the second order derivative of the function $f(x)=\frac{1}{x}$ with respect to x .

111. Find the dy/dx for the function f(x)=1/(4x-1) with respect to x.

112. Find a point on the parabola $y=(x-4)^2$, where the tangent is parallel to the chord joining (4, 0) and (5, 1).

113. Find a point on the curve $y=x^2+x$, where the tangent is parallel to the chord joining (0, 0) and (1, 2).

Watch Video Solution

114. Find a point on the parabola $y=\left(x-3
ight)^2$, where the tangent is parallel to the chord joining (3, 0) and (4, 1).

Vatch Video Solution

115. Find the derivative of $y=x^3-3x$, with respect to ${\sf x}$

116. Find the derivative of $y=x^3+1$ with respect of x .

117. Find dy/dx $x=a\cos^3 \theta$, $y=a\sin^3 \theta$

118. Find dy/dx if $y = \sin x^{\cos x}$.

Watch Video Solution

119. If $f(x) = Ax^2 + Bx + C$ then find f '(x)

Watch Video Solution

120. Find dy/dx if $y = x^x$

Watch Video Solution

121. Find dy/dx if y= xy

122. Find the derivative for the function f(x) = 2x(x-3)

123. Find the derivative for the function $f(x) = \sqrt{x^2 - 4}$ with respect to x .

124. Find dy/dx if
$$y = \sin(x+y)$$

 $3ax^2 + 2bx + c = y$ with respect to x

127. Find dy/dx if tan(x+y) = xy

128. $f(x) = a^{\sin x}$ find the derivative of the function with respect to x

130. Find
$$\frac{dy}{dx}$$
 if $y = x \log x$

131. Find the derivative for the function $f(x) = rac{x+1}{e^x}$ with respect to x

132. Find the derivative for the function f(x) = x(x-2) with respect to x

133. Find the second order derivative for the function $f(x)=x^3-3x$ with respect to ${\sf x}$

