

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

SCALAR OR DOT PRODUCT

1. If the median to the base of a triangle is perpendicular to the base,

then triangle is isosceles.

Watch Video Solution

2. If AD is the median of ABC, using vectors, prove that $AB^2 + AC^2 = 2(AD^2 + CD^2).$

3. In a triangle OAB, $\angle AOB = 90^0$. If P and Q are points of trisection of AB, prove that $OP^2 + OQ^2 = \frac{5}{9}AB^2$

4. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ , then prove that $\frac{\cos\theta}{2} = \frac{1}{2} \left| \hat{a} + \hat{b} \right| \frac{\tan\theta}{2} = \frac{1}{2} \left| \frac{\hat{a} - \hat{b}}{\hat{a} + \hat{b}} \right|$

Watch Video Solution

5. (Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

6. Prove that; If the diagonals of a quadrilateral bisect each other at right

angles, then it is a rhombus.

Watch Video Solution

7. prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides a rectangle is a rhombus.

Watch Video Solution

8. prove by vector method that the sum of the squares of the diagonals

of a parallelogram is equal to the sum of the squares of its sides.

9. prove that the diagonals of a rectangle are perpendicular if and only if

the rectangle is a square.

10. Using analytical geometry, prove that the diagonals of a rhombus are

perpendicular to each other.

Watch Video Solution

11. If
$$\left|\overrightarrow{a}\right| = a$$
 and $\left|\overrightarrow{b}\right| = b$, prove that $\left(\frac{\overrightarrow{a}}{a^2} - \frac{\overrightarrow{b}}{b^2}\right)^2 = \left(\frac{\overrightarrow{a} - \overrightarrow{b}}{ab}\right)^2$

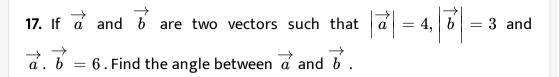
Watch Video Solution

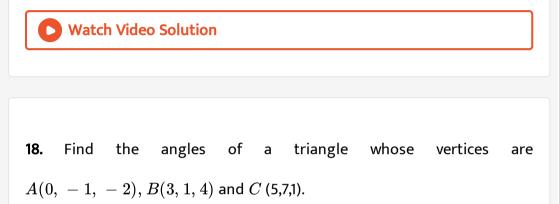
12. If
$$\overrightarrow{a} = \hat{i} - \hat{j}$$
 and $\overrightarrow{b} = -\hat{j} + 2\hat{k}$, find $\left(\overrightarrow{a} - 2\overrightarrow{b}\right)\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

13. Find the angles which the vector $\overrightarrow{a}=\hat{i}-\hat{j}+\sqrt{2}\hat{k}$ makes with the

coordinate axes.


14. Dot product of a vector with $\hat{i} + \hat{j} - 3\hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector.


Watch Video Solution

15. Find
$$\overrightarrow{a}$$
, when (i) $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$ (ii) $\overrightarrow{a} = \hat{j}$
+2 \hat{k} and $\overrightarrow{b} = 2\hat{i} + \hat{k}$ (iii) $\overrightarrow{a} = \hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 2\hat{k}$

Watch Video Solution

16. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? where: $\mathbf{i}, \overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 9\hat{j} + 2\hat{k}$ ii, $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 9\hat{j} + 2\hat{k}$ iii, $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$ iii, $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 2\hat{j} - \lambda\hat{k}$ iv, $\overrightarrow{a} = \lambda\hat{i} + 3\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + 3\hat{k}$

19. Find the projection of $\overrightarrow{b} + \overrightarrow{c}$ on \overrightarrow{a} , where $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

20. Find the values of x and y if the vectors $\vec{a} = 3\hat{i} + x\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular vectors of equal magnitude.

21. In a quadrilateral ABCD, prove that $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + 4PQ^2$, where P and Q are middle points of diagonals AC and BD.

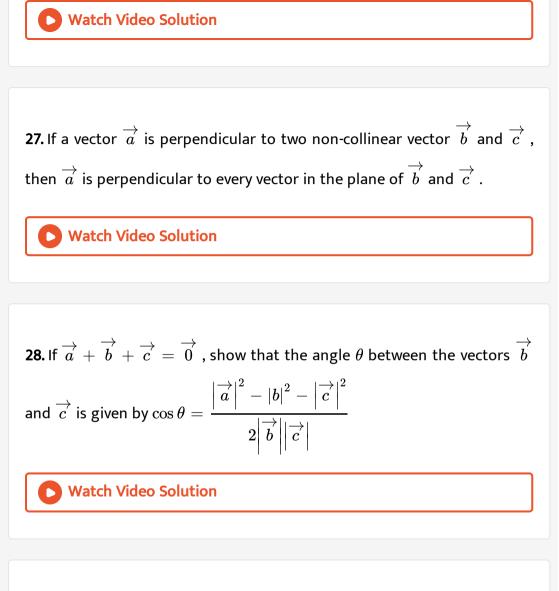
Watch Video Solution

Watch Video Solution

22. If \overrightarrow{a} and \overrightarrow{b} are two non-collinear unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$, find $\left(2\overrightarrow{a} - 5\overrightarrow{b}\right)$. $\left(3\overrightarrow{a} + \overrightarrow{b}\right)$.

23. If \overrightarrow{a} , \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{b}\right|$, then prove that $\overrightarrow{a} + 2\overrightarrow{b}$ is perpendicular to \overrightarrow{a} .

Watch Video Solution


24. If \overrightarrow{c} is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , then prove that it is perpendicular to both $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

25. If $\overrightarrow{a} \cdot \overrightarrow{a} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, what can you conclude about the vector \overrightarrow{b} ?

Watch Video Solution

26. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non coplanar vectors such that $\overrightarrow{a}, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} = 0$, then show that \overrightarrow{d} is the null vector.

29. Let
$$\overrightarrow{u}, \overrightarrow{v}$$
 and \overrightarrow{w} be vector such $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$. If $\left|\overrightarrow{u}\right| = 3, \left|\overrightarrow{v}\right| = 4$ and $\left|\overrightarrow{w}\right| = 5$, then find $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}$.

30. Let $\overrightarrow{a} = x^2\hat{i} + 2\hat{j} - 2\hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = x^2\hat{i} + 5\hat{j} - 4\hat{k}$ be three vectors. Find the values of x for which the angle between \overrightarrow{a} and \overrightarrow{b} is acute and the angle between \overrightarrow{b} and \overrightarrow{c} is obtuse.

Watch Video Solution

31. 12). Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined with the coordinate axes. (13)show that the vectors $\vec{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \vec{b} = \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \vec{c} = \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$

are mutually perpendicular unit vectors.

> Watch Video Solution

32. If
$$\overrightarrow{\alpha} = 3\hat{i} + 4\hat{j} + 5\hat{k}$$
 and $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 4\hat{k}$, then express $\overrightarrow{\beta}$ in the form of $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

33. If $\overrightarrow{p} = 5\hat{i} + \lambda\hat{j} - 3\hat{k}$ and $\overrightarrow{q} = \hat{i} + 3\hat{j} - 5\hat{k}$, then find the value of λ , so that $\overrightarrow{p} + \overrightarrow{q}$ and $\overrightarrow{p} - \overrightarrow{q}$ are perpendicular vectors.

Watch Video Solution

34. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , show that :
 $\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b} = 0, when \left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$.
Vatch Video Solution

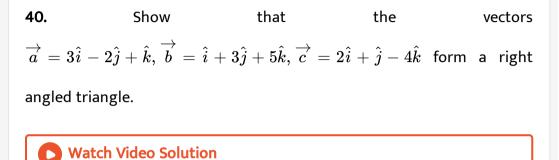
35. Show that the vectors
$$\overrightarrow{a} = \frac{1}{7} \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big), \quad \overrightarrow{b} = \frac{1}{7} \Big(3\hat{i} - 6\hat{j} + 2\hat{k} \Big), \quad \overrightarrow{c} = \frac{1}{7} \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$$

are mutually perpendicular unit vectors.

36. Let $\overrightarrow{a} = 5\hat{i} - \hat{j} + 7\hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + \lambda\hat{k}$. Find λ such that $\overrightarrow{a} + \overrightarrow{b}$ is orthogonal to $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

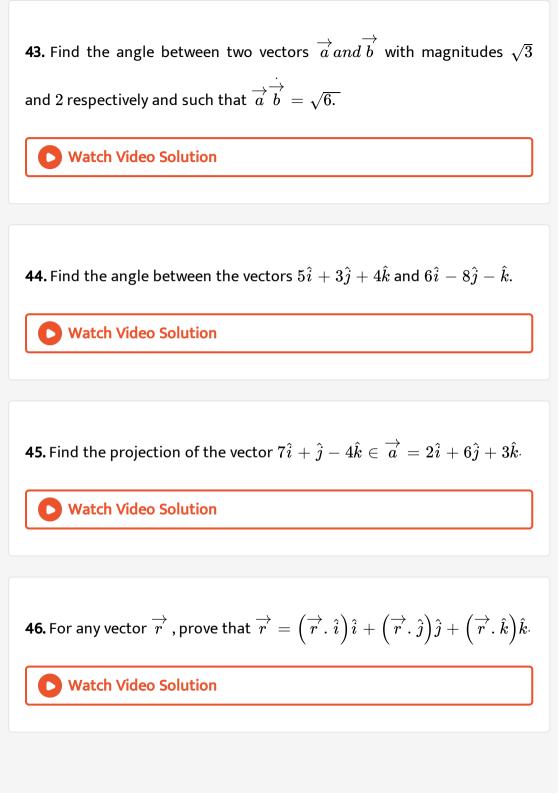
37. If \overrightarrow{a} and \overrightarrow{b} are two vectors of the same magnitude inclined at an angle of 30^0 such that $\overrightarrow{a} \overrightarrow{b} = 3$, find $|\overrightarrow{a}|, |\overrightarrow{b}|$.


Watch Video Solution

38. Decompose the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ into vectors which are parallel

and perpendicular to the vector . $\hat{i}+\hat{j}+\hat{k}$ Then the vectors are .

Watch Video Solution


39. Express $2\hat{i} - \hat{j} + 3\hat{k}$ as the sum of vector parallel and a vector perpendicular to $2\hat{i} + 4\hat{j} - 2\hat{k}$.

41. (Projection Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle ABC, show that $a = b \cos C + \cos B$ (ii) $b = \cos A + a \cos C$ (iii) $c = a \cos B + b \cos A$

Watch Video Solution

42. Prove using vectors: If two medians of a triangle are equal, then it is isosceles.

47. Find
$$\overrightarrow{a} \cdot \overrightarrow{b}$$
 when $\overrightarrow{a} = 2\hat{i} + 2\hat{j} - \hat{k}and \overrightarrow{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}$,
 $\overrightarrow{a} = (1, 1, 2)and \overrightarrow{b} = (3, 2, -1)$

48. Find the value of λ so that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}and\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other.

Watch Video Solution

49. Find the value of p for which the vectors $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are (i) perpendicular (ii) parallel

Watch Video Solution

50. Find the values of 'a' which the vector $ec{r}=ig(a^2-4ig)\hat{i}+2\hat{j}-ig(a^2-9ig)\hat{k}$ makes acute angle with the

coordinate axes.

51. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vector, prove that
 $\left|\overrightarrow{a} - \overrightarrow{b}\right|^2 + \left|\overrightarrow{b} - \overrightarrow{c}\right|^2 + \left|\overrightarrow{c} - \overrightarrow{a}\right|^2 \le 9.$
Watch Video Solution
52. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are mutually perpendicular unit vectors, find
 $\left|2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|.$

Watch Video Solution

I

53. Find the value of c for which the vectors $\overrightarrow{a} = (c \log_2 x)\hat{i} - 6\hat{j} + 3\hat{k}$ and $\overrightarrow{b} = ((\log)_2 x)\hat{i} + 2\hat{j} + (2c(\log)_2 x)\hat{k}$ make an obtuse angle for any $x \in (0, \infty)$.

54. Let $\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} . \overrightarrow{d} =15.

55. Dot products of a vector with vectors $3\hat{i} - 5\hat{k}, 2\hat{i} + 7\hat{j}and\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ are respectively -1, 6 and 5. Find the vector.

Watch Video Solution

56. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors such that $\left|\overrightarrow{a}\right| = 1, \left|\overrightarrow{b}\right| = 2and\left|\overrightarrow{c}\right| = 3$. If the projection of \overrightarrow{b} along a is equal to the projection of \overrightarrow{c} along \overrightarrow{a} and $\overrightarrow{b}, \overrightarrow{c}$ are perpendicular to each other, find $\left|3\overrightarrow{a}-2\overrightarrow{b}+2\overrightarrow{c}\right|$.

57. (Cosine Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle ABC, show that $\cos A \frac{b^2 + c^2 - a^2}{2bc}$ (ii) $\cos B \frac{c^2 + a^2 - b^2}{2ac}$ (iii) (i) $\cos C \frac{a^2 + b^2 - c^2}{2ab}$ Watch Video Solution

58. Prove that the altitudes of a triangle are concurrent.

Watch Video Solution

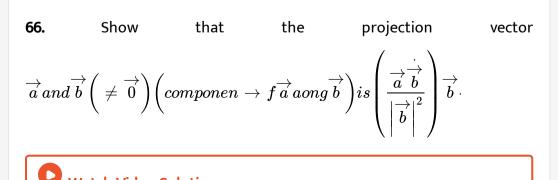
59. Find the components of a unit vector which is perpendicular to the

vectors $\hat{i}+2\hat{j}-\hat{k}and2\hat{i}-\hat{j}+2\hat{k}\cdot$

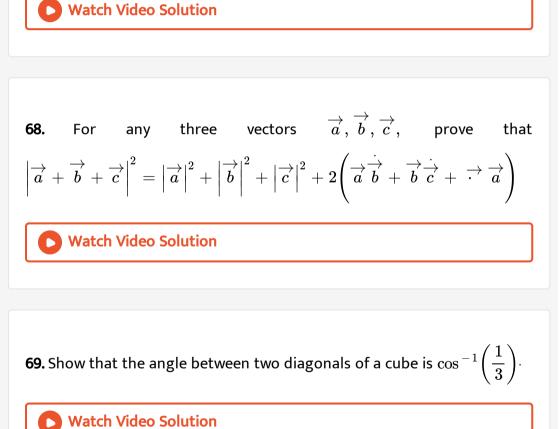
Watch Video Solution

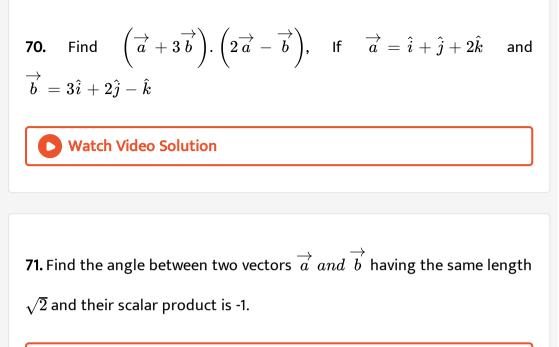
60. If a unit vector \overrightarrow{a} makes angle $\pi/3$ with $\hat{i}, \pi/4$ with \hat{j} and an acute angle θ with \hat{k} , then find the components of \overrightarrow{a} and the angle θ .

61. If $\hat{a}and\hat{b}$ are unit vectors inclined at an angle θ , then prove that $\frac{\sin\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|.$


Watch Video Solution

62. If two vectors
$$\overrightarrow{a} and \overrightarrow{b}$$
 are such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 6$, ., Find $|\overrightarrow{a} + \overrightarrow{b}| and |\overrightarrow{a} - \overrightarrow{b}|$.
Watch Video Solution


63. Find
$$\left| \overrightarrow{a} \right| and \left| \overrightarrow{b} \right|$$
, if $\left(\overrightarrow{a} - \overrightarrow{b} \right) \overrightarrow{a} + \overrightarrow{b} = 27$ and $\left| \overrightarrow{a} \right| = 2 \left| \overrightarrow{b} \right|$.


64. If two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 1$ and $\overrightarrow{a} \overrightarrow{b} = 1$, find $(3\overrightarrow{a} - 5\overrightarrow{b})2\overrightarrow{a} + 7\overrightarrow{b}$.
Watch Video Solution

65. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , prove that:
 $\left|\overrightarrow{a} + \overrightarrow{b}\right|^2 = \left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2 + 2\overrightarrow{a}\overrightarrow{b}$,
 $\left|\overrightarrow{a} - \overrightarrow{b}\right|^2 = \left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2 - 2\overrightarrow{a}\overrightarrow{b}$,
 $\left|\overrightarrow{a} + \overrightarrow{b}\right|^2 + \left|\overrightarrow{a} - \overrightarrow{b}\right|^2 = 2\left(\left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2\right)$ and
 $\left|\overrightarrow{a} + \overrightarrow{b}\right|^2 = \left|\overrightarrow{a} - \overrightarrow{b}\right|^2 \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b}$. Interpret the result geometrically.

67. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

72. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ espectively are the position vectors of points A, B, C and D then find the angle between the straight lines AB and CD. Deduce that AB and CD are collinear.

73. Let \overrightarrow{a} and \overrightarrow{b} be two vectors of the same magnitude such that the

angle between then is
$$60^0$$
 and $\overrightarrow{a} \overrightarrow{b} = 8$. Find $\left| \overrightarrow{a} \right| and \left| \overrightarrow{b} \right|$.

Watch Video Solution

74. Find
$$\left| \overrightarrow{x} \right|$$
 if for a unit vector \overrightarrow{a} , $\left(\overrightarrow{x} - \overrightarrow{a} \right) \cdot \left(\overrightarrow{x} + \overrightarrow{a} \right) = 15.$

Watch Video Solution

75. If
$$\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$$
, and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$ then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

Watch Video Solution

76. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$ find the anglebetweeen \overrightarrow{a} and \overrightarrow{b}

77. For any vector
$$\overrightarrow{a}$$
 and \overrightarrow{b} prove that $\left|\overrightarrow{a} + \overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$.

78. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} prove that $\left(\overrightarrow{a}, \overrightarrow{b}\right)^2 \leq \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2$ and hence show that $(a_1b_2 + a_2b_2 + a_3b_3)^2 \leq (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$

Watch Video Solution

79. If \overrightarrow{a} , \overrightarrow{b} , are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right|$, then prove that $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{b} .

Watch Video Solution

80. The scalar product of the vector $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector

along the sum of the vectors

 $\overrightarrow{b}=2\hat{i}+4\hat{j}-5\hat{k}$ and $\overrightarrow{c}=\lambda\hat{i}+2\hat{j}+3\hat{k}$ is equal to 1. Find the value

of λ and hence find the unit vector along \overrightarrow{b} + $\overrightarrow{\cdot}$

Watch Video Solution

81. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that \overrightarrow{a} , \overrightarrow{b} = \overrightarrow{a} , \overrightarrow{c} then show that \overrightarrow{a} = 0 or , \overrightarrow{b} = c or $\overrightarrow{a} \perp (\overrightarrow{b} - \overrightarrow{c})$.

Watch Video Solution

82. Show that the vector $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$, $3\hat{i} - 4\hat{j} - 4\hat{k}$ form the sides of a rights angled triangle.

Watch Video Solution

83. Show that the points A, B, C with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ respectively, are the vertices of a right angled triangle. Also, find the remaining angles of the triangle.

84. If with reference to a right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} , \hat{k} we have $\overrightarrow{\alpha} = 3\hat{i} - \hat{j}$, and $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$. Express $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

Watch Video Solution

85. Find the value of x for which the angle between the vectors $\vec{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} - 2\hat{j} + x\hat{k}$ is obtuse.

Watch Video Solution

86. If l, m, n are scalars and $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are vectors, prove that $\left| l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c} \right|^2 = l^2 \left| \overrightarrow{a} \right|^2 + m^2 \left| \overrightarrow{b} \right|^2 + n^2 \left| \overrightarrow{c} \right|^2 + 2 \left\{ lm\left(\overrightarrow{a}, \overrightarrow{b} \right) + m \right\}$

deduce

that

$$\left| l \overrightarrow{a} + m \overrightarrow{b} + n \overrightarrow{c} \right|^2 = l^2 \left| \overrightarrow{a} \right|^2 + m^2 \left| \overrightarrow{b} \right|^2 + n^2 \left| \overrightarrow{c} \right|^2$$
 if $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are

mutually perpendicular vectors.

Watch Video Solution

87. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular vectors of equal magniltgude, prove that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined with vectors \overrightarrow{a} , \overrightarrow{b} , and $\overrightarrow{\cdot}$ also find the angle.

Watch Video Solution

88. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors of magnitudes 3, 4 and 5 respectively. If each one is perpendicular to the sum of the other two vectors, prove

that
$$\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| = 5\sqrt{2}$$
 .

89. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ find the

value of `vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

90. Three vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$.
Evaluate the quantity
 $\mu = \overrightarrow{a} \overrightarrow{b} + \overrightarrow{b} \overrightarrow{c} + \overrightarrow{\cdot} \overrightarrow{a}$, if $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 2$.
Watch Video Solution
91. Find $\overrightarrow{a} \overrightarrow{b}$ when: $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$
Watch Video Solution

92. Find
$$\overrightarrow{a} \overrightarrow{b}$$
 when: $\overrightarrow{a} = \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{k}$

93. Find
$$\overrightarrow{a}$$
 \overrightarrow{b} when: $\overrightarrow{a} = \hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 2\hat{k}$

94. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 9\hat{j} + 2\hat{k}$

Watch Video Solution

95. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 2\hat{j} - \lambda\hat{k}$

Watch Video Solution

96. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$

97. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = \lambda \hat{i} + 3\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + 3\hat{k}$

Watch Video Solution

Watch Video Solution

99. If `vec a= i- j and vec b=- j+2k ,find (vec a-2 vec b)dot(vec a+ vec b)

100. Find the angle between the vectors
$$\vec{a}$$
 and \vec{b} where:
 $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$
Watch Video Solution
101. Find the angle between the vectors \vec{a} and \vec{b} where:
 $\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k}$ and $\vec{b} = 4\hat{i} - \hat{j} + 8\hat{k}$
Watch Video Solution
102. Find the angle between the vectors \vec{a} and \vec{b} where:
 $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 4i + 4\hat{j} - 2\hat{k}$
Watch Video Solution
103. Find the angle between the vectors \vec{a} and \vec{b} where:
 $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 4\hat{i} + 4\hat{j} - 2\hat{k}$

104. Find the angle between the vectors \overrightarrow{a} and \overrightarrow{b} where: $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j} - 2\hat{k}$

Watch Video Solution

105. Find the angle between the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} where:
 $\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}, \ \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$

Watch Video Solution

106. Find the angles which the vector $\overrightarrow{a}=\hat{i}-\hat{j}+\sqrt{2}\hat{k}$ makes with the coordinate axes.

107. Dot product of a vector with $\hat{i} + \hat{j} - 3\hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector.

108. Dot products of a vector with vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find

the vector.

Watch Video Solution

109. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that $\frac{\tan \theta}{2} = \frac{\left|\hat{a} - \hat{b}\right|}{\left|\hat{a} + \hat{b}\right|}$

110. If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$.

111. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular unit vectors, then prove that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = \sqrt{3}$

Watch Video Solution

112. If
$$\left|\overrightarrow{a} + \overrightarrow{b}\right| = 60, \ \left|\overrightarrow{a} - \overrightarrow{b}\right| = 40 \left|\overrightarrow{b}\right| = 46$$
, `Then find | vec a|

Watch Video Solution

113. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined with the coordinate axes.

114. Show that the vector

$$\vec{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \quad \vec{b} = \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \quad \vec{c} = \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$$
are mutually perpendicular unit vectors.
Watch Video Solution
115. For any tow vectors *a* and *b* show that
 $\left(\vec{a} + \vec{b} \right) \left(\vec{a} - \vec{b} \right) = 0$ if $|\vec{a}| = |\vec{b}|$.
Watch Video Solution

If

 $\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k},\ \overrightarrow{b}=\hat{i}+\hat{j}-2\hat{k}\ and\ \overrightarrow{c}=\hat{i}+3\hat{j}-\hat{k},\ f\in d\ \lambda$ such

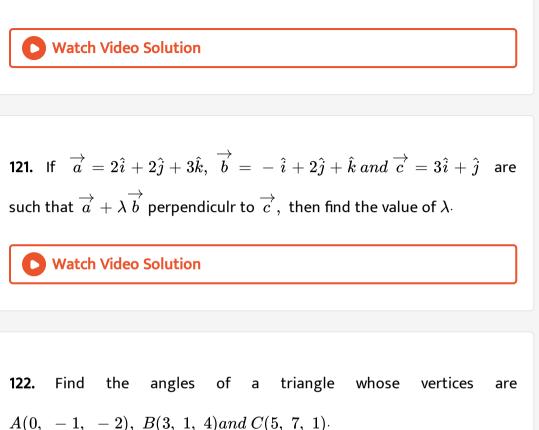
that \overrightarrow{a} is perpendicular to λ vec b+ \overrightarrow{c}

117. If $\overrightarrow{p} = 5\hat{i} + \lambda\hat{j} - 3\hat{k}$ and $\overrightarrow{q} = \hat{i} + 3\hat{j} - 5\hat{k}$, then find the value of λ such that $\overrightarrow{p} + \overrightarrow{q}$ and $\overrightarrow{p} - \overrightarrow{q}$ are perpendicular vectors.

Watch Video Solution

118. If
$$\overrightarrow{\alpha} = 3\hat{i} + 4\hat{j} + 5\hat{k}$$
 and $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 4\hat{k}$, then express $\overrightarrow{\beta}$ in the form of $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$ where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

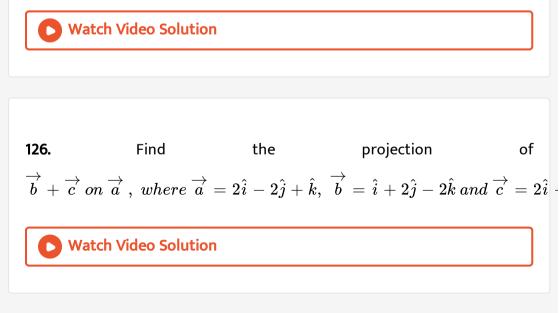
Watch Video Solution


119. If either $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$ then $\overrightarrow{a} = \overrightarrow{b} = \overrightarrow{0}$ but, the converse

need not be true. Justify your answer with an example.

120. Show that the vectors
$$\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}, \ \vec{b} = \hat{i} - 3\hat{j} + 5\hat{k}, \ \vec{c} = 2\hat{i} + \hat{j} - 4\hat{k}$$
 form a right

angled triangle.


Watch Video Solution

123. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} having the same magnitude and such that the angle between them is 60^0 and their scalar product is 9/2.

124. Show that the points whose position vectors are $\overrightarrow{a} = 4\hat{i} - 3\hat{j} + k$, $\overrightarrow{b} = 2\hat{i} - 4\hat{j} + 5k$, $\overrightarrow{c} = \hat{i} - \hat{j}$ form a right triangle.

Watch Video Solution

125. If A, B, C have position vectors (0, 1, 1), (3, 1, 5), (0, 3, 3) respectively, show that DeltaABC is right angled at C.

127. If $\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are orthogonal.

Watch Video Solution

128. A unit vector \overrightarrow{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with \hat{i} and \hat{j} respectively and an acute angle θ with \hat{k} . Find the angle θ and components of \overrightarrow{a} .

Watch Video Solution

129. If two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 1$ and \overrightarrow{a} $\overrightarrow{b} = 1$, then find rthe value of '(3 vec a-5 vec

b)dot'(2 vec a+7 vec b)'dot

130. If \overrightarrow{a} is a unit vector, then find $\left|\overrightarrow{x}\right|$ in each of the following: $\left(\overrightarrow{x} - \overrightarrow{a}\right)^{;}\left(\overrightarrow{x} + \overrightarrow{a}\right) = 8$

Watch Video Solution

131. If \overrightarrow{a} is a unit vector, then find $\left|\overrightarrow{x}\right|$ in each of the following: $\left(\overrightarrow{x} - \overrightarrow{a}\right)^{\frac{1}{2}} \left(\overrightarrow{x} + \overrightarrow{a}\right) = 12$

Watch Video Solution

132. Find
$$\left| \overrightarrow{a} \right| and \left| \overrightarrow{b} \right|$$
, if :
 $\left(\overrightarrow{a} + \overrightarrow{b} \right)^{\frac{1}{2}} \left(\overrightarrow{a} - \overrightarrow{b} \right) = 12 and \left| \overrightarrow{a} \right| = 2 \left| \overrightarrow{b} \right|$

Watch Video Solution

133. Find
$$\left|\overrightarrow{a}\right| and \left|\overrightarrow{b}\right|$$
, if: $\left(\overrightarrow{a} + \overrightarrow{b}\right)$; $\left(\overrightarrow{a} - \overrightarrow{b}\right) = 8$ and $\left|\overrightarrow{a}\right| = 8\left|\overrightarrow{b}\right|$

134. Find
$$\left|\overrightarrow{a}\right| and \left|\overrightarrow{b}\right|$$
, if :
 $\left(\overrightarrow{a} + \overrightarrow{b}\right)^{\downarrow} \left(\overrightarrow{a} - \overrightarrow{b}\right) = 13 and \left|\overrightarrow{a}\right| = 2\left|\overrightarrow{b}\right|$

Watch Video Solution

135. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if $\left| \overrightarrow{a} \right| = 2$, $\left| \overrightarrow{b} \right| = 5$ and $\overrightarrow{a} \overrightarrow{b} = 8$

Watch Video Solution

136. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if $\left| \overrightarrow{a} \right| = 3$, $\left| \overrightarrow{b} \right| = 4$ and $\overrightarrow{a} \overset{\cdot}{\overrightarrow{b}} = 1$

Watch Video Solution

137. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if $\left| \overrightarrow{a} \right| = 2$, $\left| \overrightarrow{b} \right| = 3$ and $\overrightarrow{a} \overrightarrow{b} = 4$

138. Find the angle between two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , if $: |\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 3$ and \overrightarrow{a} , $\overrightarrow{b} = 1$

Watch Video Solution

139. Express the vector $\overrightarrow{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as the sum of two vectors such that one is parallel to the vector $\overrightarrow{b} = 3\hat{i} + \hat{k}$ and other is perpendicular to \overrightarrow{b} .

Watch Video Solution

140. If \overrightarrow{a} and \overrightarrow{b} are two vectors of the same magnitude inclined at angle of 30^0 such that \overrightarrow{a} \overrightarrow{b} = 3, evaluate $|\overrightarrow{a}|$, $|\overrightarrow{b}|$

141. Express $2\hat{i} - \hat{j} + 3\hat{k}$ as the sum of a vector parallel and a vector perpendicular to $2\hat{i} + 4\hat{j} - 2\hat{k}$.

Watch Video Solution

142. Decompose the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ into vectors which are parallel and perpendicular to the vecrtor $\hat{i} + \hat{j} + \hat{k}$.

Watch Video Solution

143. Let
$$\overrightarrow{a} = 5\hat{i} - \hat{j} + 7\hat{k}$$
 and $\overrightarrow{b} = \hat{i} - \hat{j} + \lambda\hat{k}$. Find λ such that $\overrightarrow{a} + \overrightarrow{b}$ is orthogonal to $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

144. If $\overrightarrow{a} \overrightarrow{a} = 0$ and $\overrightarrow{a} \overrightarrow{b} = 0$ what can you conclude about the vector \overrightarrow{b} ?

145. If \overrightarrow{c} is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , then prove that it is perpendicular to both $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

146. If
$$\left| \overrightarrow{a} \right| = a \text{ and } \left| \overrightarrow{b} \right| = b$$
, prove that $\left(\overrightarrow{a} - \overrightarrow{b} \\ a^2 - \overrightarrow{b} \\ b^2 \right)^2 = \left(\frac{\overrightarrow{a} - \overrightarrow{b}}{ab} \right)^2$

147. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three non coplanar vectors such that $\overrightarrow{d} \cdot \overrightarrow{a} = \overrightarrow{d} \cdot \overrightarrow{b} = \overrightarrow{d} \cdot \overrightarrow{c} = 0$, then show that d is the null vector.

148. If a vector \overrightarrow{a} is perpendicular to two non collinear vectors \overrightarrow{b} and \overrightarrow{c} , then \overrightarrow{a} is perpendicular to every vector in the plane of \overrightarrow{b} and \overrightarrow{c}

Watch Video Solution

149. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, show that the angle θ between the vectors

$$\overrightarrow{b}$$
 and \overrightarrow{c} ig givne by $\cos \theta = rac{\left|\overrightarrow{a}\right|^2 - \left|\overrightarrow{b}\right|^2 - \left|\overrightarrow{c}\right|^2}{2\left|\overrightarrow{b}\right|\left|\overrightarrow{c}\right|}$.

Watch Video Solution

150. Let
$$\overrightarrow{u}$$
, \overrightarrow{v} and \overrightarrow{w} be vector such $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = 0$. if $\left|\overrightarrow{u}\right| = 3$, $\left|\overrightarrow{v}\right| = 4$ and $\left|\overrightarrow{w}\right| = 5$, then find $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}$.

151. Let $\overrightarrow{a} = x^2\hat{i} + 2\hat{j} - 2\hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = x^2\hat{i} + 5\hat{j} - 4\hat{k}$ be three vectors find the values of x for which the angle between \overrightarrow{a} and \overrightarrow{b} acute and the angle between \overrightarrow{b} and \overrightarrow{c} is obtuse.

Watch Video Solution

152. Find the value of x and y if the vectors $\vec{a} = 3\hat{i} + x\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular

vectors of equal magnitude.

Watch Video Solution

153. If \overrightarrow{a} and \overrightarrow{b} are two non collinear unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$, find $\left(2\overrightarrow{a} - 5\overrightarrow{b}\right)$. $\left(3\overrightarrow{a} + \overrightarrow{b}\right)$

154. If \overrightarrow{a} , \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{b}\right|$, then prove that $\overrightarrow{a} + 2\overrightarrow{b}$ is perpendicular to \overrightarrow{a} .

Watch Video Solution

155. Prove using vectors: The median to the base of an isosceles triangle

is perpendicular to the base.

Watch Video Solution

156. Show that the diagonals of a rhombus bisect each other at right angles.

Watch Video Solution

157. Using vector method, prove that the angel in a semi circle is a right

angle.

158. Prove that the cosine formula for triangles is equivalent to the definition of the scalar product.

Watch Video Solution

159. In a triangle OAB, $\angle AOB = 90^{\circ}$. If P and Q are points of trisection of AB prove that $OP^2 + OQ^2 = \frac{5}{9}AB^2$.

Watch Video Solution

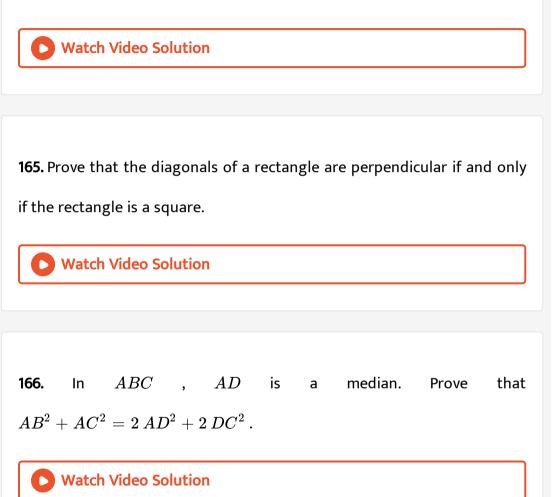
160. Prove that; If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

161. (Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

162. Prove by vector method that the sum of the square of the diagonals

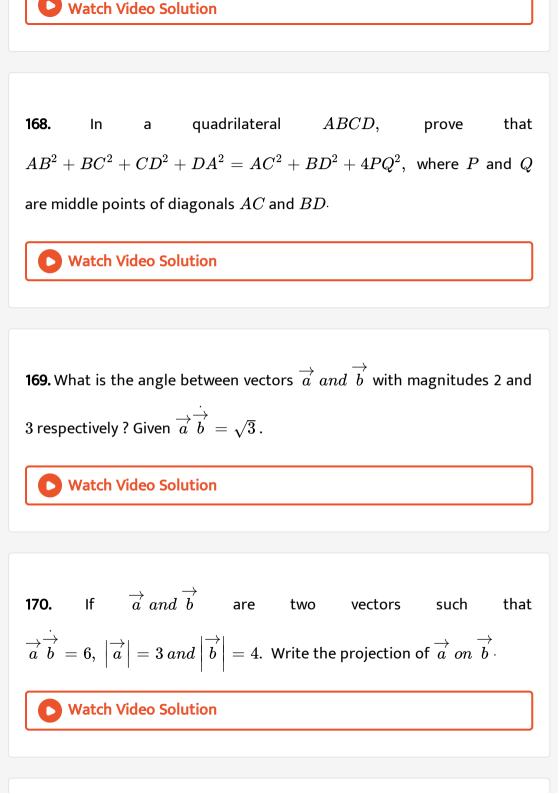
of a parallelogram is equal to the sum of the squares of its sides.

Watch Video Solution


163. prove using vectors: The quadrilateral obtained by joining mid-points

of adjacent sides a rectangle is a rhombus.

164. Using analytical geometry, prove that the diagonals of a rhombus are


perpendicular to each other.

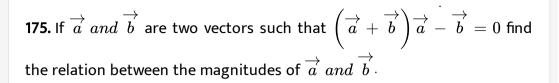
167. If the median to the base of a triangle is perpendicular to the base

then triangle is isosceles.

171. Find the cosine of the angle between the vectors $4\hat{i} - 3\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} - \hat{k}$.

Watch Video Solution

172. If the vectors $3\hat{i}+m\hat{j}+\hat{k}$ and $2\hat{i}-\hat{j}-8\hat{k}$ are orthogonal, find $m\cdot$


Watch Video Solution

173. If the vectors $3\hat{i}-2\hat{j}-4\hat{k}$ and $18\hat{i}-12\hat{j}-m\hat{k}$ are parallel find the

value of m·

Watch Video Solution

174. If \overrightarrow{a} and \overrightarrow{b} are vectors of equal magnitude, write the value of $\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b}$. Watch Video Solution

176. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} write when $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$

holds.

Watch Video Solution

177. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} write then $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$

holds.

178. If \overrightarrow{a} and \overrightarrow{b} are two vectors of the same magnitude inclined at an angle of 60^0 such that $\overrightarrow{a} \overrightarrow{b} = 8$ write the value of their magnitude.

Watch Video Solution

179. If
$$\overrightarrow{a} \overrightarrow{a} = 0$$
 and $\overrightarrow{a} \overrightarrow{b} = 0$ what can you conclude about the vector \overrightarrow{b} ?

Watch Video Solution

180. If
$$\overrightarrow{b}$$
 is a unit vector such that $\left(\overrightarrow{a} + \overrightarrow{b}\right)\left(\overrightarrow{a} - \overrightarrow{b}\right) = 8$, find $\left|\overrightarrow{a}\right|$.

Watch Video Solution

181. If $\widehat{a},\ \hat{b}$ are unit vector such that $\widehat{a}+\widehat{b}$ is a unit vectors, write the value of $|\widehat{a}-\widehat{b}|$.

182. If
$$\left| \overrightarrow{a} \right| = 13$$
, $\left| \overrightarrow{b} \right| = 5$ and $\overrightarrow{a} \overrightarrow{b} = 60$, then find $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$

Watch Video Solution

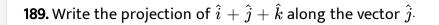
183. If
$$\overrightarrow{a} = \hat{i} - \hat{j}$$
 and $\overrightarrow{b} = -\hat{j} + \hat{k}$ find the projection of \overrightarrow{a} on \overrightarrow{b} .

Watch Video Solution

184. For any two non zero vectors write the value of $\frac{\left|\overrightarrow{a} + \overrightarrow{b}\right|^{2} + \left|\overrightarrow{a} - \overrightarrow{b}\right|^{2}}{\left|\overrightarrow{a}\right|^{2} + \left|\overrightarrow{b}\right|^{2}}$ $\overrightarrow{a} = \frac{\left|\overrightarrow{a}\right|^{2}}{\left|\overrightarrow{a}\right|^{2}} + \left|\overrightarrow{b}\right|^{2}$ Watch Video Solution 185. Write the the projections of $\overrightarrow{r}=3\hat{i}-4\hat{j}+12\hat{k}$ on the coordinate

axes.

186. Writhe the component of \overrightarrow{b} along \overrightarrow{a} .

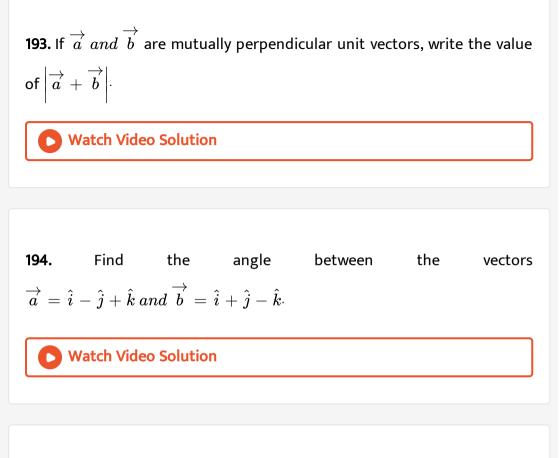

Watch Video Solution

187. Writhe the value of
$$\left(\overrightarrow{a}\stackrel{\cdot}{\hat{i}}\right)\hat{i} + \left(\overrightarrow{a}\stackrel{\cdot}{\hat{j}}\right)\hat{j} + \left(\overrightarrow{a}\stackrel{\cdot}{\hat{k}}\right)\hat{k}$$
 where \overrightarrow{a} is any

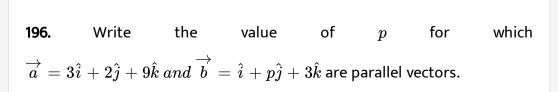
vector.

Watch Video Solution

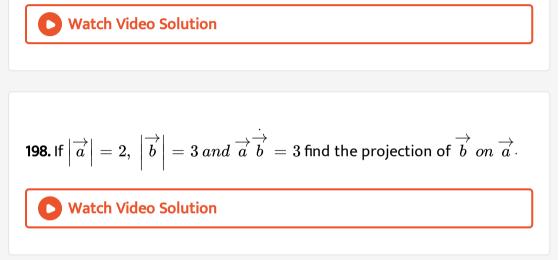
188. Find the value of $\theta(0, \pi/2)$ for which vectors $\vec{a} = (\sin \theta)\hat{i} + (\cos \theta)\hat{j}$ and $\vec{b} = \hat{i} - \sqrt{3}\hat{j} + 2\hat{k}$ are perpendicular.


190. Writhe a vector satisfying $\overrightarrow{a}\hat{i} = \overrightarrow{a}\hat{i} + \hat{j} = \overrightarrow{a}\hat{i} + \hat{j} + \hat{k} = 1$.

Watch Video Solution

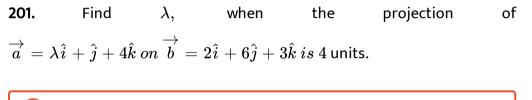

191. Find
$$rac{dy}{dx}$$
 if $y=e^{3x}$

Watch Video Solution


192. If \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular unit vectors, write the value of $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

195. For what value of
$$\lambda$$
 are the vector
 $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ perpendicular to each other?

197. Find the value of λ . If the vectors $2\hat{i} + \lambda\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} - 4\hat{k}$ are perpendicular to each other.



199. Writhe the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes

$$\sqrt{3}\,and\,2$$
 repsectively having $\overrightarrow{a}\stackrel{\cdot}{\overrightarrow{b}}=\sqrt{6}$.

200. Write the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $2\hat{i}-3\hat{j}+6\hat{k}$

Watch Video Solution

202. For what value of λ are the vectores $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ perpendicular to each other?

Watch Video Solution

203. Writhe the projection of the vector $7\hat{i}+\hat{j}-4\hat{k}$ on the vector $2\hat{i}+6\hat{j}+3\hat{k}$

204. Write the value of λ so that the vector $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each

other.

Watch Video Solution

205. Write the projection of
$$\overrightarrow{b} + \overrightarrow{c}$$
 on \overrightarrow{a} , when
 $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k} and \ \overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

Watch Video Solution

206. Vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = \frac{2}{3}$ and $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is a unit vector. Write the angle between \overrightarrow{a} and \overrightarrow{b} .

207. If \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $\overrightarrow{a} \times \overrightarrow{b}$ is also a unit vector, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

208. The vector
$$\overrightarrow{a}$$
 and \overrightarrow{b} satisfy the equation
 $2\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{p}$ and $\overrightarrow{a} + 2\overrightarrow{b} = \overrightarrow{q}$, where $\overrightarrow{p} = \hat{i} + \hat{j}$ and $\overrightarrow{q} = \hat{i} - \overrightarrow{j}$.
If θ is the angle between \overrightarrow{a} and $\overrightarrow{b} \setminus$, then
 $a.\cos\theta = \frac{4}{5}$ b. $\sin\theta = \frac{1}{\sqrt{2}}$ c. $\cos\theta = -\frac{4}{5}$ d. $\cos\theta = -\frac{3}{5}$
Watch Video Solution

209. If
$$\overrightarrow{a}$$
. $\hat{i} = \overrightarrow{a}$. $(\hat{i} + \hat{j}) = \overrightarrow{a}$. $(\hat{i} + \hat{j} + \hat{k}) = 1$, then \overrightarrow{a} is equal to

210. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$ find the anglebetweeen \overrightarrow{a} and \overrightarrow{b}

211. If \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them. Then $\overrightarrow{a} + \overrightarrow{b}$ is an unit vector, if $\theta = \frac{\pi}{2}$ b. $\frac{2\pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{3}$

Watch Video Solution

212. The vector $\coslpha\coseta\hat{i}+\coslpha\,s\ineta\hat{j}+\sinlpha\hat{k}$ is a $ull\,vec
ightarrow r$ b.

 $\mathit{nit} \mathit{vec}
ightarrow \mathit{r}$ c. $\mathit{constant} \mathit{vec}
ightarrow \mathit{r}$ d. none of these

Watch Video Solution

213. If the position vectors of P and Q are $\hat{i} + 3\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$ them the cosine of the angle between $\overrightarrow{P}Q$ and y-axis is $\frac{5}{\sqrt{162}}$ b. $\frac{4}{\sqrt{162}}$

$$\mathsf{c.} - \frac{5}{\sqrt{162}} \mathsf{ d.} \frac{11}{\sqrt{162}}$$

214. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then which of the following values \overrightarrow{a} \overrightarrow{b}

is not possible?

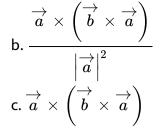
a. $\sqrt{3}$

b. $\sqrt{3}/2$

c. $1/\sqrt{2}$

 $\mathsf{d.}-1\,/\,2$

Watch Video Solution


215. If the vectors $\hat{i} - 2x\hat{j} + 3y\hat{k}$ and $\hat{i} + 2x\hat{j} - y\hat{k}$ are perpendicular,

then the locus of (x,y) is

Watch Video Solution

216. The vector component of \overrightarrow{b} perpendicular to \overrightarrow{a} is

 $\mathbf{a}. \begin{pmatrix} \overrightarrow{b} \stackrel{\cdot}{\overrightarrow{c}} \\ \overrightarrow{b} \stackrel{\cdot}{\overrightarrow{c}} \end{pmatrix} \overrightarrow{a}$

d. none of these

Watch Video Solution

217. The length of the longer diagonal of the parallelogram constructed on $5\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{a} - 3\overrightarrow{b}$ if it is given that $\left|\overrightarrow{a}\right| = 2\sqrt{2}$, $\left|\overrightarrow{b}\right| = 3$ and angle between \overrightarrow{a} and \overrightarrow{b} is $\pi/4$ is a.15 b. $\sqrt{113}$ c. $\sqrt{593}$ d. $\sqrt{369}$

Watch Video Solution

218. If \overrightarrow{a} is a non zero vector of magnitude 'a' and λ a non zero scalar, then $\lambda \overrightarrow{a}$ is unit vector if

219. If θ is the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , then \overrightarrow{a} . $\overrightarrow{b} \geq 0$ only

when

220. The value of
$$x$$
 for which the angle between $\overrightarrow{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}and\overrightarrow{b} = 7\hat{i} - 2\hat{j} + \hat{k}$ is obtuse and the angle

between b and the z-axis acute and less than $\pi/6$ is given by

Watch Video Solution

221. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are any time mutually perpendicular vectors of equal magnitude a, then $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$ is equal to a b. $\sqrt{2}a$ c. $\sqrt{3}a$ d. 2a e. none of these

222. If the vectors $3\hat{i} + \lambda\hat{j} + \hat{k}$ and $2\hat{i} - \hat{j} + 8\hat{k}$ are perpendicular, then λ is equal to -14 b. 7 c. 14 d. $rac{1}{7}$

Watch Video Solution

223. The projection of the vector $\hat{i}+\hat{j}+\hat{k}$ along the vector of \hat{j} is 1 b. 0

c. 2 d. -1 e. -2

Watch Video Solution

224. The vectors $2\hat{i} + 3\hat{j} - 4\hat{k}$ and $a\hat{i} = b\hat{j} + c\hat{k}$ are perpendicular if

 $a=2,\ b=3,\ c=-4$ $a=4,\ b=4,\ c=5$ $a=4,\ b=4,\ c=-5$

 $a = -4, \ b = 4, \ c = -5$

225. If
$$\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$$
, then $\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b} = a$. positive b. negative c.

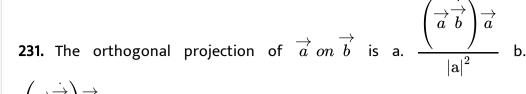
0 d. none of these

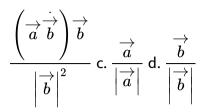
226. If \overrightarrow{a} and \overrightarrow{b} are unit vectors inclined at an angle θ then the value of $\left|\overrightarrow{a} - \overrightarrow{b}\right|$ is a.2 sin $\left(\frac{\theta}{2}\right)$ b. 2 sin θ c. 2 cos $\left(\frac{\theta}{2}\right)$ d. 2 cos θ

Watch Video Solution

227. If \overrightarrow{a} and \overrightarrow{b} are unit vectorts, then the greatest value fo $\sqrt{3} \left| \overrightarrow{a} + \overrightarrow{b} \right| + \left| \overrightarrow{a} - \overrightarrow{b} \right|$ is

 $(a).2~(b).~2\sqrt{2}~(c).4$ (d). none of these


228. If the angle between the vectors $x\hat{i} + 3\hat{j} - 7\hat{k}$ and $x\hat{i} - x\hat{j} + 4\hat{k}$ acute, then x lies in the interval (-4, 7) b. [-4, 7] c. R - [-4, 7] d. R - (4, 7)


Watch Video Solution

229. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors inclined at an angle θ such that |a + b|, 1, then `theta(2pi)/3c. pi/3

Watch Video Solution

230. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = 1$ and \overrightarrow{a} is perpendicular to \overrightarrow{b} . If \overrightarrow{c} makes angle α and β with \overrightarrow{a} and \overrightarrow{b} respectively, then $\cos \alpha + \cos \beta = -\frac{3}{2}$ b. $\frac{3}{2}$ c. 1 d. -1

Watch Video Solution

232. If θ is an acute angle and the vector $(\sin \theta)\hat{i} + (\cos \theta)\hat{j}$ is perpendicular to the vector $\hat{i} - \sqrt{3}\hat{j}$, then $\theta = \frac{\pi}{6}$ b. $\frac{\pi}{5}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{3}$

Watch Video Solution

233. If \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them. Then $\overrightarrow{a} + \overrightarrow{b}$ is an unit vector, if $\theta = \frac{\pi}{2}$ b. $\frac{2\pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{3}$