



# MATHS

# BOOKS - RD SHARMA MATHS (ENGLISH)

# TANGENTS AND NORMALS





$$rac{x^2}{a^2+\lambda_2}+rac{y^2}{b^2+\lambda_2}=1$$
 intersect at right

#### angles.

## Watch Video Solution

2. Find the condition for the following set of

curves to intersect orthogonally: $rac{x^2}{a^2}+rac{y^2}{b^2}=1 ext{ and } rac{x^2}{A^2}-rac{y^2}{B^2}=1.$ 



**4.** Find the angle of intersection of the following curves :  $y^2 = x$  and  $x^2 = y$ 

5. Show that the curves  $4x = y^2$  and 4xy = kcut at right angles, if  $k^2 = 512$  .

Watch Video Solution

6. Find the equation of the tangent to the

curve  $\sqrt{x}+\sqrt{y}=a,$  at the point  $\left(rac{a^2}{4},rac{a^2}{4}
ight)$ .

7. Find a point on the curve  $y = x^3 - 3x$ where the tangent is parallel to the chord joining (1, -2)and(2, 2).

Watch Video Solution

8. Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of  $45^0$  with the x – axis .

9. Find the equation of normal line to the curve  $y = x^3 + 2x + 6$  which is parallel to the line x + 14y + 4 = 0.

Watch Video Solution



 $y = x^3 + ax + b$  at (1,6) is parallel to the line

 $x-y+5=0, ext{ find a and b}$ 

**11.** Find the equation of the tangent to the curve  $x = \sin 3t, y = \cos 2t$  at  $t = \frac{\pi}{4}$ .

# Watch Video Solution

12. Prove that 
$$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$$
 touches the straight line  $\frac{x}{a} + \frac{y}{b} = 2$  for all  $n \in N$ , at the point  $(a, b)$ .

13. At what point on the circle  $x^2 + y^2 - 2x - 4y + 1 = 0$ , the tangent is parallel to x-axis.

**Vatch Video Solution** 

**14.** Find the point on the curve  $y=x^2$  where

the slope of the tangent is equal to the x –

coordinate of the point.

15. At what point will be tangents to the curve  $y = 2x^3 - 15x^2 + 36x - 21$  be parallel to x=axis? Also, find the equations of the tangents to the curve at these points.

Watch Video Solution

16. If the straight line  $x \cos lpha + y \sin lpha = p$ 

touches the curve  $rac{x^2}{a^2}-rac{y^2}{b^2}=1,\,\,$  then prove that  $a^2\cos^2lpha-b^2\sin^2lpha=p^2\cdot$ 

17. Find the point on the curve  $y=3x^2+4$  at

which the tangent is perpendicular to the line whose slope is  $-\frac{1}{6}$ .

Watch Video Solution

18. Find the equation of the normal to
$$y = 2x^3 - x^2 + 3$$
 at (1,4).

**19.** Find the point on the curve  $y = 3x^2 - 9x + 8$  at which the tangents are equally inclined with the axes.



**21.** Find the equation of the normal to the curve  $x^2 + 2y^2 - 4x - 6y + 8 = 0$  at the point whose abscissa is 2.

Watch Video Solution

22. The equation of the tangent at (2, 3) on the curve  $y^2 = ax^3 + b$  is y = 4x - 5 . Find

the values of a and b .



23. Find the equation of the tangent line to the curve  $y = x^2 + 4x - 16$  which is parallel to the line 3x - y + 1 = 0.

Watch Video Solution

24. If the straight line  $x\coslpha+y\sinlpha=p$  touches the curve  $rac{x^2}{a^2}+rac{y^2}{b^2}=1$  , then prove that  $a^2\cos^2lpha+b^2\sin^2lpha=p^2.$ 

25. Find the angle of intersection of the following curves:  $xy = 6andx^2y = 12$  $y^2 = 4xandx^2 = 4y$ Watch Video Solution

**26.** Show that the curves  $x = y^2 and xy = k$  cut at right angles, if  $8k^2 = 1$ 

27. The curve  $y = ax^3 + bx^2 + cx + 5$ touches the x-axis at P(-2, 0) and cuts the y-axis at the point Q where its gradient is 3. Find the equation of the curve completely.



**28.** Determine the quadratic curve y = f(x) if

it touches the line y=x at the point x=1

and passes through the point (-1, 0).

29. Find all the tangents to the curve  $y = \cos(x+y), \ -2\pi \le x \le 2\pi$  that are parallel to the line x+2y=0.

Watch Video Solution

#### 30. Find the equation of the normal to the

curve  $y = (1+x)^y + \sin^{-1}(\sin^2 x) at$ x=0.`

**31.** Find the equation of the tangent to the curve  $y = (x^3 - 1)(x - 2)$  at the points

where the curve cuts the x-axis.

# Watch Video Solution

**32.** Show that the line  $\frac{x}{a} + \frac{y}{b} = 1$  touches the curve  $y = be^{-\frac{x}{a}}$  at the point where it crosses the y-axis.

33. Find the equations of tangent and normal

to the ellipse 
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 at  $(x_1,y_1)$ 

Watch Video Solution

**34.** Find the equation of the normal to the curve  $y=2x^2+3\sin x atx=0.$ 

**35.** Find the coordinates of the points on the curve  $y = x^2 + 3x + 4$ , the tangents at which pass through the origin.



**36.** Find the equations of the tangents drawn to the curve  $y^2 - 2x^2 - 4y + 8 = 0$ . from point (1, 2)

**37.** Find the equation(s) of normal(s) to the curve  $3x^2 - y^2 = 8$  which is (are) parallel to the line x + 3y = 4.

Watch Video Solution

**38.** Find the equation of the tangent line to the curve  $y = \sqrt{5x - 3} - 2$  which is parallel to the line 4x - 2y + 3 = 0

39. Find the points on the curve  $4x^2 + 9y^2 = 1$  , where the tangents are perpendicular to the line 2y + x = 0. Watch Video Solution **40.** Find the points on the curve  $9y^2 = x^3$ where normal to the curve makes equal

intercepts with the axes.

**41.** Prove that the curves xy = 4 and  $x^2 + y^2 = 8$  touch each other. **Vatch Video Solution** 

42. Prove that the curves  $y^2=4x$  and  $x^2+y^2-6x+1=0$  touch each other at the points  $(1,\ 2)$  .

**43.** Show that the angle between the tangent at any point P and the line joining P to the origin O is same at all points on the curve  $\log(x^2 + y^2) = k \tan^{-1}\left(\frac{y}{x}\right)$ 

Watch Video Solution

44. Find the slopes of the tangent and the

normal to the curve  $x^2 + 3y2 = 5$  at (1,1)

45. Show that the tangents to the curve  $y = x^3 - 3$  at the points where x = 2 and x = -2 are parallel.

Watch Video Solution

**46.** Prove that the tangents to the curve $y = x^2 - 5 + 6$  at the points (2,0)and(3,0)

are at right angles.

47. The slope of the curve  $2y^2 = ax^2 + bat(1, -1)$  is -1 Find a, b

## Watch Video Solution

**48.** Find the points on the curve  $y = x^3 - 2x^2 - x$  at which the tangent lines are parallel to the line y = 3x - 2

**49.** At what points on the curve  $x^2 + y^2 - 2x - 4y + 1 = 0$ , the tangents are

parallel to the y-axis is?



**50.** Find the required point be  $P(x_1, y_1)$ . The tangent to the curve  $\sqrt{x} + \sqrt{y} = 4$  at which

tangent is equally inclined to the axes.



**51.** Show that the curves  $2x = y^2 and 2xy = k$ 

cut at right angles, if  $k^2 = 8$ .





53. Find the slopes of the tangent and the normal to the curve  $x^2 + 3y + y^2 = 5$  at (1, 1)







55. Prove that the tangents to the curve  $y = x^2 - 5x + 6$  at the points (2, 0) and (3, 0) are at right angles.



#### Watch Video Solution

57. Find the slope of the normal to the curve

$$x=1-a\sin heta$$
 ,  $y=b\cos^2 heta$  at  $heta=rac{\pi}{2}$  .



**58.** Find the slope of the normal to the curve  $x = a \cos^3 \theta$ ,  $y = a \sin^3 \theta$  at  $\theta = \frac{\pi}{4}$ .



59. Find the points on the curve  $y = x^3 - 2x^2 - x$  at which the tangent lines are parallel to the line y = 3x - 2.





parallel to the x-axis.





**62.** Find the points on the curve  $y = x^3$  at which the slope of the tangent is equal to the y-coordinate of the point.



**63.** Find points on the curve  $\frac{x^2}{9} - \frac{y^2}{16} = 1$  at which the tangents are parallel to the x-axis and y-axis.



**64.** Find a point on the curve  $y = (x - 3)^2$ , where the tangent is parallel to the line joining (4, 1) and (3, 0).

**65.** Find the required point be  $P(x_1, y_1)$ . The tangent to the curve  $\sqrt{x} + \sqrt{y} = 4$  at which tangent is equally inclined to the axes.



perpendicular to the line 2y + x = 0

Watch Video Solution

**67.** Find the point on the curve  $y = x^3 - 11x + 5$  at which the tangent has the equation y = x - 11

**68.** Find the points on the curve  $9y^2 = x^3$  where normal to the curve makes equal intercepts with the axes.







70. Find the slopes of the tangent and the

normal to the curve  $y=\sqrt{x}$  at x=9

# Watch Video Solution

**71.** Find the slope of the tangent and the normal to the curve  $y = x^3 - x$  at x = 2




73. Find the slopes of the tangent and the normal to the curve  $x=a( heta-\sin heta)$  ,  $y=a(1+\cos heta)$  at  $heta=-\pi/2$ 







75. Find the slopes of the tangent and the normal to the curve  $x = a( heta - \sin heta), \ y = a(1 - \cos heta)$  at  $heta = \pi/2$ 



77. Find the slopes of the tangent and the normal to the curve  $x^2+3y+y^2=5$  at (1, 1)

78. Find the slopes of the tangent and the

normal to the curve xy=6 at  $(1,\ 6)$ 

Watch Video Solution

**79.** Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2.

80. If the tangent to the curve  $y = x^3 + ax + b$  at (1, -6) is parallel to the line x - y + 5 = 0, find a and b. Watch Video Solution

**81.** Find a point on the curve  $y = x^3 - 3x$  where the tangent is parallel to the chord joining (1, -2) and (2, 2).

82. Find the points on the curve  $x^3 - 2x^2 - 2x$  at which the tangent lines are parallel to the line y = 2x - 3.



**83.** Find the points on the curve  $y^2 = 2x^3$  at

which the slope of the tangent is 3.



**84.** Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of  $45^{\circ}$  with the x-axis.



**85.** Find the point on the curve  $y = x^2$  where the slope of the tangent is equal to the xcoordinate of the point.



86. At what points on the circle  $x^2 + y^2 - 2x - 4y + 1 = 0$  , the tangent is parallel to the x-axis.



**87.** At what point of the curve  $y=x^2$  does the

tangent make an angle of  $45^\circ$  with the x-axis?



**88.** Find the points on the curve  $y = 3x^2 - 9x + 8$  at which the tangents are equally inclined with the axes.





**90.** Find the point on the curve  $y = 3x^2 + 4$  at

which the tangent is perpendicular to the line

whose slope is  $-rac{1}{6}$  .

Watch Video Solution

**91.** Find the points on the curve  $x^2 + y^2 = 13$ , the tangent at each one of which is parallel to the line 2x + 3y = 7.

92. Find the points on the curve  $2a^2y = x^3 - 3ax^2$  where the tangent is parallel to x-axis.





94. Find the points on the curve  $\frac{x^2}{4} + \frac{y^2}{25} = 1$  at which the tangents are

parallel to the x-axis and y-axis.





are parallel to the x-axis and y-axis.



**96.** Find the points on the curve  $\frac{x^2}{9} + \frac{y^2}{16} = 1$  at which the tangents are parallel to the x-axis and y-axis.

**Watch Video Solution** 

**97.** Show that the tangents to the curve  $y = 7x^3 + 11$  at the points x = 2 and x = -2 are parallel.

**98.** Find the points on the curve  $y = x^3$  where the slope of the tangent is equal to xcoordinate of the point.

Watch Video Solution

**99.** Find the equation of the tangent to the curve  $y = -5x^2 + 6x + 7$  at the point  $(1/2, \ 35/4)$ .

**100.** Find the equation of the tangent and normal to the parabola  $y^2 = 4ax$  at the point  $(at^2, \ 2at)$ .





102. Find the equations of the tangent and the normal to  $16x^2+9y^2=144$  at  $(x_1,\ y_1)$  where  $x_1=2$  and  $y_1>0$  .





to the ellipse 
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$
 at  $(x_1,y_1)$ 

104. Find the equation of the tangent line to the curve  $x = 1 - \cos \theta$ ,  $y = \theta - \sin \theta$  at  $\theta = \pi/4$ .

105. Find the equations of the tangent and the normal at the point 't' on the curve  $x = a \sin^3 t$ ,  $y = b \cos^3 t$ .

#### Watch Video Solution

**106.** Show that the line  $\frac{x}{a} + \frac{y}{b} = 1$  touches the curve  $y = be^{-\frac{x}{a}}$  at the point where it crosses the y-axis.

Watch Video Solution

107. Find the equation of the tangent to the

curve  $y=rac{x-7}{(x-2)(x-3)}$  at the point where

it cuts the x-axis.

**108.** Find the equation of the tangent to the

curve  $y=ig(x^3-1ig)(x-2)$  at the points

where the curve cuts the x-axis.



**109.** Find the equation of the tangent line to the curve  $y = \sqrt{5x - 3} - 2$  which is parallel to the line 4x - 2y + 3 = 0.

110. Find the equation of tangent line to  $y = 2x^2 + 7$  which is parallel to the line 4x - y + 3 = 0.



111. Find the equation(s) of normal(s) to the curve  $3x^2 - y^2 = 8$  which is (are) parallel to the line x + 3y = 4.

**112.** Find the equation of normal line to the curve  $y = x^3 + 2x + 6$  which is parallel to the line x + 14y + 4 = 0.

Watch Video Solution

**113.** Find the equations of the tangents drawn to the curve  $y^2 - 2x^3 - 4y + 8 = 0$ .

**114.** Find the equation of the normal to the curve  $x^2 = 4y$  which passes through the point (1, 2).



115. Find the coordinates of the points on the curve  $y = x^2 + 3x + 4$  , the tangents at

which pass through the origin.



**116.** For the curve  $y = 4x^3 - 2x^5$  find all points at which the tangent passes through the origin.



117. Find the equation of all lines having slope

-1that are tangents to the curve $y=rac{1}{x-1}, x
eq 1.$ 

**118.** Prove that all normals to the curve  $x = a \cos t + at \sin t$ ,  $y = a \sin t - at \cos t$  are at a distance *a* from the origin.



119. Find the equation of the normal to the curve  $y = (1+y)^y + \sin^{-1} (\sin^2 x) at x = 0.$ 

120. Find all the tangents to the curve  $y = \cos(x+y), \ -2\pi \le x \le 2\pi$  that are parallel to the line x+2y=0.

Watch Video Solution

**121.** The curve  $y = ax^3 + bx^2 + cx + 5$ touches the x-axis at P(-2, 0) and cuts the y-axis at the point Q where its gradient is 3. Find the equation of the curve completely.

122. Determine the quadratic curve y = f(x) if it touches the line y = x at the point x = 1and passes through the point (-1, 0).

Watch Video Solution

123. Find the equation of the tangent to the

curve  $\sqrt{x}+\sqrt{y}=a,$  at the point  $\left(rac{a^2}{4},rac{a^2}{4}
ight)$ .

124. Find the equation of the normal to  $y=2x^3-x^2+3$  at  $(1,\ 4)$  .

Watch Video Solution

125. Find the equations of the tangent and the normal to the curve $y = x^4 - 6x^3 + 13x^2 - 10x + 5$  at (0, 5) at

the indicated points

126. Find the equations of the tangent and the

normal to the curve $y=x^4-6x^3+13x^2-10x+5$  at x=1 at the indicated points

Watch Video Solution

127. Find the equations of the tangent and the

normal to the curve  $y=x^2$  at  $(0,\ 0)$  at the

indicated points

128. Find the equations of the tangent and the

normal to the curve  $y=2x^2-3x-1$  at

 $(1,\ -2)$  at the indicated points

Watch Video Solution

129. Find the equations of the tangent to the

curve 
$$y^2=rac{x^3}{4-x}$$
 at point  $(2,\ -2)$  on it

**130.** Find the equations of the tangent and the

normal to the curve  $y = x^2 + 4x + 1$  at

x=3 at the indicated points

Watch Video Solution

131. Find the equations of the tangent and the

normal to the curve  $rac{x^2}{a^2}+rac{y^2}{b^2}=1$  at

 $(a\cos heta,\ b\sin heta)$  at the indicated points

**132.** Find the equations of the tangent and the  $2^{2}$ 

normal to the curve  $\displaystyle rac{x^2}{a^2} - \displaystyle rac{y^2}{b^2} = 1$  at

 $(a \sec \theta, \ b \tan \theta)$  at the indicated points.



# 133. Find the equations of the tangent and the normal to the curve $y^2 = 4a x$ at $\left( a/m^2, \ 2a/m ight)$ at the indicated points

**134.** Find the equations of the tangent and the normal to the curve  $c^2(x^2 + y^2) = x^2 y^2$  at  $\left(\frac{c}{\cos\theta}, \frac{c}{\sin\theta}\right)$  at the indicated points

135. Find the equations of the normal to the curve  $xy=c^2$  at  $(ct,\ c/t)$  on it.

Watch Video Solution

136. Find the equation of the tangent to the

curve 
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$
 at  $(x_1, \; y_1)$  on it.

Watch Video Solution

137. Find the equation of the normal to the curve  $rac{x^2}{a^2}-rac{y^2}{b^2}=1$  at  $(x_0,y_0)$ 

138. Find the equations of the tangent and the normal to the curve  $x^{2/3} + y^{2/3} = 2$  at (1, 1) at indicated points.



139. Find the equations of the tangent and the normal to the curve  $x^2 = 4y$  at (2, 1) at

indicated points.



140. Find the equations of the tangent and the normal to the curve  $y^2 = 4x$  at (1, 2) at indicated points.

Watch Video Solution

141. Find the equations of the tangent and the normal to the curve  $4x^2 + 9y^2 = 36$  at  $(3\cos\theta, 2\sin\theta)$  at indicated points.

**142.** Find the equations of the tangent and the normal to the curve  $y^2 = 4ax$  at  $(x_1, y_1)$  at indicated points.



143. Find the equations of the tangent and the normal to the curve  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  at  $(\sqrt{2}a, b)$  at indicated points.




146. Find the equation of tangent and normal

to the curve 
$$x=rac{2at^2}{(1+t^2)}, y=rac{2at^3}{(1+t^2)}$$
 at the point for which  $t=rac{1}{2}.$ 

Watch Video Solution

**147.** Find the equations of the tangent and the normal to the curve  $x = at^2$ , y = 2at at t = 1.

148. Find the equations of the tangent and the normal to the curve  $x = a \sec t$ ,  $y = b \tan t$  at t.



150. Find the equations of the tangent and the



**151.** Find the equation of the normal to the curve  $x^2 + 2y^2 - 4x - 6y + 8 = 0$  at the point whose abscissa is 2.



**152.** Find the equation of the normal to the curve  $ay^2 = x^3$  at the point  $\left(am^2, \ am^3\right)$  .

### Watch Video Solution

153. The equation of the tangent at (2, 3) on the curve  $y^2 = ax^3 + b$  is y = 4x - 5 . Find the values of a and b .

154. Find the equation of the tangent line to

the curve  $y = x^2 + 4x - 16$  which is parallel

to the line 3x - y + 1 = 0 .

Watch Video Solution

155. Find the equation of normal line to the curve  $y = x^3 + 2x + 6$  which is parallel to the line x + 14y + 4 = 0.

156. Determine the equation(s) of tangent(s) line to the curve  $y = 4x^3 - 3x + 5$  which are perpendicular to the line 9y + x + 3 = 0

Watch Video Solution

157. Find the equation of a normal to the curve  $y = x(\log_e x)$  which is parallel to the line 2x - 2y + 3 = 0.

**158.** Find the equation of the tangent line to the curve  $y = x^2 - 2x + 7$  which is parallel to the line 2x - y + 9 = 0

#### Watch Video Solution

**159.** Find the equation of the tangent line to the curve  $y = x^2 - 2x + 7$  which is perpendicular to the line 5y - 15x = 13.

160. Find the equations of all lines having slope 2 and that are tangent to the curve  $y=rac{1}{x-3}, \ x
eq 3$  .

161. Find the equations of all lines of slope zero and that are tangent to the curve  $y = rac{1}{x^2-2x+3}$ .

Watch Video Solution

162. Find the equation of the tangent to the curve  $y = \sqrt{3x - 2}$  which is parallel to the line 4x - 2y + 5 = 0.

Watch Video Solution

163. Find the equation of the tangent to the curve  $x^2 + 3y - 3 = 0$  , which is parallel to

the line y = 4x - 5.

164. Find the value of  $n \in N$  such that the curve  $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$  touches the straight line  $\frac{x}{a} + \frac{y}{b} = 2$  at the point (a, b).

**Watch Video Solution** 

**165.** Find the equation of the tangent to the curve  $x = \sin 3t, y = \cos 2t$  at  $t = \frac{\pi}{4}$ .

166. At what point will be tangents to the curve  $y = 2x^3 - 15x^2 + 36x - 21$  be parallel to x=axis? Also, find the equations of the tangents to the curve at these points.



**167.** Find the equation of the tangents to the curve  $3x^2 - y^2 = 8$ , which passes through the point  $\left(\frac{4}{3}, 0\right)$ .

168. Find the angle of intersection of xy=6and  $x^2y=12$ 

Watch Video Solution

169. Find the angle of intersection of  $y^2 = 4x$ and  $x^2 = 4y$ 

**170.** Find the angle between the parabolas  $y^2 = 4ax$  and  $x^2 = 4by$  at their point of intersection other than the origin.



172. Find the value of p for which curves  $x^2 = 9p(9-y)$  and  $x^2 = p(y+1)$  cut each other at right angles.





174. Show the condition that the curves  $ax^2 + by^2 = 1$  and  $a' \ x^2 + b' \ y^2 = 1$  Should intersect orthogonally

Watch Video Solution

175. If the straight line  $x \cos \alpha + y \sin \alpha = p$ touches the curve  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , then prove that  $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$ .

**176.** A particle is projected from point A, that is at a distance 4R from the centre of the earth, with speed in a direction making  $30^\circ$  with the line joining the centre of the earth and point A, as shown. If particle passes grazing the surface of the earth, then the speed  $v_1$  in m/s is  $10\sqrt{2}P$ . Find value of P. Consider gravitational interaction

only between these two. (use ${GM\over R}=6.4 imes10^7m^2\,/\,s^2$  )





# Watch Video Solution

177. Find the angle of intersection of the

curves 
$$y^2 = x$$
 and  $x^2 = y$ 

Watch Video Solution

178. Find the angle of intersection of curve  $y = x^2$  and  $x^2 + y^2 = 20$ 

179. Find the angle of intersection of curve  $2y^2 = x^3$  and  $y^2 = 32x$ 

180. Find the angle of intersection of curve  $x^2+y^2-4x-1=0$  and  $x^2+y^2-2y-9=0$ 

#### Watch Video Solution

**181.** Find the angle of intersection of curve  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  and  $x^2 + y^2 = ab$ Watch Video Solution

182. Find the angle of intersection of curve  $x^2 + 4y^2 = 8$  and  $x^2 - 2y^2 = 2$ 

183. Find the angle of intersection of curve

$$x^2=27y$$
 and  $y^2=8x$ 

Watch Video Solution

184. Find the angle of intersection of curve

$$x^2+y^2=2x$$
 and  $y^2=x$ 



185. Find the angle of intersection of curve

$$y=4-x^2$$
 and  $y=x^2$ 

### Watch Video Solution



intersect orthogonally:



187. Show that  $x^3 - 3xy^2 = (-2)$  and  $3x^2 y - y^3 = 2$  intersect orthogonally.



189. Show that  $x^2 = 4y$  and  $4y + x^2 = 8$ intersect orthogonally at (2, 1)

Watch Video Solution

190. Show that  $x^2=y$  and  $x^3+6y=7$ 

intersect orthogonally at (1, 1)

191. Show that  $y^2 = 8x$  and  $2x^2 + y^2 = 10$  at  $(1, 2\sqrt{2})$ 

**192.** Show that the curves  $4x = y^2$  and

4xy = k cut at right angles, if  $k^2 = 512$  .

193. Show that the curves  $2x = y^2$  and 2xy = k cut at right angles, if  $k^2 = 8$  .





 $x^2 + y^2 = 8$  touch each other.



195. Prove that the curves  $y^2=4x$  and  $x^2+y^2-6x+1=0$  touch each other at the points  $(1,\ 2)$  .



#### 196. Find the condition for the following set of

curves to intersect orthogonally:  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  and  $xy = c^2$   $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and  $\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$ .

**197.** Find the condition for the two concentric ellipses

 $a_1x^2 + \ b_1y^2 = 1 \ and \ a_2x^2 + \ b_2y^2 = 1$  to

intersect orthogonally.



 $rac{x^2}{a^2+\lambda_2}+rac{y^2}{b^2+\lambda_2}=1$  intersect at right

#### angles.

## Watch Video Solution

199. If the straight line  $x \cos \alpha + y \sin \alpha = p$ 

touches the curve  $rac{x^2}{a^2}+rac{y^2}{b^2}=1$  , then prove that  $a^2\cos^2lpha+b^2\sin^2lpha=p^2\cdot$ 

200. Find the point on the curve  $y = x^2 - 2x + 3$  , where the tangent is parallel to x-axis.



### 201. Find the slope of the tangent to the curve

$$x=t^2+3t-8$$
 ,  $y=2t^2-2t-5$  at  $t=2$  .

**202.** If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of  $\frac{dy}{dx}$ .

Watch Video Solution

203. Write the value of  $rac{dy}{dx}$  , if the normal to the curve y=f(x) at  $(x,\ y)$  is parallel to y-

axis.



**204.** If the tangent to a curve at a point (x, y)

is equally inclined to the coordinate axes, then

write the value of  $\frac{dy}{dx}$  .

Watch Video Solution

205. If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of  $\frac{dx}{dy}$ .

206. Find the slope of the normal at the point

'
$$t$$
 ' on the curve  $x=rac{1}{t}, \;\; y=t$  .



207. Write the coordinates of the point on the

curve  $y^2 = x$  where the tangent line makes an angle  $rac{\pi}{4}$  with x-axis.

**208.** Write the angle made by the tangent to the curve  $x = e^t \cos t$ ,  $y = e^t \sin t$  at  $t = \frac{\pi}{4}$  with the x-axis.



210. Find the coordinates of the point on the

curve  $y^2 = 3 - 4x$  where tangent is parallel

to the line 2x + y - 2 = 0 .



**211.** Write the equation of the tangent to the curve  $y = x^2 - x + 2$  at the point where it crosses the y-axis.


**212.** Write the angle between the curves  $y^2 = 4x$  and  $x^2 = 2y - 3$  at the point (1, 2). Watch Video Solution

**213.** Write the angle between the curves  $y = e^{-x}$  and  $y = e^x$  at their point of intersection.

214. Write the slope of the normal to the curve

$$y=rac{1}{x}$$
 at the point  $\left(3,rac{1}{3}
ight)$ 

Watch Video Solution



216. Write the equation of the normal to the

curve  $y = \cos x$  at (0, 1) .

**Watch Video Solution** 

217. The equation to the normal to the curve  $y = \sin x$  at (0, 0) is (a)x = 0(b) y = 0(c) x + y = 0(d) x - y = 0

**218.** Find the equation of the tangent to the

curve  $y = x - \sin x \cos x$  at  $x = rac{\pi}{2}$ 

Watch Video Solution

219. The equation of the normal to the curve

$$y=x(2-x)$$
 at the point  $(2,\;0)$  is

 $(\mathsf{a})x - 2y = 2$ 

(b) x - 2y + 2 = 0

(c) 2x + y = 4

(d) 
$$2x+y-4=0$$

### Watch Video Solution

**220.** The point on the curve  $y^2 = x$  where tangent makes  $45^o$  angle with x-axis is (a)(1/2, 1/4)(b) (1/4, 1/2)(c) (4, 2)(d) (1, 1)



221. If the tangent to the curve  $x = a t^2$ , y = 2at is perpendicular to x-axis, then its point of contact is (a)(a, a)(b) (0, a)(c) (0, 0)(d) (a, 0)



**222.** The point on the curve  $y = x^2 - 3x + 2$ where tangent is perpendicular to y = x is (a)(0,2)(b) (1, 0)(c) (-1, 6)(d) (2, -2)Watch Video Solution **223.** The point on the curve  $y = 12x - x^2$ 

where the slope of the tangent is zero will be

 $(0,\ 0)$  (b)  $(2,\ 16)$  (c)  $(3,\ 9)$  (d)  $(6,\ 36)$ 



224. The angle between the curves 
$$y^2 = x$$
 and  $x^2 = y$  at  $(1, 1)$  is  $\frac{\tan^{-1}4}{3}$  (b)  $\frac{\tan^{-1}3}{4}$  (c) 90 (d) 45 Video Solution

**225.** The equaiton of the normal to the curve  $3x^2 - y^2 = 8$  which is parallel to the line x +

3y = 8 is

### Watch Video Solution

**226.** The equation of tangent at those points where the curve  $y = x^2 - 3x + 2$  meets x-axis are:

A. (a) 
$$x - y + 2 = 0 = x - y - 1$$

B. (b) 
$$x + y - 1 = 0 = x - y - 2$$

C. (c) x - y - 1 = 0 = x - y

D. (d) x-y=0=x+y

#### Answer: null



227. The slope of the tangent to the curve  $x = t^2 + 3t - 8$ ,  $y = 2t^2 - 2t - 5$  at point (2, -1) is (a)22/7 (b) 6/7 (c) -6 (d) 7/6

**228.** At what points the slope of the tangent to the curve  $x^2 + y^2 - 2x - 3 = 0$  is zero (a)(3, 0), (-1, 0) (b) (3, 0), (1, 2) (c) (-1, 0), (1, 2) (d) (1, 2), (1, -2)

Watch Video Solution

229. The angle of intersection of the curves  $xy = a^2$  and  $x^2 - y^2 = 2a^2$  is (a) $0^o$ 

(b)  $45^{o}$ 

(c)  $90^{\circ}$ 

(d)  $30^{\circ}$ 

Watch Video Solution

230. If the curve  $ay + x^2 = 7$  and  $x^3 = y$  cut orthogonally at  $(1, \ 1)$  , then a

is equal to

(a) 1 (b) -6 (c) 6 (d) 0



232. The slope of the tangent to the curve

$$x=3t^2+1$$
 ,  $y=t^3-1$  at  $x=1$  is

(a)1/2 (b) 0 (c) -2 (d)  $\infty$ 





**235.** If the curves  $y = 2 e^x$  and  $y = a e^{-x}$ 

intersect orthogonally, then a=(a)1/2 (b)

-1/2 (c) 2 (d)  $2e^2$ 

**236.** The point on the curve  $y = 6x - x^2$  at which the tangent to the curve is inclined at  $\pi/4$  to the line x+y=0 is (a)(-3, -27)(b) (3, 9)(c) 7/2, 35/4) (d) (0, 0)

Watch Video Solution

237. The angle of intersection of the parabola  $y^2 = 4 \ ax$  and  $x^2 = 4 ay$  at the origin is

(a) $\pi/6$ 

(b)  $\pi/3$ 

(c)  $\pi/2$ 

(d)  $\pi/4$ 

Watch Video Solution

# 238. The angle of intersection of the curves $y = 2 \sin^2 x$ and $y = \cos 2 x$ at $x = \frac{\pi}{6}$ is (a) $\pi/4$

(c)  $\pi/3$ 

(d)  $\pi/6$ 



- (b) is parallel to y-axis
- (c) makes an acute angle with x-axis
- (d) makes an obtuse angle with x-axis.



240. The point on the curve  $9y^2=x^3$  , where the normal to the curve makes equal intercepts with the axes is  $(4,\ \pm 8/3)$  (b)  $(-4,\ 8/3)$  (c)  $(-4,\ -8/3)$  (d)  $(8/3,\ 4)$ 

Watch Video Solution

241. The slope of the tangent to the curve  $x=t^2+3t-8,\ y=2t^2-2t-5$  at the point  $(2,\ -1)$  is (a)22/7

(b) 6/7

(c) 7/6

(d) -6/7

Watch Video Solution

242. The line y = mx + 1 is a tangent to the curve  $y^2 = 4x$  , if the value of m is (a) 1 (b) 2

(c) 3

(d) 1/2





243. The normal at the point (1,1) on the curve

- $2y + x^2 = 3$ is
- (A) x + y = 0
- (B) xy = 0
- (C) x + y + 1 = 0
- (D) xy=0

**244.** The normal to the curve  $x^2 = 4y$  passing

(1,2) is

- (A) x+y=3
- (B) xy = 3
- (C) x + y = 1

(D) xy=1