đず doubtnut

MATHS

BOOKS - PREMIERS PUBLISHERS

GEOMETRY

Solution To Exercise 41

1. Check whether the which triangles are similar and find the value of x.

D Watch Video Solution

2. Check whether the which triangles are similar and find the value of x.

- Watch Video Solution

3. A girl looks the reflection of the top of the lamp post on the mirror which is 6.6 m away from the foot of the lamppost. The girl whose height is 1.25 m is standing 2.5 m away from the mirror. Assuming the mirror is placed on the ground facing the sky and the girl, mirror and the lamppost are in a same line, find the height of the lamp post ?

- Watch Video Solution

4. A vertical stick of length 6 m casts a shadow 400 cm
long on the ground and at the same time a tower casts a shadow 28 m long. Using similarity, find the height of the tower.
5. Two triangles QPR and QSR, right angled at P and S respectively are drawn on the same base $Q R$ and on the same side of $Q R$. If $P R$ and $S Q$ intersect at T, prove that $P T \times T R=S T \times T Q$.

D Watch Video Solution

6. In the adjacent figure, $\triangle A B C$ is right angled at C and $D E \perp A B$. Prove that $\triangle A B C \sim \triangle A D E$ and hence
find the lengths of AE and DE ?

D Watch Video Solution

7. In the adjacent figure, $\triangle A C B \sim \Delta A P Q$. If $\mathrm{BC}=8 \mathrm{~cm}$, $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}$ and $\mathrm{AP}=2.8 \mathrm{~cm}$, find CA and AQ .

D Watch Video Solution
8. In figure OPRQ is a square and $\angle M L N=90^{\circ}$. Prove
that
(i) $\Delta L O P \sim \Delta Q M O(i i) \Delta L O P \sim \Delta R P N$
(iii) $\Delta Q M O \sim \Delta R P N(i v) Q R^{2}=M Q \times R N$.

D Watch Video Solution

9. In figure OPRQ is a square and $\angle M L N=90^{\circ}$. Prove that
$(i) \Delta L O P \sim \Delta Q M O(i i) \Delta L O P \sim \Delta R P N$
(iii) $\Delta Q M O \sim \Delta R P N(i v) Q R^{2}=M Q \times R N$.

D Watch Video Solution

10. In figure $O P R Q$ is a square and $\angle M L N=90^{\circ}$.

Prove that
(i) $\Delta L O P \sim \Delta Q M O(i i) \Delta L O P \sim \Delta R P N$
(iii) $\Delta Q M O \sim \Delta R P N(i v) Q R^{2}=M Q \times R N$.

D Watch Video Solution

11. In figure OPRQ is a square and $\angle M L N=90^{\circ}$.

Prove that
(i) $\Delta L O P \sim \Delta Q M O(i i) \Delta L O P \sim \Delta R P N$
(iii) $\Delta Q M O \sim \Delta R P N(i v) Q R^{2}=M Q \times R N$.

(Watch Video Solution

12. If $\triangle A B C \sim \triangle D E F$ such that area of
$\triangle A B C$ is $9 \mathrm{~cm}^{2}$ and the area of $\triangle D E F$ is $16 \mathrm{~cm}^{2}$ and $B C=2.1 \mathrm{~cm}$. Find the length of $E F$.

D Watch Video Solution

13. Two vertical poles of heights 6 m and 3 m are erected above a horizontal ground AC. Find the value of y.

D Watch Video Solution

14. Construct a triangle slmilar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of
the triangle PQR (scale factor $\frac{2}{3}$).

D Watch Video Solution

15. Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (scale factor $\frac{4}{5}$).

D Watch Video Solution

16. Construct a triangle similar to a given triangle $A B C$ with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle $A B C$ (scale factor $\frac{6}{4}$).
17. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$).

D Watch Video Solution

Solution To Exercise 42

1. In $\triangle A B C, \mathrm{D}$ and E are points on the sides AB and AC respectively such that $D E|\mid B C$
(i) If $\frac{A D}{D B}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(ii) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=3 x-1$, find the value of x.

D Watch Video Solution

2. In $\triangle A B C$, D and E are points on the sides AB and AC respectively such that $D E|\mid B C$
(i) If $\frac{A D}{D B}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(ii) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=3 x-1$, find the value of x.

D Watch Video Solution

3. ABCD is a trapezium in which $A B|\mid D C$ and P, Q are points on $A D$ and $B C$ respectively, such that $P Q|\mid D C$ if $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC=} 15 \mathrm{~cm}$, find $A D$.

D Watch Video Solution

4. In $\triangle A B C, \mathrm{D}$ and E are points on the sides AB and

AC respectively. For each of the following cases show that $\mathrm{DE}|\mid \mathrm{BC}$
(i) $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, A E=12 \mathrm{~cm}$ and $A C=18 \mathrm{~cm}$.
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$.
5. In $\triangle A B C$, D and E are points on the sides AB and AC respectively. For each of the following cases show that $D E|\mid B C$
(i) $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, A E=12 \mathrm{~cm}$ and $A C=18 \mathrm{~cm}$.
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$.

D Watch Video Solution

6. In fig. if $P Q|\mid B C$ and $P R \| C D$ prove that
(i) $\frac{A R}{A D}=\frac{A Q}{A B}(i i) \frac{Q B}{A Q}=\frac{D R}{A R}$.

- Watch Video Solution

7. In fig. if $P Q \| B C$ and $P R \| C D$ prove that
(i) $\frac{A R}{A D}=\frac{A Q}{A B}$ (ii) $\frac{Q B}{A Q}=\frac{D R}{A R}$.

- Watch Video Solution

8. Rhombus PQRS is inseribed in $\triangle A B C$ such that $\angle B$ is one of its angle. P, Q and R lie on $A B, A C$ and $B C$ respectively. If $A B=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find the sides $P Q$, RB of the rhombus.
9. In trapezIum $A B C D, A B| | D C, E$ and F are points on non-parallel sides $A D$ and $B C$ respectively, such that EF
$\| \mathrm{AB}$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$.

- Watch Video Solution

10. In figure $D E \| B C$ and $C D \| E F$. Prove that
$A D^{2}=A B \times A F$.

D Watch Video Solution

11. In a $\triangle A B C, \mathrm{AD}$ is the bisector of $\angle A$ meeting side $B C$ at D, if $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find $B D$ and DC.
12. Check whether AD is bisector of $\angle A$ of $\triangle A B C$ in each of the following
(i) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BD}=1.5 \mathrm{~cm}$ and $\mathrm{CD}=3.5 \mathrm{~cm}$.
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $\mathrm{CD}=2.4 \mathrm{~cm}$.

- Watch Video Solution

13. Check whether AD is bisector of $\angle A$ of $\triangle A B C$ in each of the following
(i) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BD}=1.5 \mathrm{~cm}$ and $\mathrm{CD}=3.5 \mathrm{~cm}$.
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $\mathrm{CD}=2.4 \mathrm{~cm}$.
14. In figure $\angle Q P C=90^{\circ}$, PS is its bisector. If $S T \perp P R$, prove that
$S T \times(P Q+P R)=P Q \times P R$.

D Watch Video Solution
15. $A B C D$ is a quadrilateral in which $A B=A D$, the bisector of $\angle B A C$ and $\angle C A D$ intersect the sides BC and $C D$ at the points E and F respectively. Prove that $E F$ || BD.

- Watch Video Solution

16. Construct a $\triangle P Q R$ which the base $P Q=4.5 \mathrm{~cm}, \angle R=35^{\circ}$ and the median from R to RG is 6 cm .

- Watch Video Solution

17. Construct a $\triangle P Q R$ in which $Q R=5 \mathrm{~cm}, P=40^{\circ}$ and the median PG from P to QR is 4.4 cm . Find the length of the altitude from P to QR .

- Watch Video Solution

$$
\begin{aligned}
& \text { 18. Construct a } \triangle P Q R \text { such that } \\
& Q R=6.5 \mathrm{~cm}, \angle P=60^{\circ} \text { and the altitude from } \mathrm{P} \text { to } \\
& Q R \text { is of length } 4.5 \mathrm{~cm} \text {. }
\end{aligned}
$$

D Watch Video Solution

19. Construct a $\triangle A B C$ such that
$A B=5.5 \mathrm{~cm}, \angle C=25^{\circ}$ and the altitude from C to
$A B \operatorname{cm}$.

- Watch Video Solution

20. Draw a triangle $A B C$ of base
$B C=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $C D=4 \mathrm{~cm}$.

D Watch Video Solution
21. Draw $\triangle P Q R$ such that $\mathrm{PQ}=6.8 \mathrm{~cm}$, vertical angle is
50° and the bisector of the vertical angle meets the base at D where $\mathrm{PD}=5.2 \mathrm{~cm}$.

D Watch Video Solution

Solution To Exercise 43

1. A man goes 18 m due east and then 24 m due north.

Find the distance of his current position from the starting point ?
2. There are two paths that one can choose to go from Sarah's house to James house. One way is to take C street, and the other way requires to take A street and then B street. How much shorter is the direct path along C street ? (Using figure).

D Watch Video Solution

3. To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearrest meter, how many meters would be saved if it were possible to make a way through the pond ?

- Watch Video Solution

4. In the rectangle $W X Y Z, X Y+Y Z=17 \mathrm{~cm}$ and $X Z+Y W=26$ cm . Calculate the length and breadth of the rectangle

\square
X

D Watch Video Solution

5. The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle?

D Watch Video Solution
6. 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.

- Watch Video Solution

7. The perpendicular PS on the base QR of $\triangle P Q R$ intersects $Q R$ at S, such that $Q S=3 S R$. Prove that $2 P Q^{2}=2 P R^{2}+Q R^{2}$.
8. In the adjacent figure, $A B C$ is a right angled triangle with right angle at B and points D, E trisect $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

(D) Watch Video Solution
9. The length of the tangent to a circle from a point P, which is 25 cm away from the centre is 24 cm . What is the radius of the circle ?

D Watch Video Solution

2. $\triangle L M N$ is a right angled triangle with $\angle L=90^{\circ}$. A circle is inscribed in it. The lengths of the sides containing the right angle are 6 cm and 8 cm . Find the radius of the circle.
3. A circle is inscribed in $\triangle A B C$ having sides $8 \mathrm{~cm}, 10$ cm and 12 cm as shown in figure, Find AD, BE and CF.

D Watch Video Solution

4. $P Q$ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such that
$\angle P O R=120^{\circ}$. Find $\angle O P Q$.

- Watch Video Solution

5. A tangent ST to a circle touches it at $\mathrm{B} . \mathrm{AB}$ is a chord such that $\angle A B T=65^{\circ}$, Find $\angle A O B$, where O is the centre of the circle.

D Watch Video Solution

6. In figure, O is the centre of the circle with radius 5
cm . T is a point such that $\mathrm{OT}=13 \mathrm{~cm}$ and OT intersects
the circle E, if $A B$ is the tangent ot the circle at E, find
the length of AB.

D Watch Video Solution

7. In two concentric circles, a chord of length 16 cm of larger circle becomes a tangent to the smaller circle whose radius is 6 cm . Find the radius of the larger circle.
8. Two circles with centres O and O ' of radii 3 cm and 4 cm , respectively intersect at two points P and Q, such that $O P$ and $O^{\prime} P$ are tangents to the two circles. Find the length of the common chord PQ .

D Watch Video Solution

9. Show that the angle bisectors of a triangle are concurrent.
10. In $\triangle A B C$, with $\angle B=90^{\circ}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AB}=8 \mathrm{~cm}$,
D is a point on $A C$ such that $A D=2 \mathrm{~cm}$ and E is the midpoint of $A B$. Join D to E and extend it to meet at F.

Find $B F$.

- Watch Video Solution

11. An artist has created a triangular stained glass
window and has one strip of small length left before
completing the window. She needs to figure out the length of left out portion based on the lengths of the
other sides as shown in the figure .

- Watch Video Solution

12. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?

D Watch Video Solution

13. Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.
14. Draw the two tangents from a point which is 10 cm away from the centre of a circle of raiud 5 cm . Also, measure the lengths of the tangents.

- View Text Solution

15. Take a point which is 11 cm away from the centre of
a circle of radius 4 cm and draw the two tangents to
the circle from that point.

- View Text Solution

16. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm . Also, measure the lengths of the tangents.

- View Text Solution

17. Draw a tangent to the circle from the point P having radius 3.6 cm , and centre at 0 . Point P is at a distance 7.2 cm from the centre.

- View Text Solution

Solution To Exercise 45

1. If in triangles $A B C$ and EDF, $\frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
A. $\angle B=\angle E$
B. $\angle A=\angle D$
C. $\angle B=\angle D$
D. $\angle A=\angle F$

Answer: C

D Watch Video Solution

2.

then the value of $\angle R$ is
A. 40°
B. 70°
C. 30°
D. 110°

Answer: B

- Watch Video Solution

3. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is
A. 2.5 cm
B. 5 cm
C. 10 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer: D

- Watch Video Solution

4. In a given figure, $\mathrm{ST}|\mid \mathrm{QR}, \mathrm{PS}=2 \mathrm{~cm}$ and $\mathrm{QS}=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of
$\triangle P S T$

A. $25: 4$
B. $25: 7$
C. 25: 11
D. $25: 13$

Answer: A
5. The perimeters of two similar triangles
$\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively.
IF PQ=10 cm, then the length of $A B$ is
A. $6 \frac{2}{3} \mathrm{~cm}$
B. $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
C. $66 \frac{2}{3} \mathrm{~cm}$
D. 15 cm

Answer: D

6. If in $\triangle A B C, \mathrm{DE}| | \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is
A. 1.4 cm
B. 1.8 cm
C. 1.2 cm
D. 1.05 cm

Answer: A
7. In a $\triangle A B C$, Adis the bisector of $\angle B A C$. If $\mathrm{AB}=8 \mathrm{~cm}$, $B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is
A. 6 cm
B. 4 cm
C. 3 cm
D. 8 cm

Answer: B
8.
In
the
adjacent
$\angle B A C=90^{\circ}$ and $A D \perp B C$ then

A. $B D \cdot C D=B C^{2}$
B. $A B \cdot A C=B C^{2}$
C. $B D . C D=A D^{2}$
D. $A B \cdot A C=A D^{2}$
9. Two poles of heights 6 m and 11 stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops ?
A. 13 m
B. 14 m
C. 15 m
D. 12.8 m

Answer: A

10. In the given figure, $P R=26 \mathrm{~cm}, \mathrm{QR}=24 \mathrm{~cm}$, $P A Q=90^{\circ}, P A=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find $\angle P Q R$

A. 80°
B. 85°
C. 75°
D. 90°
11. A tangent is perpendicular to the radius at the
A. Centre
B. Point of contact
C. infinity
D. chord

Answer: B
12. How many tangents can be drawn to the circle from an exterior point?
A. one
B. two
C. infinite
D. zero

Answer: B

D Watch Video Solution
13. The two tangents from an external points P to a circle with centre at O are PA and PB . If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
A. 100°
B. 110°
C. 120°
D. 130°

Answer: B

- Watch Video Solution

14. In figure $C P$ and $C Q$ are tangents to a circle with centre at 0 . ARB is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is \qquad .

A. 6 cm
B. 5 cm
C. 8 cm
D. 4 cm

Answer: D

(D) Watch Video Solution

15. In figure if $P R$ is tangent to the circle at P and O is the centre of the circle then $\angle P O Q$ is

A. 120°
B. 100°
C. 110°
D. 90°

Answer: A

(D) Watch Video Solution

Solution To Unit Exercise

1. In the figure, if $B D \perp A C$ and $C E \perp A B$, prove that
(i) $\triangle A E C \sim \triangle A D B$
(ii) $\frac{C A}{A B}=\frac{C E}{D B}$

D Watch Video Solution

2. In the figure, if $B D \perp A C$ and $C E \perp A B$, prove that
(i) $\triangle A E C \sim \triangle A D B$
(ii) $\frac{C A}{A B}=\frac{C E}{D B}$

D Watch Video Solution

3. In the given figure, $A B\|C D\| E F$. If $A B=6 \mathrm{~cm}, C D=x \mathrm{~cm}$,
$E F=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and $\mathrm{DE}=\mathrm{ycm}$. Find x and y .

- Watch Video Solution

4. O is any point inside a triangle $A B C$. The bisector of
$\angle A O B, \angle B O C$ and $\angle C O A$ meet the sides AB, BC and CA in point D, E and F respectively.

Show that $A D \times B E \times C F=D B \times E C \times F A$

- Watch Video Solution

5. In the figure, $A B C$ is a triangle in which $A B=A C$.

Points D and E are points on the side $A B$ and $A C$ respectively such that $A D=A E$. Show that points B, C, E and D lie on a same circle.

6. Two trains leave a railway station at the same time.

The first train travels due west and the second train due north. The first train travels at a speed of $20 \mathrm{~km} /$ hr and the second train travels at $30 \mathrm{~km} / \mathrm{hr}$. After 2 hours, what is the distance between them ?

D Watch Video Solution

7. D is the mid point of side BC and $A E \perp B C$. If $\mathrm{BC}=\mathrm{a}$,
$A C=b, A B=c, E D=x, A D=p$ and $A E=h$, prove that
(i) $b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
$(i i i) b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
8. D is the mid point of side BC and $A E \perp B C$. If $\mathrm{BC}=\mathrm{a}$,
$A C=b, A B=c, E D=x, A D=p$ and $A E=h$, prove that
$(i) b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
$(i i i) b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$

D Watch Video Solution

9. D is the mid point of side BC and $A E \perp B C$. If $\mathrm{BC}=\mathrm{a}$,
$A C=b, A B=c, E D=x, A D=p$ and $A E=h$, prove that
(i) $b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
$(i i i) b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$

- Watch Video Solution

10. A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is 4 m from the mirror B, he can see the reflection of the top of the tree. How height is the tree?
11. An emu which is 8 ft tall standing at the foot of a pillar which is 30 ft height. It walks away from the pillar. The shadow of the emu falls beyond emu. What is the relation between the length of the shadow and the distance from the emu to the pillar ?

D Watch Video Solution

12. Two circles intersect at A and B. From a point P on one of the circles lines PAC and PBD are drawn intersecting the second circle at C and D. Prove that CD is parallel to the tangent at P.
13. Let $A B C$ be a triangle and D, E, F are points on the respective sides $A B, B C, A C$ (or their extensions). Let $A D$
: $\mathrm{DB}=5: 3, \mathrm{BE}: \mathrm{EC}=3: 2$ and $\mathrm{AC}=21$. Find the length of the line segment CF.

- Watch Video Solution

Solution To Thinking Corner

1. Are square and a rhombus similar or congruent.

Discuss.
2. Are a rectangle and a parallelogram similar. Discuss.

- Watch Video Solution

3. Write down any five Pythagorean triplets ?

- Watch Video Solution

4. In a right triangle the sum of the other two angles is
\qquad

D Watch Video Solution

5. Can all the three sides of a right angled triangle be

 odd numbers ? Why ?
D Watch Video Solution

6. Can we draw two tangents parallel to each other on a circle?

- Watch Video Solution

7. Can we draw two tangents perpendicular to each other on a circle ?

Solution To Progress Check

1. All circles are (congruent/similar).

- Watch Video Solution

2. All squares are (similar/congruent).

- Watch Video Solution

3. Two triangles are similar, if their corresponding angles are and their corresponding sides are

- Watch Video Solution

4. All similar triangles are congruent - True/False

- Watch Video Solution

5. All congruent triangles are similar - True/False.

(D) Watch Video Solution

6. Give two examples of pair of non - similar figures ?
7. A straight line drawn ____ to a side of a triangle divides the order two sides proportionality.

- Watch Video Solution

8. Basic Proportionality Theorem is also known as

D Watch Video Solution

9. Let $\triangle A B C$ be equilateral. If D is a point on BC and

AD is the internal bisector of $\angle A$. Using Angle Bisector

Theorem, $\frac{B D}{D C}$ is

D Watch Video Solution

10. The of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

- View Text Solution

11. If the median AD to the side BC of a $\triangle A B C$ is also an angle bisector of $\angle A$ then $\frac{A B}{A C}$ is
12. __ is the longest side of the right angled triangle.

- Watch Video Solution

13. The first theorem in mathematics is

- View Text Solution

14. If the square of the longest side of a triangle is
equal to sums of squares of other two sides, then the triangles is
15. State True or False. Justify them.

Pythagoras Theorem is applicable to all triangles.

D Watch Video Solution

16. State True or False. Justify them.

One side of a right angled triangle must always be a multiple of 4.

- Watch Video Solution

17. A straight line that touches a circle at a common point is called a

- Watch Video Solution

18. A chord is a subsection of

- Watch Video Solution

19. The lengths of the two tangents drawn from
point to a circle are equal.

- Watch Video Solution

20. No tangent can be drawn from of the circle.
21. is a cevian that divides the angle, into two equal halves.

(D) Watch Video Solution

Solution To Activities

1. Let us try to construct a line segment of length $\sqrt{2}$.
2. Take any ruled paper and draw a triangle $A B C$ with its base on one of the lines. Several parallel lines will cut the triangle ABC. Select any one line among them and name the points where it meets the sides $A B$ and AC as P and Q .

3. Step 1 : Take a chart and cut it like a triangle as shown in Fig. (a).

Step 2 : Then fold it along the symmetric line AD. Then
C and B will be one upon the other.
Step 3 : Similarly fold it along $C E$, then B and A will be one upon the other.

Step 4 : Similarly fold it along BF , then A and C will be one upon the other.

Fig (a)

Fig (h)
if they are equal ?
In the three cases, the internal bisector of an angle of
a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

What do you conclude from this activity?

D View Text Solution

4.

(iv)

(ii) is three times of the triangle (i), the sides of triangle (iii) is four times of the triangle (i), the sides of triangle (iv) is five times of triangle (i).

Step 3: Now keeping the common side length the triangle (ii) and (iii) over the triangle (iv) such that the sides of these two triangles [(ii) and (iii))] coincide with the triangle (iv).

Observe the hypotenuse side and write down the equation. What do you conclude?

- View Text Solution

5. Take two consecutive odd numbers.
6. Write the reciprocals of the above numbers and add them. You will get a number of the form $\frac{p}{q}$.

- View Text Solution

7. Add 2 to the denominator of $\frac{p}{q}$ to get $\mathrm{q}+2$.

- View Text Solution

8. Now consider the numbers $\mathrm{p}, \mathrm{q}, \mathrm{q}+2$. What relation you get between these three numbers?
9. Try for three pairs of consecutive odd numbers and conclude your answer.

- View Text Solution

Other Important Objective Type Questions

1. How many tangents can be drawn to the circle from an exterior point ?
A. one
B. two
C. three
D. many

Answer: b

D Watch Video Solution

2. The length of the tangents from an exterior point P
to a circle with centre at O and radius 5 cm , is 12 cm , then OP in :
A. 10 cm
B. 19 cm
C. 7 cm
D. 13 cm

Answer: D

- Watch Video Solution

3. Two tangents PA and PB are drawn from an external point P to a circle with centre at O . If $A O B=105^{\circ}$ the $A \widehat{P} B$ is :
A. 95°
B. 85°
C. 75°
D. 65°

Answer: C

D Watch Video Solution

4. Two poles 12 cm and 22 cm stand vertically on a
plane ground. If the distance between their tops is 26
cm find the distance between their feet :
A. 30 cm
B. 24 cm
C. 12 cm
D. 6 cm
5. In the figure $(P \widehat{Q} R)=90^{\circ}$
$P R=26 \mathrm{~cm}, Q R=24 \mathrm{~cm}$,
$(P \widehat{A} Q)=90^{\circ} . P A=6 c m$ find QA .

A. 12 cm
B. 8 cm
C. 9 cm
D. 10 cm

Answer: B

(D) Watch Video Solution

6. The perimeter of two similar triangles $\triangle P Q R$ and
$\Delta X Y Z$ are 45 cm and 30 cm respectively. If $\mathrm{XY}=12 \mathrm{~cm}$ the length of $P Q$ is :
A. 14 cm
B. 18 cm
C. 12 cm
D. 15 cm

- Watch Video Solution

7. $\triangle A B C$ is similar to $\triangle P Q R \widehat{A}=65^{\circ}, \widehat{B}=60^{\circ}$, find \widehat{R}.
A. 65°
B. 70°
C. 55°
D. 50°

Answer: C
8.
$\triangle A B C, D E| | B C \overline{A D}=5 \mathrm{~cm}, A B=8 \mathrm{~cm} A E=10 \mathrm{~cm}$
then EC is :

D Watch Video Solution
9. In $\triangle A B C, \widehat{A}=90^{\circ}, A B=4, A C=3, D$ is the mid point of $B C$. Then $B D$ is :
A. 3 cm
B. 1.5 cm
C. 2 cm
D. 2.5 cm

Answer: D

10.

From the figure given find \widehat{Q} if both are similar.
A. 45°
B. 30°
C. 90°
D. 60°

Answer: B

In the figure given $\widehat{A}=C \widehat{E} D, \Delta C A B \sim \Delta C E D$ find x .
A. 2
B. 2.5
C. 1.5
D. 3

Answer: D

- Watch Video Solution

12. If $\triangle A B C$ is similar to $\triangle D E F$ such that $\mathrm{BC}=4 \mathrm{~cm}$,
$\mathrm{EF}=5 \mathrm{~cm}$ and are a of $\triangle A B C=64 \mathrm{~cm}^{2}$ find are a of
$\triangle D E F$.
A. $75 \mathrm{~cm}^{2}$
B. $72 \mathrm{~cm}^{2}$
C. $100 \mathrm{~cm}^{2}$
D. $90 \mathrm{~cm}^{2}$

D Watch Video Solution

13. From the diagram find x if
$A Q|\mid B P . Q O=5 \mathrm{~cm}, O P=4 \mathrm{~cm}, B P=8 \mathrm{~cm}$.

A. 10 cm
B. 12 cm
C. 8 cm
D. 6 cm

Answer: A

D Watch Video Solution

14. Given that $\triangle A B C$ is similar $\triangle P Q R$. Their perimeters are in the ratio $5: 6$. Is $P Q=12 \mathrm{~cm}$ find $A B$.
A. 7.5 cm
B. 8.5 cm
C. 9 cm
D. 10 cm

Answer: D

- Watch Video Solution

15.

In $\quad \triangle A B C D E|\mid B C . A D=3, A B=5, C E=1$.
Find AC.
A. 3
B. 2
C. 2.5
D. 1.5

Answer: C

D Watch Video Solution

16. In $\triangle A B C, A D$ is the bisector of
$\widehat{A} . A B=20 \mathrm{~cm}, A C=28 \mathrm{~cm}, B C=12 \mathrm{~cm}$ Find $D C$.

A. 7.5 cm
B. 7 cm
C. 8 cm
D. 8.5 cm

Answer: B

D Watch Video Solution

17. Find the length of the tangents drawn from C point 10 cm away from a centre of the circle whose radii is 6 cm .
A. 10 cm
B. 8 cm
C. 12 cm
D. 14 cm

Answer: B

(D) Watch Video Solution

18. Match the following :

18.is the longest side of the right angled triangle	(a)	Parallel			
19.	Pythagoras theorem is applicable for all triangles	(b)	Similar			
20.	If two angles of a triangle are equal to two angles of another triangle then the triangles are called........	(c)	Hypotenusc	$	$	21.A straight line drawn to a side of a triangle divides the other two sides proportionality.
:---						
(d)	Not tone.\quad.					

19. $\triangle A B C$ is circumscribing a circle. Find the length of BC.

A. 11 cm
B. 12 cm
C. 10 cm
D. 14 cm

Answer: D

- Watch Video Solution

20. O is the centre of the circle $Q O R$ is diameter. $P Q$ is tangent to the circle. Given $P \widehat{O} R=130^{\circ}$. Find $O \widehat{P} Q$.

21. If $\triangle A B C$ is an isosceles triangle with $\widehat{C}=90^{\circ}$ and $A C=\sqrt{8} \mathrm{~cm}$ then AB is :
A. 4 cm
B. 4.5 cm
C. $\sqrt{8} \mathrm{~cm}$
D. 16 cm

Answer: A

D Watch Video Solution
22. In $\triangle A B C, A B=A C$ and AD is the angle bisector
\widehat{A} meeting BC at D . If $\mathrm{BD}=2.5 \mathrm{~cm}$. Find BC .

D Watch Video Solution

