©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - PREMIERS PUBLISHERS

EXAMINATION QUESTION PAPER MARCH 2019

A. $\tan ^{-1}(\cos x)+c$
B. $\sin ^{-1}(\tan x)+c$
C. $\tan ^{-1}(\sin x)+c$
D. $2 \sin ^{-1}(\tan x)+c$

Answer:

D Watch Video Solution

2. It is given that the events A and B are such
that
$P(A)=\frac{1}{4}, P(A / B)=\frac{1}{2}$ and $P(B / A)=\frac{2}{3}$
. Then $P(B)$ is
A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer:

D Watch Video Solution
3. If $A=\left\{\frac{x, y}{y}=e^{x} \cdot x \in[0, \infty)\right\} \quad$ and
$B=\left\{\frac{x, y}{y}=\sin x, x \in[0, \infty)\right\} \quad$ then $n(\text { Acap } B)^{\prime}$ is?
A. ∞
B. 1
C. ϕ
D. 0

Answer:
4. If $f(x)=\left\{\begin{array}{l}2 a-x, \text { for } \quad-a<x<a \\ 3 x-2 a, \text { for } x \geq a\end{array}\right.$ then which of the following is true?
A. $f(x)$ is continuous for all x in R
B. $f(x)$ is differentiable for all $x \geq a$
C. $f(x)$ is not differntiable at $\mathrm{x}=\mathrm{a}$
D. $f(x)$ is discontinuous at $\mathrm{x}=\mathrm{a}$

Answer:

5. A number is selected from the set
$\{1,2,3, \ldots, 20\}$. The probability That the selected number is divisible by 3 or 4 is

> A. $\frac{1}{2}$
> B. $\frac{2}{3}$
> C. $\frac{2}{5}$
> D. $\frac{1}{8}$

Answer:

- Watch Video Solution

6. The value of x , for which the matrix $\mathrm{A}=$ $\left[\begin{array}{cc}e^{x-2} & e^{7+x} \\ e^{2+x} & e^{2 x+3}\end{array}\right]$ is singular is
A. 7
B. 6
C. 9
D. 8

Answer:

7. The number of five digit numbers in which all digits are even, is?
A. 4×5^{4}
B. 4×5^{5}
C. 5^{5}
D. 5×5

Answer:
(Watch Video Solution
8. If $|x+2| \leq 8$, then x belongs to?
A. $(6,10)$
B. $(-10,6)$
C. [-6,10]
D. $[-10,-6]$

Answer:

D Watch Video Solution
9. The $n^{\text {th }}$ term of the sequence $2,7,14,23, \ldots$ is:
A. $n^{2}+2 n+1$
B. $n^{2}+2 n-1$
C. $n^{2}-2 n-1$
D. $n^{2}-2 n+1$

Answer:
10. Straight line joining the points $(2,3)$ and
$(-1,4)$ passes through the point (α, β) if
A. $\alpha+3 \beta=11$
B. $3 \alpha+\beta=11$
C. $\alpha+2 \beta=7$
D. $3 \alpha+\beta=11$

Answer:
(Watch Video Solution
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=1-|x|$. Then the range of f is
A. $(-\infty,-5)$
B. $(-\infty, 5)$
C. $(-5, \infty)$
D. $(-5, \infty)$

Answer:

- Watch Video Solution

12. The expansion of $(1-x)^{-2}$ is?
A. $1-x+x^{2}-, \ldots$
B. $1+x+x^{2}+\ldots$.
C. $1-2 x+3 x^{2}-.$.
D. $1+2 x+3 x^{2}+$

Answer:

13. Which of the following is not a periodic function with period 2π ?
A. $\tan x$
B. $\cos x$
C. $\sin x$
D. $\cos e c x$

Answer: A

D Watch Video Solution
14. The line $\frac{x}{a}-\frac{y}{b}=0$ has the slope 1 ,if:
A. $a=b$
B. only for $a=1, b=1$
C. $a>b$
D. $a<b$

Answer:

- Watch Video Solution

15. Which one the following is not true about the matrix [100000005]?
A. an upper triangular matrix
B. a lower triangular matrix
C. a scalar matrix
D. a diagonal matrix

Answer:
(D) Watch Video Solution
16. The unit vector parallel to the resultant of
the vectors $\hat{i}+\hat{j}-\hat{k} \quad$ and $\quad \hat{i}-2 \hat{j}+\hat{k}$ is

$$
\begin{aligned}
& \text { А. } \frac{2 \hat{i}-\hat{j}+\hat{k}}{\sqrt{5}} \\
& \text { В. } \frac{2 \hat{i}-\hat{j}}{\sqrt{5}} \\
& \text { С. } \frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}} \\
& \text { D. } \frac{2 \hat{i}+\hat{j}}{\sqrt{5}}
\end{aligned}
$$

Answer:

17. If $f(x)=x^{2}-3 x$, then the points at which $f(x)=f^{\prime}(x)$ are
A. both irrational
B. one rational and another irrational
C. both positive integers
D. both negative integers

Answer:
(D) Watch Video Solution
18. If \vec{a}, \vec{b} are the position vectors A and B
then which one of the following points whose position vector lies on $A B$, is

$$
\begin{aligned}
& \text { A. } \frac{2 \vec{a}+\vec{b}}{3} \\
& \text { B. } \frac{\vec{a}-\vec{b}}{3} \\
& \text { C. } \vec{a}+\vec{b} \\
& \text { D. } \frac{2 \vec{a}-\vec{b}}{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

1. Write the use of horizontal line test.

D Watch Video Solution
2. Write the relationship between Permutation and Combination?
3. Count the number of positive integers greater than 6000 and less than 7000 which are divisible by 5, provided that no digits are repeated?

D Watch Video Solution

4. Find the separated equations from a combined equation of a straight line $2 x^{2}+x y-3 y^{2}=0$

5. Define diagonal and scalar matrices?

D Watch Video Solution

6. Find a unit vector along the directions of
the vector $5 \hat{i}-3 \hat{j}+4 \hat{k}$?

- Watch Video Solution

7. Define a continuous function on the closed interval [a,b]

- Watch Video Solution

8. Consider the function $f(x)=\sqrt{x}, x \geq 0$

- Watch Video Solution

9. An integer is chosen at random from the
first ten positive integers.Find the probability
that it is a multiple of three?

D Watch Video Solution

$$
\begin{aligned}
& \text { 10. Is it correct } \\
& A \times A=\{(a, a): a \in A\} \quad \text { to } \quad \text { say } \\
& \text { Justify your }
\end{aligned}
$$ answer.

(Watch Video Solution

1. A foot ball player can kick a football from ground level with an initial velocity of $80 \mathrm{ft} /$ second. Find the maximum horizontal distance the football travels and at what angle (Take $g=32$).

- Watch Video Solution

2. Find the coefficient of x^{3} in the expansion of $(2-3 x)^{7}$?
3. Find the nearest point on the line $x-2 y-5$
from the origin.

- Watch Video Solution

4. Prove that square matrix can be expressed as the sum of a symmetric matrix and a skewsymmetric matrix.
5. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$
$|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

6. Examine the continuity of the following :
$\cot x+\tan x$

- Watch Video Solution

7. Differentiate the following :
$y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$

- Watch Video Solution

8. Find $\frac{d y}{d x}$ if $\mathrm{x}=\mathrm{a}(\mathrm{t}-\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1-\cos \mathrm{t})$?

- Watch Video Solution

9. Evaluate: $\int(x-3) \sqrt{x+2} d x$.
10. Construct a suitable domain X such that $f: X \rightarrow N$ defined by $f(n)=n+3$ to be one to one or onto?

- Watch Video Solution

Part lv

1. Write any five different forms of an equation of a straight line.

- Watch Video Solution

2. (a) Solve the equation
$\sqrt{6-4 x-x^{2}}=x+4$ OR (b) Prove that in
any $\Delta A B C, \Delta=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$, where s
is the semi - perimeter of $\triangle A B C$?

D Watch Video Solution

3. (a) Prove that ${ }^{\wedge} 3 \sqrt{x^{3}+7}-{ }^{3} \sqrt{x^{3}+4}$ is approcimately equal to $\frac{1}{x^{2}}$ when x is large. OR
(b) Find the unit vectors perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$?

- Watch Video Solution

4. The chance X, Y and Z becoming managers of certain company and 4:2:3. the probabilities
that bonus scheme will be introduced if X, Y and Z become managers are $0.3,0.5$ and 0.4 respectively? If the bonus scheme has been
introduced,What is the probability that Z was

appointed as the manager?

- Watch Video Solution

