# ©゙’doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - PREMIERS PUBLISHERS

## SETS,RELATIONS AND FUNCATIONS

## Worked Examples

1. If $A$ and $B$ are two sets so that
$n(B-A)=2 n(A-B)=4 n(A \cap B)$ and if
$n(A \cup B)=21$. Find $n(p(B))$

## - Watch Video Solution

2. In a class of 100 students 46 students play football, 26 students play hockey, 11 students play volley ball. 6 play football and hockey, 5 play hockey and volley ball and 5 play football and volley ball. 4 play all the three games. Find the number of students play only! football
3. Find the number of subsets of $A$ if

$$
A=\left\{x: x=n^{2}+1,3 \leq n \leq 7, n \in N\right\}
$$

## D Watch Video Solution

4. Two sets $A$ and $B$ are such that $n(A)=m$ and
$(B)=k$. If the number of subsets $A$ and $B$ is!

144 , find the values of $m$ and $k$.

D Watch Video Solution
5. If $A=\{a, b, c\} \quad B=\{c, d, e$, find $n(A \cup B) \times n(A \cap B) \times n(A \Delta B)$.

D Watch Video Solution
6. If $\mathrm{n}(\mathrm{A})=12$ and $n(A \cap B)=5$, find $n\left((A \cap B)^{\prime} \cap A\right)$

- Watch Video Solution

7. In the set of integers $Z$, define $m R n$ if $m-n$ is a multiple of 5 . Is $R$ equivalence relation"?

## - Watch Video Solution

8. S is the set of all first n natural numbers. A relation R is defined as $R=\{(x, x) / x e S\}$. Is R reflexive? Is RSymmetric? Is R transitive?

## - Watch Video Solution

9. Let $S=(a, b, c)$ and $R=\{(a, a),(a, b),(b, b),(a$,
c), (c, a)\}. IfR is to be equivalence relation. "Find
the minimum number of ordered pairs to be included.

## - Watch Video Solution

10. Check for one and onto.(i) $f: N \rightarrow N$ define by $\mathrm{f}(\mathrm{n})=2 \mathrm{n}-17$
11. Check for one and onto.(i) $f: N \cup N\{0\} \rightarrow$ define by $f(n)=n+1$

## - Watch Video Solution

12. " Check for one and onto.(i)

$$
f: N \rightarrow N d e f \in e b y f(\mathrm{n})=\mathrm{n}^{\wedge}(2)^{`}
$$

## - Watch Video Solution

13. Check for one and onto.(ii) $f: R \rightarrow R$ define
by $f(n)=\frac{1}{2}$

- Watch Video Solution

14. If $f: R \rightarrow R$ is defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\wedge}(2)+1$.

Find the pre images of 26,5 and -3 .

- Watch Video Solution

15. If $f:(-3,3) \rightarrow A$ is given by
$f(x)=x^{3}+2$. Find A so that f 'is onto.

- Watch Video Solution

16. If $f: R-\{-2,2\}$ toRisgivenby $(2 x) /\left(x^{\wedge}(2)-4\right)^{\text {`verfy }}$ whether $f$ is one or not

- Watch Video Solution

17. Find the largest possible domain for the real valued function $f$ defined by $f(x)=\sqrt{x^{2}-4 x+3}$.

## D Watch Video Solution

18. find the range of $f(x)=\frac{1}{1+4 \cos x}$

D Watch Video Solution
19. Find the domain of $f(x)=\frac{1}{1-2 \sin x}$

## - Watch Video Solution

20. Find the domain of the real valued
function given by $f(x)=\frac{\sqrt{16-x^{2}}}{x^{2}-9}$

## D Watch Video Solution

21. Let $f$ and $g$ be two functions from $R$ to $R$ defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $g(x)=x^{2}$. Find $f \circ g$ and $g \circ f$.
22. Let $f, g, h$ be three functions from $R$ to $R$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}+3, g(x)=2 x^{2}, \mathrm{~h}(\mathrm{x})=3 \mathrm{x}+1$.

## Show that (fog)oh=fo(goh).

## D Watch Video Solution

23. Let $f=\{(2,5),(3,6),(4,6)\}$ and $g=\{(5,2),(6,3)$,
$(7,5)\}$. Find $g \circ f$. Can we find $f \circ g$ ?
24. Give an example, such that if f and: $g \circ f$ are one-one then $g$ need not be one-one.

## - Watch Video Solution

25. Letf, $g: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-|\mathrm{x}|$ and $g(x)=3 x+|x|$, find $f \circ g$.

## D Watch Video Solution

26. If $R \rightarrow R$ is defined byf $(\mathrm{x})=3 \mathrm{x}+1$. Prove that f is bijection and find its inverse.

## - Watch Video Solution

## Solution To Exercise 11

1. Write the in roster form.
$\left\{\mathrm{x} \in \mathbb{N}: x^{2}<121\right.$ and x is a prime $\}$.

## D Watch Video Solution

2. Write the in roster form.
the set of all positive roots of the equation (x-
1) $(x+1)\left(x^{2}-1\right)=0$.

## D Watch Video Solution

3. Write the following in roster form.
(iii) $\{x \in N: 4 x+9<52\}$

## D Watch Video Solution

4. Write the in roster form.
$\left\{x: \frac{x-4}{x+2}=3, x \in \mathbb{R}-\{-2\}\right\}$
5. Write the set $\{-1,1\}$ in set builder form.

## D Watch Video Solution

6. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is an even prime number $\}$

- Watch Video Solution

7. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is an odd prime number $\}$

- Watch Video Solution

8. State whether the following sets are finite or infinite.
(iii) $\{x \in Z: x$ is even and less than 10$\}$.

## - Watch Video Solution

9. By taking suitable sets $A, B, C$, verify the results :
$A \times(B \cap C)=(A \times B) \cap(A \times C)$

## D Watch Video Solution

10. By taking suitable sets $A, B, C$, verify the results :
$A \times(B \cup C)=(A \times B) \cup(A \times C)$
11. By taking suitable sets $A, B, C$, verify the results :
$(A \times B) \cap(B \times A)=(A \cap B) \times(B \cap A)$

- Watch Video Solution

12. By taking suitable sets $A, B, C$, verify the results :
$\mathrm{C}-(\mathrm{B}-\mathrm{A})=(\mathrm{C} \cap A) \cup(C \cap B)$

- Watch Video Solution

13. By taking suitable sets $A, B, C$, verify the results :
(B-A) $\cap C=(B \cap C)-A=B \cap(C-A)$

D Watch Video Solution
14. By taking suitable sets $A, B, C$, verify the results :
$(\mathrm{B}-\mathrm{A}) \cup C=(B \cup C)-(A-C)$

D Watch Video Solution
15. Justify the trueness of the statement " An element of a set can never be a subset of itself ".

D Watch Video Solution
16. If $n(p(A))=1024, n(A \cup B)=15$ and $n(P$
$(B))=32$, then find $n(A \cap B)$.

D Watch Video Solution
17. If $n(A \cap B)=3$ and $n(A \cup B)=10$ then find
$\mathrm{n}(\mathrm{P}(\mathrm{A} \triangle \mathrm{B}))$

- Watch Video Solution

18. For a set $\mathrm{A}, A \times A$ contains 16 elements
and two of its elements are $(1,3)$ and $(0,2)$. Find
the elements of A .

- Watch Video Solution

19. If $A \times A$ has 16 elements, $\mathrm{S}=\{(\mathrm{a}, \mathrm{b})$
$\in A \times A: a<b\}, \quad(-1,2)$ and $(0,1)$ are two
elements of $S$, then find the remaining elements of S.

## D Watch Video Solution

## Solution To Exercise 12

1. State whether the following sets are finite or infinite.
(iv) $\{x \in R: x$ is a rational number $\}$.

## - Watch Video Solution

2. Discuss the relations for reflexivity, symmetricity and transitivity :

The relation R defined on the set of all positive integers by " m Rn if m divides n ".

D Watch Video Solution
3. Let $P$ be the set of all triangles in a plane and $R$ be the relation defined on $P$ as $a R b$ if a is similar to $b$. Prove that $R$ is an equivalence relation.

## - Watch Video Solution

4. Discuss the relations for reflexivity,
symmetricity and transitivity :
Let A be the set consisting of all the members
of a family. The relation $R$ defined by " $a R b$ if a is not a sister of $b "$

## D Watch Video Solution

5. Discuss the following relations for reflexivity, symmetricity and transitivity:
(iv)Let A be the set consisting of all the 3 . Let female members of a family. The relation $R$ defined by"aRb if $a$ is "not" a sister of b""
6. Discuss the relations for reflexivity, symmetricity and transitivity :

On the set of natural numbers the relation $R$ defined by " $x$ Ry if $x+2 y=1$ ".

## - Watch Video Solution

7. Let $X=\{a, b, c, d\}$, and $R=\{(a, a)(b, b)(a, c)\}$.

Write down the minimum number of ordered pairs to be included to $R$ to make it
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.

## - Watch Video Solution

8. Let $X=\{a, b, c, d\}$, and $R=\{(a, a)(b, b)(a, c)\}$.

Write down the minimum number of ordered
pairs to be included to $R$ to make it
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.

## - Watch Video Solution

9. Let $P$ be the set of all triangles in a plane and $R$ be the relation defined on $P$ as a $R b$ if a is similar to $b$. Prove that $R$ is an equivalence relation.

## D Watch Video Solution

10. Let $X=\{a, b, c, d\}$, and $R=\{(a, a)(b, b)(a, c)\}$.

Write down the minimum number of ordered
pairs to be included to $R$ to make it
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.

## D Watch Video Solution

11. Prove that the relation " friendship " is not an equivalence relation on the set of all people in Chennai.

D Watch Video Solution
12. On the set of natural number let $R$ be the relation defined by aRb if $\mathrm{a}+\mathrm{b} \leq 6$. Write down the relation by listing all the pairs. Check whether it is
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.

## - Watch Video Solution

13. Let $A=\{a, b, c\}$. What is the equivalence relation of smallest cardinality on A ? What is
the equivalence relation of largest cardinality on $A$ ?

## D Watch Video Solution

14. Let $P$ be the set of all triangles in a plane and $R$ be the relation defined on $P$ as a $R b$ if a
is similar to $b$. Prove that $R$ is an equivalence relation.
15. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give $a$ function from $A \rightarrow B$ for each of the : neither one -to -one and nor onto.

## D Watch Video Solution

## Solution To Exercise 13

1. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is a rational number $\}$
2. Suppose that 120 students are studying in 4 sections of eleventh standard in a school. Let

A denotes the set of students and $B$ denote the set of the sections. Define a relation from
$A$ to $B$ as " $x$ related to $y$ if the student $x$ belongs to the section $y^{\prime \prime}$. Is this relation a function ? What can you say about the inverse relation ? Explain your answer.
3. Write the values of $f$ at $-4,1,-2,7,0$ if $f(x)=$
$\left\{\begin{array}{llc}-x+4 & \text { if } & -\infty<x \leq-3 \\ x+4 & \text { if } & -3<x<-2 \\ x^{2}-x & \text { if } & -2 \leq x<1 \\ x-x^{2} & \text { if } & 1 \leq x<7 \\ 0 & & \text { otherwise }\end{array}\right.$

## - Watch Video Solution

4. Write the values of $f$ at $-3,5,2,-1,0$ if $f(x)=$
$\left\{\begin{array}{l}x^{2}+x \\ x^{2}+3 x \\ x^{2} \\ x^{2}-3\end{array}\right.$

$$
\begin{gathered}
x \in(-\infty, 0) \\
x \in(3, \infty) \\
x \in(0,2)
\end{gathered}
$$

otherwise
5. State whether the following relations are functions or not. If it is a function check for one- to- oneness and ontoness. If it is not a function state why?

If $A=\{a, b, c\}$ and $f=\{(a, c)(b, c)(c, b)\}:(f: A \rightarrow A)$.

## - Watch Video Solution

6. State whether the following relations are functions or not. If it is a function check for
one- to- oneness and ontoness. If it is not a
function state why?

If $X=\{x, y, z\}$ and $f=\{(x, y)(x, z)(z, x)\}:(f: X \rightarrow$
X)

## D Watch Video Solution

7. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give $a$
function from $A \rightarrow B$ for each of the :
not one-to -one but onto.

## D Watch Video Solution

8. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give $a$
function from $A \rightarrow B$ for each of the :
one-to-one but not onto.

## D Watch Video Solution

9. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give $a$
function from $A \rightarrow B$ for each of the :
neither one -to -one and nor onto.

- Watch Video Solution

10. Find the domain of $\frac{1}{1-2 \sin x}$.

## ( Watch Video Solution

11. Find the largest possible domain of the real
valued function $\mathrm{f}(\mathrm{x})=\frac{\sqrt{4-x^{2}}}{\sqrt{x^{2}-9}}$.

## D Watch Video Solution

12. Find the range of the function $\frac{1}{2 \cos x-1}$.

- Watch Video Solution

13. Show that the relation $x y=-2$ is a function
for a suitable domain. Find the domain and the range of the function.

## D Watch Video Solution

14. Let $f$ and $g$ be two functions from $R$ to $R$ defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $g(x)=x^{2}$. Find $f \circ g$ and $g \circ f$.
15. If $f$ and $g$ are real valued functions define by
$f(x)=2 x-1$ and $g(x)=x^{2}$ then find
$(f+g+2)(x)$

## - Watch Video Solution

16. If $: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x-5$, prove
that $f$ is a bijection and find its inverse.

- Watch Video Solution

17. The weight of the muscles of a man is a
function of his body weight $x$ and can be expressed as $W(x)=0.35 x$. Determine the domain of this function.

## - Watch Video Solution

18. The distance of an object falling is a
function of time $t$ and can be expressed as $s(t)$
$=-16 t^{2}$. Graph the function and determine if
it is one-to-one.
19. The total cost of airfare on a given route is comprised of the base cost $C$ and the fuel surcharge $S$ in rupee. Both $C$ and $S$ are functions of the mileage $m, C(m)=0.4 m+50$ and $S(m)=0.03 \mathrm{~m}$. Determine a function for the total cost of a ticket in terms of the mileage and find the airfare for flying 1600 miles.
20. A salesperson whose annual earnings can be represented by the function $\mathrm{A}(\mathrm{x})=$ $30,000+0.04 x$, where $x$ is the rupee value of the merchandise he sells. His son is also in sales and his earnings are represented by the function $S(x)=25,000+0.05 x$. Find $(A+S)(x)$ and determine the total family income if they each sell Rs 1,50,00,000 worth of merchandise.

## - Watch Video Solution

21. The function for exchanging American dollars for Singapore Dollar on a given day is
$f(x)=1.23 x$, where $x$ represents the number of
American dollars. On the same day the
function for exchanging Singapore Dollar to
Indian Rupee is $\mathrm{g}(\mathrm{y})=50.50 \mathrm{y}$, where y represents the number of Singapore dollars.

Write a function which will give the exchange rate of American dollars in terms of Indian rupee.
22. The owner of a small restaurant can prepare a particular meal at a cost of Rupees
100. He extimate that if the menu price of the meal is $x$ rupees, then the number of customers who will order that meal at that price in an evening is given by the function $D$ $(x)=200-x$. Express his day revenue total cost and profit on this meal as a function of x .

## D Watch Video Solution

23. The formula for converting from

Fahrenheit to Celsius temperatures is $\mathrm{y}=$ $\frac{5 x}{9}-\frac{160}{9}$. Find the inverse of this function and determine whether the inverse is also a function.

## D Watch Video Solution

24. A simple ciphertakes a number and codes
it, using the function $f(x)=3 x-4$. Find the
inverse of this function, determine whether
the inverse is also a function and verify the symmetrical property about the line $y=x$ (by drawing the lines).

## D Watch Video Solution

## Solution To Exercise 1

1. Let $A$ and $B$ be two sets such that $n(A)=3$
and $n(B)=2$. If $(x, 1)(y, 2)(z, 1)$ are in $A \times B$, find
$A$ and $B$, where $x, y, z$ are distinct elements.

## Solution To Exercise 14

1. For the curve $\mathrm{y}=x^{3}$ given in figure draw, $y=-x^{3}$

## - Watch Video Solution

2. For the curve , $y=x^{\frac{1}{3}}$ given in figure draw.
$y=-x^{\left(\frac{1}{3}\right)}$
3. Graph the functions $\mathrm{f}(\mathrm{x})=x^{3}$ and $\mathrm{g}(\mathrm{x})=\sqrt[3]{x}$ on the same co-ordinate plane. Find fog and graph it on the plane as well. Explain your results.

## D Watch Video Solution

4. Write the steps to obtain graph of steps to
obtain the graph of the function $y=3$
$(x-1)^{2}+5$ from the graph $\mathrm{y}=x^{2}$.
5. From the curve $y=\sin x$, graph the functions.
$y=\sin (-x)$

## - Watch Video Solution

6. From the curve $y=x$, draw
$y=x+1$

## 7. From the curve $\mathrm{y}=|\mathrm{x}|$, draw

$$
y=|x-1|+1
$$

## D Watch Video Solution

8. From the curve $y=\sin x$ draw $y=\sin |x|$ ( Hint
$: \sin (-x)=-\sin x$.

## - Watch Video Solution

1. If $\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=e^{x}, x \in R\right\}$ and $\mathrm{B}=\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=$ $\left.e^{-x}, x \in \mathrm{R}\right\}$ then $\mathrm{n}(\mathrm{A} \cap \mathrm{B})$ is
A. infinity
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution


# 2. If $A=\{(x, y): y=\sin x, x \in R\}$ and $B=\{(x, y):$ 

 $y=\cos x, x \in R\}$ then $A \cap B$ containsA. no element
B. infinitely many elements
C. only one element
D. cannot be determined

Answer: B
(D) Watch Video Solution
3. The relation $R$ defined on a set $A=\{0,-1,1,2\}$
by xRy if $\left|x^{2}+y^{2}\right| \leq 2$, then which one of the following is true?
A. $R=\{(0,0),(0,-1),(0,1),(-1,0),(-1,1),(1,2)$,
$(1,0)\}$
B. $R^{-1}=\{(0,0),(0,-1),(0,1),(-1,0),(1,0)$,
C. Domain of $R$ is $\{0,-1,1,2\}$.
D. Range of $R$ is $\{0,-1,1\}$

## Answer: D

## Watch Video Solution

4. If $f(x)=|x-2|+|x+2|, x \in R$, then
A. $\mathfrak{f}(x)=\{(-2 x " \quad$ "x" "in" "(-oo","-2)),(4" "x" "in" "

$$
\text { (-2","2)),(2x" "x" "in" "(2","oo)):\} }
$$

B. $\mathfrak{f}(x)=\{(2 x$ " "x" "in" "(-oo","-2)),(4" "x" "(-2","2)),
(-2x" "x" "in" "(2","oo)):\}
C. $\mathfrak{f}(x)=\{(2 x " \quad$ "x" "in" "(-oo","-2)),(-4" "x" "
(-2","2)),(-2x" "x" "in" "(2","oo)):\}
D. `f(x)=\{(-2x" "x" "in" "(-oo","-2)),(2" "x" "(2","2)),
(2x" "x" "in" "(2","oo)):\}

Answer: A

## D Watch Video Solution

5. Let $\mathbb{R}$ be the set of all real numbers.

Consider the following subsets of the plane
$\mathbb{R} \times \mathbb{R}: S=\{(x, y): y=x+1$ and $0<x<2\}$ and $T$
$=\{(x, y): x-y$ is an integer $\}$. Then which of the following is true?
A. " $T$ is an equivalence relation but is not an equivalence relation"
B. "Neither S nor T is an equivalence relation"
C. Both S and T are equivalence relation
D. $S$ is an equivalence relation but $T$ is not an equivalence relation

Answer: A

## - Watch Video Solution

## 6. Let $A$ and $B$ be subsets of the universal set $\mathbb{N}$

, the set of natural numbers. Then $A^{\prime}$
$\cup\left[(A \cap B) \cup B^{\prime}\right]$ is
A. A
B. $\mathrm{A}^{\prime}$
C. Both S and T are equivalence relation
D. N

Answer: D

D Watch Video Solution
7. The number of students who take both the subjects Mathematics and Chemistry is 70 .

This represent $10 \%$ of the enrollment in Mathematics and $14 \%$ of the enrollment in

Chemistry. The number of students take at least one of these two subjects, is
A. 1120
B. 1130
C. 1100
D. insufficient data

Answer: B

## - Watch Video Solution

8. 

If
n
$((A \times B) \cap(A \times C))=8 \operatorname{and} n(B \cup C)=2$,
then $n(A)$ is
A. 6
B. 4
C. 8
D. 16

Answer: B

## - Watch Video Solution

9. If $\mathrm{n}(\mathrm{A})=2$ and $\mathrm{n}(B \cup C)=3$ then n
$[(A \times B) \cup(A \times C)]$ is
A. $2^{3}$
B. $3^{2}$
C. 6
D. 5

## D Watch Video Solution

10. If two sets $A$ and $B$ have 17 elements in
common, then the number of elements
common to the set $A \times B$ and $B \times A$ is
A. $2^{17}$
B. $17^{2}$
C. 34
D. insufficient data

Answer: B

## D Watch Video Solution

11. For non-empty sets $A$ and $B$, if $A$
$\subset B \operatorname{then}(A \times B) \cap(B \times A)$ is equal to
A. $A \cap B$
B. $A \times A$
C. $B \times B$
D. none of these

Answer: B

## D Watch Video Solution

12. The number of relations on a set containing 3 elements is
A. 9
B. 81
C. 512
D. 1024

## Answer: C

## D Watch Video Solution

13. Let $R$ be the universal relation on a set $X$
with more than one element. Then R is
A. not reflexive
B. not symmetric
C. transitive
D. none of the above

## D Watch Video Solution

14. Let $X=\{1,2,3,4\}$ and $R=\{(1,1),(1,2),(1,3),(2,2)$,
$(3,3),(2,1),(3,1),(1,4),(4,1)\}$. Then $R$ is
A. reflexive
B. transitive Hinta
C. symmetric
D. equivalence

Answer: B

## - Watch Video Solution

15. The range of the function $\frac{1}{1-2 \sin x}$ is

$$
\text { A. }(-\infty,-1) \cup\left(\frac{1}{3}, \infty\right)
$$

B. $\left(-1, \frac{1}{3}\right)$
C. $\left[-1, \frac{1}{3}\right]$
D. $(-\infty,-1) \cup\left(\frac{1}{3}, \infty\right)$
16. The range of the function $f(x)=\mid$

$$
\lfloor x\rfloor-x \mid, x \in \mathbb{R} \text { is }
$$

A. $[0,1]$
B. $[0, \infty]$
C. [0,1)
D. $(0,1)$

Answer: A::C
17. The rule $\mathrm{f}(\mathrm{x})=x^{2}$ is a bijection if the domain and the co-domain are given by
A. $R, R$
B. $\mathrm{R},(0, \infty)$
C. $(0, \infty)$ R
D. $[0, \infty)[0, \infty)$

Answer:

- Watch Video Solution

18. The number of relations from a set containi 4 elements to a set containing 3 elements is
A. $m n$
B. $m$
C. n
D. $m+n$

Answer: C
19. The function $\mathrm{f}:[0,2 \pi] \rightarrow 1[-1,1]$ defined by
$f(x)=\sin x$ is
A. one-to-one
B. onto
C. bijection
D. cannot be defined

Answer: B
20. If the function $f:[-3,3] \rightarrow S$ defined by $f(x)$
$=x^{2}$ is onto, then S is
A. $[-9,9]$
B. R
C. $[-3,3]$
D. $[0,9]$

Answer: D

- Watch Video Solution

21. Let $X=\{1,2,3,4\}, Y=\{a, b, c, d\}$ and $f=\{(1, a)$,
$(4, b),(2, c),(3, d),(2, d)\}$. Then $f$ is
A. an one-to-one function
B. an onto function
C. a function which is not one-to-one
D. not a function

## Answer: A::C::D

22. The inverse of $f(x)=$
$\left\{\begin{array}{lll}x & \text { if } & x<1 \\ x^{2} & \text { if } & 1 \leq x \leq 4 \text { is } \\ 8 \sqrt{x} & \text { if } & x>4\end{array}\right.$

## D Watch Video Solution

23. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=1-|x|$. Then
the range of $f$ is
A. R
B. $(1, \infty)$
C. $(-1, \infty)$
D. $(\infty,-1)$

## Answer: A::D

## D Watch Video Solution

24. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=$
$\sin x+\cos x$ is
A. an odd function
B. neither an odd function nor even
function

## C. an even function

## D. both odd function and even function

## Answer: A::B::C::D

## D Watch Video Solution

25. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=$ $\frac{\left(x^{2}+\cos x\right)\left(1+x^{4}\right)}{(x-\sin x)\left(2 x-x^{3}\right)}+e^{-|x|}$ is

## A. an odd function

# B. neither an odd function nor an even 

## function

## C. an even function

## D. both odd function and even function

Answer: A::C

D Watch Video Solution

Problems For Practice I Answer The Following
Questions

1. If $A$ and $B$ are two sets so that $n(B-A)=3 n(A-B)=9 n(A \cap B)$ and if $n(A \cup B)=26$, find $n(\mathrm{p}(\mathrm{A}))$.

## D Watch Video Solution

2. If $A=(1,2,3,4), B=(3,4,5,6)$, find $n(A \cup B) \times n(A \cap B) \times n(p(A))$.

D Watch Video Solution
3. Prove that set of similar triangles, 'is similar to' is an equivalence relation

D Watch Video Solution
4. Prove that set of similar triangles, 'is similar to' is an equivalence relation

## D Watch Video Solution

5. Find the domain and range of $\frac{1}{1-\cos x}$.

## - Watch Video Solution

6. If $R$ in $R$ : is defined by
$f(x)=\frac{x^{2}-2 x+1}{x^{2}+x+1}$ verify whether f is oneone or not.

## D View Text Solution

7. If $f$ and $g$ are two functions from $R$ to $R$ defind by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}-3, g(x)=x^{2}+1$, find fog and $g \circ f$.
8. On a set of natural numbers let $R$ be the relation defined by $a R b$ if $a+2 b=15$. Write down the relation by listing all the pairs. Check whether it is reflexive, symmetric, transitive, equivalence.

## ( Watch Video Solution

9. Check whether the following functions are one to one and onto
(i) $f: N \rightarrow N$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}+3$.

## - Watch Video Solution

10. Check whether the following functions are one to one and onto
(ii): $N \cup(-2,-1,0) \rightarrow N$ defined by $\mathrm{S}(\mathrm{x})=$ $x+3$.

- Watch Video Solution
li Choose The Correct Option For The Following MCQ

1. If $f: R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-4$ is
bijective, its inverse $f^{-1}(x)$ is:
A. $\frac{x+4}{3}$
B. $\frac{x-4}{3}$
C. $3 x-4$
D. $4 \mathrm{x}+3$

Answer: A

D Watch Video Solution
2. Let $f: R \rightarrow R$ be defined by fx$)=2-[\mathrm{x}]$. The range of $f$ is:
A. R
B. $(2, \infty)$
C. $(-2, \infty)$
D. $(-\infty, 2)$

Answer: D

D Watch Video Solution
3. If $A=(1,2,3,4) \quad B \quad=(3,4,5,6)$ then $n(A \cup B) \times(A \cap B) \times(A \Delta B)$ is:
A. 48
B. 32
C. 64
D. none of the above

Answer: A

## D Watch Video Solution

4. If $\mathrm{P}(\mathrm{a})$ denotes the Power set A and A is void set, then $n(P(P(P(a))))$ is:
A. 8
B. 6
C. 4
D. 2

Answer: C
(D) Watch Video Solution
5. The number of relations form a set containing melements to a set containing $n$ elements is
A. $m \times n$
B. $2^{m+n}$
C. $\frac{m}{n}$
D. $2^{m n}$

## Answer: D

6. Let $A=\{1,2,3)$ and $p=\{(1,2),(2,1),(1,1),(2,3)$,
$(2,2)$ ) then to make $p$ is reflexive and symmetric
is the following are included:
A. $(3,3)$
B. $(3,2)$
C. $(3,2)$ and $(3,3)$
D. $(1,3),(3,1)$

Answer: C

D Watch Video Solution
7. The domain of $f(x)=\frac{1}{1-2 \cos x}$ is:
A. $R \pm \frac{\pi}{3}$
B. $2 n \pi \pm \frac{\pi}{3}, n \in Z$
C. $2-\left(2 n \pi \pm \frac{\pi}{3}\right), n \in Z$
D. None of the above

Answer: C
8. The largest domain for the real valued
function given by $f(x)=\frac{\sqrt{16-x^{2}}}{\sqrt{x^{2}-1}}$ is:
A. $[-4,4]$
B. $[-1,1]$
C. $(4,-4)$
D. $[-4,-1) \cup(1,4)$

Answer: D

## D Watch Video Solution

9. Let $f$ and $g$ be two functions from $R$ to Rdefined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$ and $g(x)=x^{2}+3$.

Then $g \circ f$ is:
A. $9 x^{2}-12 x+7$
B. $3 x^{2}+7$
C. $9 x^{2}+12 x-7$
D. $3 x^{2}+4$

Answer: A
10. If the function $f:(-2,2] \rightarrow S$ is defined by $f(x)=x^{2}$ is onto then Sis:
A. [-4,4]
B. R
C. $[-2,2]$
D. $[0,4]$

Answer: D

- Watch Video Solution

11. Find the correct statement in the following: The function $f(x)=x+x^{2}$ is:
A. even function
B. odd function
C. both even and odd function
D. neither even nor odd

Answer: D

D Watch Video Solution
12. Find the incorrect statement:
A. Iff and $g \circ f$ are one to one then $g$ is one to one.
B. $f \circ g-g \circ f$ (in general)
C. Iff and $g$ are one to one $g \circ f$ is also one
to one.
D. fand $g$ are real valued functions defined
on then $(f g)(x) g(x)$
13. Find the incorrect statement:
A. $A \cup(B \cap C)=(A \cup B) \cup(A \cup C)$
B. $A \times B=B \times A$ if and only if $\mathrm{A}=\mathrm{B}$
C. If $S=(1,2,3)$ and $R-\{(1,1)(1,2),(2,2),(1,3)$
$(3,1)(3,3))$ is reflexive.
D. $\mathrm{S}-\{x \in R: x$ is rational number) is a
finite set.

## Answer: D

## D Watch Video Solution

14. Find the correct statement:
A. A function is one to one if

$$
f(a)=f(b) \Rightarrow a=b
$$

B. Constant function is always onto
C. All even functions are one to one

# D. Product of two odd functions is also odd 

## function.

Answer: A

## - Watch Video Solution

15. Find the odd man out:
A. $f(x)=x^{3}$
B. $f(x)=x^{3}+3 x$
C. $f(x)=\sin x$
D. $f(x)=\cos x$

## Answer: D

## D View Text Solution

16. Find the odd man out: Let $A-(1,2,3,4)$ then
A. $(1,1)(1.3)(1,4)(2,2)$
B. $(1,1)(2,2)(3,3)(4,4)$
C. $(1,3)(3,1)(2,4)(4,2)$
D. $(1,3)(2,3)(3,3)(4,3)$

## Answer: D

## D Watch Video Solution

17. Find the odd man out: Let $X-\{1,2,3,4), Y=$ \{a,b,c,d,e)
A. $(1, \mathrm{a})(2, \mathrm{c})(3, \mathrm{e})(4, \mathrm{~b})$
B. $(1, a)(2, a)(3, a)(4, a)$
C. $(1, a)(2, \mathrm{c})(3, b)(4, b)$
D. $(1, a)(2, c)(3, e)$

## Answer: D

## D Watch Video Solution

# 18. The set of all numbers greater than 0 is an 

 ........intervalA. finite
B. infinite
C. closed
D. open

Answer: B

## - Watch Video Solution

19. The product of an odd function and an even function is:
A. even
B. equivalent
C. odd
D. none of these

## Answer: C

## - Watch Video Solution

20. Match the following: Let $A-(0,1,2,3)$ then
the relations $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$ are given and
their properties are given below.

| 20. | $\mathrm{R}_{1}:\{(1,2)(2,4)\}$ | (a) Reflexive, <br> transitive, <br> not symmetric |
| :--- | :--- | :--- |
| 21. | $\mathrm{R}_{2}:\{(0,0)(1,1)$ |  |
| $(2,2)(3,3)(1,2)\}$ | (b) Reflexive, <br> symmetric, not <br> transitive |  |
| 22. | $\mathrm{R}_{3}:\{(0,0)(1,1)$ <br> $(2,2)(3,3)\}$ | (c) Reflexive, not <br> symmetric, not <br> transitive |
| 23. | $\mathrm{R}_{4}:\{(0,0)(1,1)(2,2)$ <br> $(3,3)(1,2)(2,3)$ <br> $(2,1)(3,2)\}$ | (d) Equivalence |
| 24. | $\mathrm{R}_{5}:\{(0,0)(1,1)$ <br> $(2,2)(3,3)(1,2)$ <br> $(2,3)\}$ | (e) not reflexive, <br> not symmetric, <br> not transitive |

A. Reflexive, transitive, not symmetric
B. Reflexive symmetric, not transitive
C. Reflexive not symmetric, not transitive
D. not reflexive not symmetric, not

## transitive

## Answer:

## D View Text Solution

21. Let $A$ and $B$ be two sets. Then $A-B$ equals
A. $m=n$
B. $m \geq n$
C. mltn

## D. mgtn

## Answer:

## D Watch Video Solution

## 22. Find the odd one out:

A. bijective
B. one to one
C. onto
D. equivalence

## Answer: D

## - Watch Video Solution

23. Assertion: If $f, g, h$ are real valued functions then $f(g+h)=f g+f h$.

Reason: If f,g,h are real valued functions (fg)
$(x)=f(x) g(x)$.
A. Both Assertion and Reason are correct,

Reason is correct explanation for A .
B. Both Assertion and Reason are correct

## Reason is not correct explanation for A

C. Assertion is true, Reason is not true.
D. Assertion is not true, Reason is true.

## Answer: A

D Watch Video Solution
24. Assertion: The product of even functions an odd function is an odd function.

Reason: $f(x)=x^{2}$ is even function, $\mathrm{g}(\mathrm{x})=$ an odd function.
A. Assertion is true but Reason is not true
B.) Assertion is true but Reason is not
true.
C. Using Reason we can prove Assertion.
D. Using Reason we cannot prove Assertio

## Answer: C

25. The number of reflective relations one containing n elements is:
A. $2^{12}$
B. $2^{4}$
C. $2^{16}$
D. $2^{8}$

Answer: A

- View Text Solution

26. The number of relations from a set containi 4 elements to a set containing 3 elements is
A. $2^{16}$
B. $2^{9}$
C. $2^{7}$
D. $2^{12}$

Answer: D

- Watch Video Solution

27. Domain of the function $y=\frac{x-1}{x+1}$ is:
A. 1R
B. Q
C. R-(-1)
D. $\mathrm{R}-1$

Answer: C
28. If $f: R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$ :

$$
\begin{aligned}
& \text { A. } \frac{1}{2 x-3} \\
& \text { B. } \frac{1}{2 x+3} \\
& \text { C. } \frac{x+3}{2} \\
& \text { D. } \frac{x-3}{2}
\end{aligned}
$$

Answer: C
29. $\mathrm{n}(A \cap B)=4$ and $n(A \cup B)=11$ then $n(p(A \Delta B))$ is:
A. 44
B. 256
C. 64
D. 128

Answer: D

D Watch Video Solution
30. $\mathrm{n}(\mathrm{p}(\mathrm{A}))=512, \mathrm{n}(\mathrm{p}(\mathrm{B})=32, n(A \cup B)=16$,
find $n(A \cap B)$ :
A. 2
B. 9
C. 4
D. 5

Answer: A

- Watch Video Solution

31. Let $\mathrm{S}(1,2,3) . \mathrm{R}$ be(1, 1) (1.2) (2, 2) (1.3) (3.1),
what are the elements to be included to make

R reflexive:
A. $(3,3)$
B. $(2,3)$
C. $(3,2)$
D. none of these

Answer: A

D Watch Video Solution
32. The natural domain of the function $y=\sqrt{9-x^{2}}$ is :
A. $-3 \leq x \leq 3$
B. $-3<x<3$
C. $0<x<3$

$$
\text { D. }(-\infty,-3) \cup(3, \infty)
$$

Answer: A
(D) Watch Video Solution
33. Let $\mathrm{X}=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{y}=(1,2,3)$ then $f: x \rightarrow y$ given by $(a, 1)(6,1)(6,1)$ is called:
A. onto
B. constant function
C. one-one
D. bijective

Answer: B

D Watch Video Solution
34. If $f:[-2,2] \rightarrow A$ is given by $f(x)=3^{3}$
then $f$ is onto, if $A$ is:
A. [3,3]
B. $(3,3)$
C. [-24,24]
D. $(-24,24)$

Answer: C
( Watch Video Solution
35. Find which two are correct from the following.
(i) $\left(x^{3}+\sin x\right)$ is an odd function.
(ii) If $A$ is a set having 4 elements then the power set will have 64 elements.
(iii) If a relations is reflexive, antisymmetric and transitive it is called equivalence relation.
(iv) The product of two odd functions are even.
A. (i) and (ii) are correct
B. (i) and (iv) are correct
C. (ii) and (iii) are correct
D. (iii) and (iv) are correct

Answer: B
( Watch Video Solution

