# ©゙doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - PREMIERS PUBLISHERS

## TWO DIMENSIONAL ANALYTICAL

## GEOMETRY

Worked Examples

1. Find the locus of a point which moves such thet its distance from the x axis is twice the distance from y axis.
2. If $\theta$ is a parameter,find the equation of the locus of a moving point whose coordinates are a $\cos \theta, \mathrm{b} \sin \theta$.

## D Watch Video Solution

3. Find the path traced by a point $P$ such that in distance from two fixed points $(2,3)$ and $(-1,4)$ are always equal.

- Watch Video Solution

4. Find the path traced by the point ( $a t^{2}, 2 a t$ ) where $t$ is
the parameter and a is a constant.

## D Watch Video Solution

5. Find the locus of the centroid of the triangle OAB with vertices origin and two other points Aand B where $A B=12 \mathrm{cms}$ given that $A$ is $x$-axis and $B$ is on $Y$ axis.

## D Watch Video Solution

6. If $\theta$ is a parameter,find the equation of the locus of a moving point whose coordinates are $\left(\alpha \cos ^{3} \theta, \alpha \sin ^{3} \theta\right)$.

## - Watch Video Solution

7. Find the slope of the line joining ( $2,-1$ ) and ( $-4,5$ ).

## - Watch Video Solution

8. A line is inclined at angle of $135^{\circ}$ having $y$ intercept as 3.
9. If ( $5,-2),(-2,1)$ and $(9,6)$ are collinear find $\alpha$.

## - View Text Solution

10. A train is of length 300 m moving with a constant velocity of $25 \mathrm{~m} / \mathrm{s}$ find
$Q$ (i) the equation oof moton

## D Watch Video Solution

11. A train is of length 300 m moving with a constant velocity of $25 \mathrm{~m} / \mathrm{s}$ find

Q (ii) time taken to cross a pole

## D Watch Video Solution

12. A train is of length 300 m moving with a constant velocity of $25 \mathrm{~m} / \mathrm{s}$ find

Q (iii) the taken to cross a bridge of length 125 m .

## - Watch Video Solution

13. The demand function is $4 y-x=20$ and the supply
function is $y+x=40$, find
Q (i) market equilibrium
14. The demand function is $4 y-x=20$ and the supply function is $y+x=40$,find
$Q$ (ii) when price $\mathrm{y}=8$ what is the demand.

## D Watch Video Solution

15. The demand function is $4 y-x=20$ and the supply function is $y+x=40$,find

Q (iii) where $\mathrm{x}=16$ find the price.
16. Using the principle of analytical geometry find $10^{t h}$ term in an AP given that $3^{\text {rd }}$ term is 12 and $5^{\text {th }}$ term is 32.

## D Watch Video Solution

17. Find the equation of a straight line passing through the point $(-3,2)$ and cutting off equal intercepts on the cooredinate axes.
18. Find the equartion of straight lines, making a $y$ intercept of 3 units and the angle between the line and the $y$ axis is $60^{\circ}$.

## - Watch Video Solution

19. Two vertices of a triangle are $(3,1)(-6,5)$ and the centroid is at the origin. Find the third vertex of the triangle.
20. Area of the formed by a line with coordinate axes is $10 \sqrt{3}$ sq.units.Find equation of the line if the perpendicular drawn from the origin to the line makes an angle of $30^{\circ}$ with positive side of the $x$ axis.

## D Watch Video Solution

21. The length of the perpendicular drawn from the origin to a line is 6 and makes an angle of $135^{\circ}$ with positive x axis. Find the equation of the line.
22. Express the equation $x+\sqrt{3} y-4=0$ in

Q (i) slope intercept form.

## D Watch Video Solution

23. Express the equation $x+\sqrt{3} y-4=0$ in

Q (ii) normal form.

## - Watch Video Solution

24. Express the equation $x+\sqrt{3} y-4=0$ in
$Q$ (iii) intercept form.
25. Deduce $\sqrt{3} x-y+4$ in normal form.

## D Watch Video Solution

26. An object was lanuched at a place Pin consatant speed to hit a traget at A.AT the 5 minute it was 400 m away from the target out at the 8 minute it was 100 m

way

Q(i)the distance of the target from the place.

- Watch Video Solution

27. An object was lanuched at a place Pin consatant speed to hit a traget at A.AT the 5 minute it was 400 m away from the target out at the 8 minute it was 100 m way

Q(ii)the disatnce covered in 3 minute

## - Watch Video Solution

28. An object was lanuched at a place Pin consatant
speed to hit a traget at A.AT the 5 minute it was 400 m
away from the target out at the 8 minute it was 100 m
way
Q(iii)time taken to hit the target.
29. Find the equation of a line through ( $-1,3$ ) parallel to
the line $x-2 y+5=0$

## D Watch Video Solution

30. Find the equation of a line through ( $-1,3$ ) perpendicular to the line $2 x+3 y+1=0$.
31. Find the equation of a line through $(-1,3)(a)$ parallel to the line joining $(-2,1)$ and $(2,3)$, (b) perpendicular to the line joining (3,-2), (1,0).

## D Watch Video Solution

32. If the lines $x+2 y+5=0$ and $4 x+k y+1=O$ are perpendicular, find $k$.

## D Watch Video Solution

33. Find the distance (i) between the points ( $6,-2$ ) and
$(-3,1)$, (ii) from a point $(2,3)$ to the line $3 x-4 y+1=0$,
(iii) between the parallel lines $4 x+3 y+1=0$ and $8 x$ $6 y+5=0$.

## D Watch Video Solution

34. Find the nearest point on the line $3 x+4 y=2$ from the origin.

## - Watch Video Solution

35. Find the equation of the bisectors of the anglebetween the lines $4 x+3 y=5$ and $x+2 y+3=0$.
36. Find the points on the line $x+y=1$ that lie at a distance 3 units from the line $5 x+12 y=3$.

## D Watch Video Solution

37. Find the equation of the line through the intersection of lines $3 x+2 y-5=0$ and $4 x-y-3=0$ and is parallel to $3 x+y+2=0$

## D Watch Video Solution

38. Find the equation of the line through the intersection of lines $3 x+2 y-5=0$ and $4 x-y-3=0$ and is
parallel to $3 x+y+2=0$ is perpendicular to the line $7 x+3 y-$ 4=0

## D Watch Video Solution

39. A car rental company charges Rs50 for the first 6 kms and 10 for every additional km. Find the equation relating the cost $y$ to the no. of kms $x$. Find also the cost to travel 25 km .

## D Watch Video Solution

40. A ray of light coming from the point (1,2)axis and is reflected at a point A on the coordinates passes
through (6,5). Find the coordinate of $A$

## - View Text Solution

41. Find atleast two equations of the straight lines in the family of the lines $y=5 x+b$, for which $b$ and the $x-$ coordinate of the point of intersection of the lines with $3 x-4 y=6$ are integers.

## - Watch Video Solution

42. Find the combined equation of the line
$x+2 y=5$ and $2 x-y=1$.
43. Separate the equation $9 x^{2}+19 x y+2 y^{2}=0$

## D Watch Video Solution

44. Separate the equation of the line $x^{2}+x y+y^{2}=0$

## - View Text Solution

45. Find the separate equations of the lines given by

$$
2 x^{2}+5 x y+2 y^{2}+9 x+6 y+4=0
$$

46. Find the equation of pair of lines through the origin and perpendicular to the pair of lines $2 x^{2}+11 x y+12 y^{2}=0$

## - Watch Video Solution

47. Show that the line $x^{2}-4 x y+y^{2}=0$ and $x+y=3$ from an equilateral triangle.
48. Find the angle between the pair of straight lines given by
$\left(a^{2}-3 b^{2}\right) x^{2}+8 a b x y+\left(b^{2}-3 a^{2}\right) y^{2}=0$

## - Watch Video Solution

49. Find $k$ such that the equation
$12 x^{2}+7 x y-12 y^{2}-x+7 y+k=0$ represents a
pair of straight lines. Find the separate equations of the straight lines and also the angle between the lines.
50. If $9 x^{2}+24 x y+16 y^{2}+21 x+28 y+6=0$ represents a pair of lines (i) show that they are parallel,(ii) find separate equation,(iii) find the distance between the parallel lines.

## D Watch Video Solution

51. Find the equation of pair of lines joining the origin to the points of intersection of the $2 x+3 y-2=0$ and $2 x^{2}-5 x y-15 y^{2}+4 x+6 y=0$. Find the angle between them.
52. Find the locus of P , if for all values of $\alpha$, the coordinates of a moving point P is
$(9 \cos \alpha, 9 \sin \alpha)$

## D Watch Video Solution

2. Find the locus of P , if for all values of $\alpha$, the coordinates of a moving point $P$ is
$(9 \cos \alpha, 9 \sin \alpha)$
3. Find the locus of a point $P$ that moves at a constant distant of two units from the X -axis

## - Watch Video Solution

4. Find the locus of a point $P$ that moves at a constant distant of
three units from the $Y$-axis

## D Watch Video Solution

5. If $\theta$ is a parameter,find the equation of the locus of a
$\left(\alpha \cos ^{3} \theta, \alpha \sin ^{3} \theta\right)$.

## D Watch Video Solution

6. Find the value of $k$ and $b$, if the points $P(-3,1)$ and $\mathrm{Q}(2, \mathrm{~b})$ lie on the locus of $x^{2}-5 x+k y=0$.

## D Watch Video Solution

7. A straight rod of length 8 units slides with its ends A and $B$ always on the $x$ and $y$ axes respectively. Find the locus of the mid point of the line segment $A B$.
8. Find the equation of the locus of a point such that the sum of the squares of the distance from the points $(3,5),(1,-1)$ is equal to 20 .

## - Watch Video Solution

9. Find the equation of the locus of the point $P$ such
that the line segment $A B$, joining the points $A(1,-6)$ and $B(4,-2)$, subtends a right angle at $P$.
10. If O is origin and R is a variable point on $y^{2}=4 x$, then find the equation of the locus of the mid-point of the line segment OR.

## D Watch Video Solution

11. The coordinates of a moving point $P$ are $\left(\frac{a}{2}(\operatorname{cosec} \theta+\sin \theta), \frac{b}{2}(\operatorname{cosec} \theta-\sin \theta)\right)$, where $\theta$ is a variable parameter. Show that the equation of the locus P is $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$.

## D Watch Video Solution

12. If $P(2,-7)$ is a given point and $Q$ is a point on $\left(2 x^{2}+9 y^{2}=18\right)$, then find the equations of the locus of the mid-point of PQ .

## D Watch Video Solution

13. If $R$ is any point on the $x$-axis and $Q$ is any point on they $y$-axis and $P$ is a variable point on $R Q$ with $R P=b$, $P Q=a$, then find the equation of locus of $P$.
14. If the points $P(6,2)$ and $Q(-2,1)$ and $R$ are the vertices of a $\triangle P Q R$ and R is the point on the locus of $y=x^{2}-3 x+4$, then find the equation of the locus of centroid of $\triangle P Q R$.

## D Watch Video Solution

15. If $Q$ is a point on the locus of $x^{2}+y^{2}+4 x-3 y+7=0$, then find the equation of locus of $P$ which divides segment $O Q$ externally in the ratio $3: 4$, where O is origin.
16. Find the points on the locus of points that are 3 units from $x$-axis and 5 units from the point $(5,1)$.

## D Watch Video Solution

17. The sum of the distance of a moving point from the points $(4,0)$ and $(-4,0)$ is always 10 units. Find the equation to the locus of the moving point.

## - Watch Video Solution

## Solution To Exercise 62

1. Find the equation of the lines passing through the point (1,1)
with y -intercept (-4)

## - Watch Video Solution

2. Find the equation of the lines passing through the point (1,1)
with slope 3

- Watch Video Solution

3. Find the equation of the lines passing through the point (1,1)
and (-2,3)

## D Watch Video Solution

4. Find the equation of the lines passing through the point (1,1)
and the perpendicular from the origin makes an angle $60^{\circ}$ with $x$-axis.
5. If $p(r, c)$ is mid-point of a line segment between the axes, then show that $\frac{x}{r}+\frac{y}{c}=2$.

## - Watch Video Solution

6. Find the equation of the line passing through the point (1,5) and also divides co-ordinate axes in the ratio 3:10.

## D Watch Video Solution

7. If $p$ is length of perpendicular from the origin to the
line whose intercepts on the axes are $a$ and $b$, then
show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

## D Watch Video Solution

8. The normal boiling point of water is $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$ and the freezing point of water is $0^{\circ} \mathrm{C}$ or $32^{\circ} F$.

Find the linear relationship between C and F .

## - Watch Video Solution

9. The normal boiling point of water is $100^{\circ} \mathrm{C}$ or
$212^{\circ} \mathrm{F}$ and the freezing point of water is $0^{\circ} \mathrm{C}$ or
$32^{\circ} F$.
Find the value of C for $98.6^{\circ} \mathrm{F}$

## - Watch Video Solution

10. The normal boiling point of water is $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$ and the freezing point of water is $0^{\circ} \mathrm{C}$ or $32^{\circ} F$.

Find the value of C for $98.6^{\circ} \mathrm{F}$

## D Watch Video Solution

11. An object was launched from a place $P$ in constant speed to hit a target. At the $15^{\text {th }}$ second it was 1400 m
away from the target and the $18^{\text {th }}$ second 800 m away.
Find
the distance between the place and the target

## D Watch Video Solution

12. An object was launched from a place $P$ in constant speed to hit a target. At the $15^{\text {th }}$ second it was 1400 m away from the target and the $18^{t h}$ second 800 m away.

Find
the distance covered by it in 15 seconds.

## D Watch Video Solution

13. An object was launched from a place $P$ in constant speed to hit a target. At the $15^{\text {th }}$ second it was 1400 m away from the target and the $18^{\text {th }}$ second 800 m away.

Find
time taken to hit the target.

## D Watch Video Solution

14. Population of a city in the years 2005 and 2010 are 1,35,000 and 1,45,000 respectively. Find the approximate population in the year 2015. (assuming that the growth of population is constant)
15. Find the equation of the line, if the perpendicular drawn from the origin makes an angle $30^{\circ}$ with $x$-axis and its length is 12 .

## D Watch Video Solution

16. Find the equation of the straight lines passing through $(8,3)$ and having intercepts whose sum is 1 .
17. Show that the points $(1,3),(2,1)$ and $\left(\frac{1}{2}, 4\right)$ are collinear, by using concept of slope

## D Watch Video Solution

18. Show that the points $(1,3),(2,1)$ and $\left(\frac{1}{2}, 4\right)$ are collinear, by using
using a straight line and

D Watch Video Solution
19. Show that the points $(1,3),(2,1)$ and $\left(\frac{1}{2}, 4\right)$ are collinear, by using any other method.

## D Watch Video Solution

20. A straight line is passing through the point $A(1,2)$
with slope $\frac{5}{12}$. Find points on the line which are 13 units away from $A$.

- Watch Video Solution

21. A 150 m long train is moving with constant velocity of $12.5 \mathrm{~m} / \mathrm{s}$. Find
the equation of the motion of the train,

## - Watch Video Solution

22. A 150 m long train is moving with constant velocity
of $12.5 \mathrm{~m} / \mathrm{s}$. Find
time taken to cross a pole
23. A 150 m long train is moving with constant velocity of $12.5 \mathrm{~m} / \mathrm{s}$. Find

The time taken to cross the bridge of length 850 m is?

## D Watch Video Solution

24. A spring stretches by 0.020 m when a 1.5 kg object is suspended from its end. How much mass should be attached to the spring so that its frequency of vibration is $f=3.1 \mathrm{~Hz}$ ?
25. A spring was hung from a hook in the ceiling.A number of different weights were attached to the spring to make it strech, and the total length of spring was measured each time shown in the following table:

Q (iv) If the spring has to stretch to 9 cm long, how much weight should be added?

## D View Text Solution

26. A spring was hung from a hook in the ceiling.A number of different weights were attached to the spring to make it strech, and the total length of spring was measured each time shown in the following table:

Q (v) How long will the spring be when 6 kilograms of weight omn it?

## D View Text Solution

27. A family is using Liquefied petroleum gas (LPG) of weight 14.2 kg for conumption.(Full weight 29.5 kg includes the empty cylinders tare weight of 15.3 kg ). If it is use with constant rate then it lasts for 24 days.

Then the new cylinder is replaced
$Q$ (i) Find the equation relating the quantity of gas in the cylinder to the days.
28. In a shopping mall there is a hall of cuboid shape with dimemsion $800 \times 800 \times 720$ units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the fihure,Find
$Q$ (i) the ,minimum total length of escalator.

## - View Text Solution

29. In a shopping mall there is a hall of cuboid shape with dimemsion $800 \times 800 \times 720$ units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the fihure,Find
$Q$ (iii) the slopes of the escalator at the turning points.

## Solution To Exercise 63

1. Show that the lines are $3 x+2 y+9=0$ and $12 x+8 y-15=0$ are parallel lines.

## D Watch Video Solution

2. Find the equation of the straight line parallel to $5 x-$ $4 y+3=0$ and having $x$-intercept 3.
3. Find the distance between the line $4 x+3 y+4=0$ and a point (i) (-2, 4) (ii) (7,-3)

## - Watch Video Solution

4. Find the distance between the line $4 x+3 y+4=0$ and a point (i) (-2, 4) (ii) (7, -3)

## D Watch Video Solution

5. Write the equation of the lines through the point (1,-1)
parallel to $x+3 y-4=0$
6. Write the equation of the lines through the point (1,-1) perpendicular to $3 x+4 y=6$

## D Watch Video Solution

7. If $(-4,7)$ is one vertex of a rhombus and if the equation of one diagonal is $5 x-y+7=0$, then find the equation of another diagonal.

## D Watch Video Solution

8. Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$ Parallel to $x-y+5=0$

## D Watch Video Solution

9. Find the equation of the lines passing through thye point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$ and

Q (ii) Parallel to $x-y+5=0$
10. Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$ Perpendicular to $x-2 y+1=0$

## D Watch Video Solution

11. Find the equations of two straight lines which are parallel to the line $12 x+5 y+2=0$ and at a unit distance from the point (1, -1).
12. Find the equations of straight lines which are perpendicular to the line $3 x+4 y-6=0$ and are at a distance of 4 units from (2,1).

## - Watch Video Solution

13. Find the equation of a straight line parallel to
$2 x+3 y=10$ and which is such that the sum of its intercepts on the axes is 15 .

- Watch Video Solution

14. Find the length of the perpendicular and the coordinates of the foot of the perpendicular from ( $-10,-2$ ) to the line $x+y-2=0$.

## D Watch Video Solution

15. If $p_{1}$ and $p_{2}$ are the lengths of the perpendiculars from the origin to the straight lines $x \sec \theta+y \cos e c \theta=2 a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$ , then prove that $p_{1}{ }^{2}+p_{2}{ }^{2}=a^{2}$.
16. Find the distance between the parallel lines
$12 x+5 y=7$ and $12 x+5 y+7=0$

## D Watch Video Solution

17. Find the distance between the parallel lines
$3 x-4 y+5=0$ and $6 x-8 y-15=0$

## D Watch Video Solution

18. Find the family of straight lines (i) Perpendicular (ii)

Parallel to $3 x+4 y-12=0$.
19. Find the family of straight lines (i) Perpendicular (ii)

Parallel to $3 x+4 y-12=0$.

## D Watch Video Solution

20. If the line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of $15^{\circ}$, then find the equation of the line in new position.
21. A ray of light coming from the point (1,2) is reflected at a point $A$ on the $x$-axis and it passes through the point $(5,3)$. Find the co-ordinates of the point A.

## D Watch Video Solution

22. A line is drawn perpendicular to $5 x=y+7$. Find the equation of the line if the area of the triangle formed by this line with co-ordinate axes is 10 sq. units.
23. Find the of the image of the point $(-2,3)$ about the line $x+2 y-9=0$.

## D Watch Video Solution

24. Find all the equations of the straight lines in the family of the lines $y=m x-3$, for which $m$ and the $x$ coordinate of the point of intersection of the lines with $x-y=6$ are integers.

## - Watch Video Solution

1. Find the combined equation of the straight lines whose separate equations are $x-2 y-3=0$ and $x+y+5=0$.

## D Watch Video Solution

2. Show that $4 x^{2}+4 x y+y^{2}-6 x-3 y-4=0$ represents a pair of parallel lines.

## D Watch Video Solution

3. Show that $2 x^{2}+3 x y-2 y^{2}+3 x+y+1=0$ represents a pair of perpendicular lines.
4. 

Show that the equations
$2 x^{2}-x y-3 y^{2}-6 x+19 y-20=0$ represents a pair of intersecting lines. Show further that the angle between them is $\tan ^{-1}(5)$.

## - Watch Video Solution

5. Find the equation of the pair of straight lines passing through the point $(1,3)$ and perpendicular to the lines $2 x-3 y+1=0$ and $5 x+y-3=0$.
6. Find the separate equation of the following pair of straight lines
$3 x^{2}+2 x y-y^{2}=0$

## - Watch Video Solution

7. Find the separate equation of the following pair of straight lines
$6(x-1)^{2}+5(x-1)(y-2)-4(y-2)^{2}=0$

## - Watch Video Solution

8. Find the separate equation of the following pair of straight lines
$2 x^{2}-x y-3 y^{2}-6 x+19 y-20=0$

## D Watch Video Solution

9. The slope of one of the straight lines $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, show that $8 h^{2}=9 a b$.

## D Watch Video Solution

10. The slope of one of the straight lines $a x^{2}+2 h x y+b y^{2}=0$ is three times the other, show that $3 h^{2}=4 a b$.
11. A $\triangle O P Q$ is formed by the pair of straight lines $x^{2}-4 x y+y^{2}=0$ and the line PQ. The equation of $P Q$ is $x+y-2=0$. Find the equation of the median of the triangle $\triangle O P Q$ drawn from the origin 0.

## - Watch Video Solution

12. Find $p$ and $q$, if the following equation represents a pair of perpendicular lines $6 x^{2}+5 x y-p y^{2}+7 x+q y-5=0$.
13. Find the value of $k$ if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting $12 x^{2}+7 x y-12 y^{2}-x+7 y+k=0$.

## D Watch Video Solution

14. For what value of $k$ does the equation $12 x^{2}+2 k x y+2 y^{2}+11 x-5 y+2=0 \quad$ represent two straight lines.

## D Watch Video Solution

15. Show that the equation
$9 x^{2}-24 x y+16 y^{2}-12 x+16 y-12=0$
a pair of parallel lines. Find the distance between them.

## D Watch Video Solution

> 16. Show that the equation
> $4 x^{2}+4 x y+y^{2}-6 x-3 y-4=0$ represents a pair of parallel lines. Find the distance between them.
17. Prove that one of the straight lines given by $a x^{2}+2 h x y+b y^{2}=0$ will bisect the angle between the co-ordinate axes if $(a+b)^{2}=4 h^{2}$.

## - Watch Video Solution

18. Prove that the straight lines joining the origin to

> the points of ${ }^{\text {thtersection }}$ of
> $3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$ and $3 x-2 y-1=0$
are at right angles.

- Watch Video Solution

1. The equation of the locus of the point whose distance from $y$-axis is half the distance from origin is
A. $x^{2}+3 y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $3 x^{2}+3 y^{2}=0$
D. $3 x^{2}-3 y^{2}=0$

Answer: D
2. Which of the following equation is the locus of $\left(a t^{2}, 2 a t\right)$

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \text { B. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { C. } x^{2}+y^{2}=a^{2} \\
& \text { D. } y^{2}=4 a x
\end{aligned}
$$

Answer: D

## D Watch Video Solution

3. Which of the following point lie on the locus of $3 x^{2}+3 y^{2}-8 x-12 y+17=0$
A. $(0,0)$
B. $(-2,3)$
C. $(1,2)$
D. $(0,-1)$

Answer: C
4. If the point $(8,-5)$ lies on the locus $\frac{x^{2}}{16}-\frac{y^{2}}{25}=k$, then the value of $k$ is
A. 0
B. 1
C. 2
D. 3

## Answer: D

- Watch Video Solution

5. Straight line joining the points $(2,3)$ and $(-1,4)$ passes
through the point $(\alpha, \beta)$ if
A. $\alpha+2 \beta=7$
B. $3 a p l h a+\beta=9$
C. $a p l h a+3 \beta=11$
D. $3 a p l h a+\beta=11$

Answer: C
6. The slope of the line which makes an angle 45 with the line $3 x-y=-5$ are
A. $1,-1$
B. $\frac{1}{2},-2$
C. $1, \frac{1}{2}$
D. $2, \frac{-1}{2}$

Answer: B

## D Watch Video Solution

7. Equation of the straight line forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter $4+2 \sqrt{2}$ is
A. $x+y+2=0$
B. $x+y-2=0$
C. $x+y-\sqrt{2}=0$
D. $x+y+\sqrt{2}=0$

## Answer: B

8. The coordinate of the four vertices of a quadrilate are $(-2,4),(-1,2),(1,2)$ and $(2,4)$ taken in order. The equation of the line passing through the vertex(-1,2) and divbide the quadrilateral in the equal area is,
A. $x+1=0$
B. $x+y=1$
C. $x+y+3=0$
D. $x-y+3=0$

## Answer: D

9. The intercepts of the perpendicular bisector of the
line segment joining $(1,2)$ and $(3,4)$ with coordinate axes are
A. 5,-5
B. 5,5
C. 5,3
D. 5,-4

Answer: B

- Watch Video Solution

10. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt{5}$ is
A. $x-2 y=\sqrt{5}$
B. $2 x-y=\sqrt{5}$
C. $2 x-y=5$
D. $x-2 y-5=0$

Answer: C

D Watch Video Solution
11. A line perpendicular to the line $5 x-y=0$ form a triangle with the coordinate axes if the area of the triangle is 5 sq.units,then its equation is:
A. $x+5 y \pm 5 \sqrt{2}=0$
B. $x-5 y \pm 5 \sqrt{2}=0$
C. $5 x+y \pm 5 \sqrt{2}=0$
D. $5 x-y \pm 5 \sqrt{2}=0$

Answer: A
12. Equation of the straight line perpendicular to the
line $x-y+5=0$, through the point of intersection the $y-$ axis and the given line
A. $x-y-5=0$
B. $x+y-5=0$
C. $x+y+5=0$
D. $x+y+10=0$

Answer: B

D Watch Video Solution
13. If the equation of the base opposite to the vertex
$(2,3)$ of a equilateral triangle is $x+y=2$, then the length of a side is
A. $\sqrt{\frac{3}{2}}$
B. 6
C. $\sqrt{6}$
D. $3 \sqrt{2}$

Answer: C

D Watch Video Solution
14. The line $(p+2 q) x+(p-3 q) y=p-q$ for different values of $p$ and $q$ passes through the point
A. $\left(\frac{3}{2}, \frac{5}{2}\right)$
B. $\left(\frac{2}{5}, \frac{2}{5}\right)$
C. $\left(\frac{3}{5}, \frac{3}{5}\right)$
D. $\left(\frac{2}{5}, \frac{3}{5}\right)$

Answer: D
15. The point on the line $2 x-3 y=5$ is equidistance from
$(1,2)$ and $(3,4)$ is
A. $(7,3)$
B. $(4,1)$
C. (1,-1)
D. $(-2,3)$

Answer: B

- Watch Video Solution

16. The image of the point $(2,3)$ in the line $y=-x$ is
A. $(-3,-2)$
B. $(-3,2)$
C. $(-2,-3)$
D. $(3,2)$

Answer: A

## D Watch Video Solution

17. The length of $\perp$ from the origin to the line $\frac{x}{3}-\frac{y}{4}=1$ is
A. $\frac{11}{5}$
B. $\frac{5}{12}$
C. $\frac{12}{5}$
D. $-\frac{5}{12}$

## Answer: C

## D Watch Video Solution

18. The $y$-intercept of the straight line passing through
$(1,3)$ and perpendicular to $2 x-3 y+1=0$ is
A. $\frac{3}{2}$
B. $\frac{9}{2}$
C. $\frac{2}{3}$
D. $\frac{2}{9}$

## - Watch Video Solution

19. If the two straight lines
$x+(2 k-7) y+3=0$ and $3 k x+9 y-5=0$ are perpendicular then the value of $k$ is
A. $k=3$
B. $k=\frac{1}{3}$
C. $k=\frac{2}{3}$
D. $k=\frac{3}{2}$
20. If a vertex of a square is at the origin and its one side lies along the line $4 x+3 y-20=0$, then the area of the square is
A. 20sq.units
B. 16 sq.units
C. 25 sq.units
D. 4sq.units

## Answer: B

21. If the lines represented by the equation $6 x^{2}+41 x y-7 y^{2}=0$ make angle $\alpha$ and $\beta$ with $x$ axis, then $\tan \alpha \tan \beta=$
A. $-\frac{6}{7}$
B. $\frac{6}{7}$
C. $-\frac{7}{6}$
D. $\frac{7}{6}$

## Answer: A

22. The area of the triangle formed by the lines
$x^{2}-4 y^{2}=0$ and $x=a$ is
A. $2 a^{2}$
B. $\sqrt{\frac{3}{2} a^{2}}$
C. $\frac{1}{2} a^{2}$
D. $\frac{2}{\sqrt{3}} a^{2}$

Answer: C
23. If one of the line given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then c equals to
A. -3
B. -1
C. 3
D. 1

Answer: A

- Watch Video Solution

24. $\theta$ is acute angle between the lines $x^{2}-x y-6 y^{2}=0$, then $\frac{2 \cos \theta+3 \sin \theta}{4 \sin \theta+5 \cos \theta}$ is
A. 1
B. $\frac{-1}{9}$
C. $\frac{5}{9}$
D. $\frac{1}{9}$

Answer: C
25. The equation of one of the line represented by the equation $x^{2}+2 x y \cot \theta-y^{2}=0$ is
A. $x-y \cot \theta=0$
B. $x-y \tan \theta=0$
C. $x-y \cos \theta+y(\sin \theta+1)=0$
D. $x-y(\sin \theta+y(\cos \theta+1)=0$

Answer: D

- Watch Video Solution

Problem For Practice Answer The Following Questions

1. Find the equation of the line through the point of intersection of the line $5 x-6 y=1$ and $3 x+2 y+5=0$ and cutting off equal intercepts on the coordinate axis,

## D Watch Video Solution

2. Find the value of $p$ for which the lines $8 p x+(2-$
$3 p) y+1=0 a n d p x+8 y+7=$ Oareperpendicular.

## D Watch Video Solution

3. Find the equation of the line through (1,2)and which is perpendicular to the line joining $(2,-3)(-1,5)$
4. Find the equation of the median of the traingle where vertices $(-5,2)(4,-6)(1,7)$.show that they are comment

## D Watch Video Solution

5. Show that the traingle whose sides are $y=2 x+7, x-3 y-$ $6=0$ and $x+2 y=8$ is right angled.
6. Find the equation of straight line joining the points of intersection of the lines $3 x+2 y+1=0$ and $x+y=3$ to the intersection of the lines $y-x=1$ and $2 x+y+2=0$

## (D) Watch Video Solution

7. Find the equation of the straight line through the intersection of $5 x-6 y=1$ and $3 x+2 y+5=0$ and perpendicular to the straight line $3 x-5 y+11=0$

## - Watch Video Solution

8. Show that the traingle formed by staright lines $4 x$ $3 y-18=0,3 x-4 y+16=0$ and $x+y-2=0$ is isosceles

## D Watch Video Solution

9. A point p moves such that p and the points $(2,3)(1,5)$
are always collinear. Show that the locus of $p$ is $2 x+y-$
$7=0$

## D Watch Video Solution

10. Find the value of a for which the straight lines $x+y-$
$4=0,3 x+2=0$ and $x-y+3 a=0$ are concurrent.

## - Watch Video Solution

11. Show that $x^{\wedge}(2)-y^{\wedge}(2)+x-3 y-2=$ Orepersent a pair of straight lines. Find also angle between the lines

## - View Text Solution

12. Show that if one of angle betwwen pair of straight lines $\quad a x^{2}+2 h x y+b y^{2}=0 \quad$ is $\quad 60^{\circ} \quad$ then $(a+3 b)(3 a+b)=4 h^{2}$
13. Find the angle between the lines
$3 x^{2}+10 x y+8 y^{2}+14 x+22+15=0$

## D Watch Video Solution

## Problem For Practice Choose The Correct Option

1. If $P(a, b)$ is the mid point of a line segment between the axes, then:
A. $\frac{x}{a}+\frac{y}{b}=1$
B. $\frac{x}{a}+\frac{y}{b}=2$
C. $\frac{x}{a}+\frac{y}{b}-1=0$
D. $\frac{x}{a}+\frac{y}{b}-2=0$

## Answer: B

## D Watch Video Solution

2. The normal form of $\sqrt{3} x+y=4$ is:
A. $x \frac{\cos (\pi)}{4}+y \frac{\sin (\pi)}{4}=1$
B. $x \frac{\cos (\pi)}{6}+y \frac{\sin (\pi)}{6}=2$
C. $x \frac{\cos (\pi)}{4}+y \frac{\sin (\pi)}{4}-1=0$
D. $x \frac{\cos (7 \pi)}{6}+y \frac{\sin (7 \pi)}{6}=2$

## © Watch Video Solution

3. If $(7, x)(-3,3)(2,2)$ are collinear then the value of $x$ is:
A. 4
B. 0
C. -1
D. 1

Answer: D

- Watch Video Solution

4. If $\theta$ is a parameter, then the locus of a moving point whose coordinates are $x=\alpha \cos ^{2} \theta, y=\alpha \sin ^{2} \theta$ is:
A. $x+y=\alpha$
B. $x+y+\alpha=0$
C. $x^{2}+y^{2}=\alpha^{2}$
D. none of these

Answer: A

- Watch Video Solution

5. The line which is perpendicular to $3 x-4 y+1=0$ is:
A. $6 x+2 y+1=0$
B. $3 x-4 y+5=0$
C. $4 x+3 y+1=0$
D. $4 x+3 y+2=0$

Answer: D

- Watch Video Solution

6. The line $2 x+3 y=5,2 x+y=k, 2 x-y-1=0$
A. 1
B. 5
C. 3
D. -3

## Answer: C

## D Watch Video Solution

7. The line $a_{1} x+b_{1} y+c_{1}=0 \quad$ and $a_{2} x+b_{2} y+c_{2}=0$ are perpendicular if:
A. $a_{1} b_{2}=a_{2} b_{1}$
B. $a_{1} b_{2}=-a_{2} b_{1}$
C. $a_{1} a_{2}+b_{1} b_{2}=0$
D. $a_{1} a_{2}-b_{1} b_{2}=0$

## Answer: C

## - Watch Video Solution

8. The perpendicular distance from $(1,2)$ to the line $5 x+12 y-3=0$ is:
A. 2
B. 3
C. 4
D. 5

## D Watch Video Solution

9. Find the nearest point on the line $3 x+y=10$ from
the origin is:
A. $(1,3)$
B. $(3,1)$
C. (-1,-3)
D. $(-3,-1)$

Answer: B
10. The condition that the pair of straight lines $a x^{2}+2 x y+b y^{2}=0$ are parallel is:
A. $h^{2}+a b=0$
B. $h^{2}-a b=0$
C. $a+b=0$
D. $a-b=0$

Answer: B

- Watch Video Solution

11. Figure

|  | Information given | Equation of the straight line |
| :---: | :---: | :---: |
| 11. | Slope ( $m$ ) \& $y$ intercept $c$ | (a) $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$ |
| 12. | Slope $m \&$ point $\left(x_{1}, y_{1}\right)$ | (b) $y-y_{1}=m\left(x-x_{1}\right)$ |
| 13. | Two points $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$ | (c) $a x+b y+c=0$ |
| 14. |  <br> $y$ intercept (b) | (d) $y=m x+c$ |
| 15. | Length of perpendicular from origin to the line $(p)$ and slope of this perpendicular ( $\alpha$ ) | (e) $\frac{x}{a}+\frac{y}{b}=1$ |
| 16. | Parametric form $-r$ is the parameter | (f) $x \cos \alpha+y \sin \alpha=p$ |
| 17. | General equation of a straight lime | (g) $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$ |


| 18. | Slope of the line <br> $2 x-3 y+5=0$ | (a) 1 |
| :---: | :--- | :--- |
| 19. | Slope of the line joining <br> $(2,-1)$ 'and $(1,-2)$ | (b) 3 |
| 20. | Perpendicular distance <br> from origin to the line <br> $12 x-5 y+39=0$ | (c) $\frac{2}{3}$ |
| 21. | $y$ intercept of <br> $x-3 y+2=0$ | (d) $\frac{2}{3}$ |

## D View Text Solution

12. Find the incorrect statement:
A. The path traced out by a moving point under certain conditions is called the locus of that point.
B. The locus of a point which moves equidistance from a fixed point in a circle.
C. The path traced out by the point $(c t, c / t) T \neq 0$, is the parameter and $c$ is a constant in $x y=c^{2}=0$.
D. In a place three or more points are said to be collinear if they lie on the same straight line.

## Answer: C

## - View Text Solution

13. Find the incorrect statement:

# A. A pint $P$ moves equidistance for two fixed lines 

ox and oy, then its locus is the angle bisector of
the angle $x \hat{o} y$.
B. The intercept of a line in the point at which the
line crosses the $y$-axis.
C. $x \cos \alpha+y \sin \alpha=P$ is called normal form of
equation where $P$ is the length of normal from
origin and $\alpha$ is the angle made by this normal x
axis.
D. Two stright lines are parallel if they have equal slopes.

## - View Text Solution

14. Find the correct statement:
A. $2 x-y+5=0 \quad$ and $\quad 4 x-2 y+1=0 \quad$ are
perpendicular.
B. The distance between $(1,2)$ and $(2,3)$ is $\sqrt{2}$ units.
C. Distance between the parallel lines $x+y=1$
and $x+y=5$ is $\frac{4}{\sqrt{2}}$.
D. The point of intersection of the lines $2 x-y=1$
and $3 x+4 y=7$ is $(-1,-1)$

## D Watch Video Solution

15. Find the correct statement:
A. The Slope of the line is $\frac{1}{2}$ and so the slope of perepndicular line is -1 .
B. $(4,5)$ lies on $2 x-y=5$
C. Pair of lines given by $2 x^{2}-5 x y-2 y^{2}=0$ are perpendicular to each other.
D. A pair of straight lines through the origin is a homogenous equation of degree three

## Answer: C

## D Watch Video Solution

16. Find the odd one out:
A. slope
B. intercept
C. point of intersections
D. circle

## Answer: D

17. Find the odd one out:
A. a pair of lines
B. parallel lines if $m_{1}=m_{2}$
C. perpendicular lines if $m_{1} m_{2}=-1$
D. concurrent lines.

## Answer: D

## D Watch Video Solution

18. The locus of a moving point $P\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ is:
A. $x^{\frac{1}{3}}+\mathrm{y}^{\wedge}(2 / 3)=\mathrm{a}^{\wedge}(2 / 3)^{\wedge}$
B. $x^{2}+y^{2}=a^{2}$
C. $x+y=a$
D. $x^{\frac{3}{2}}+\mathrm{y}^{\wedge}(3 / 2)=\mathrm{a}^{\wedge}(3 / 2)^{\wedge}$

## Answer: A

## D Watch Video Solution

19. $A B=12 \mathrm{~cm}$. $A b$ sides with $A$ on $x$-axis, $B$ on $y$-axis respectively. Then the radius of the circle which is the locus of $\Delta A O B$, where O is origin is:
A. 36
B. 4
C. 16
D. 9

## Answer: B

## - View Text Solution

20. The equating straight line with $y$-intercept -2 and inclination with $x$-axis is $135^{\circ}$ is:
A. $X+y-2=0$
B. $y-x+2=0$
C. $y+x+2=0$
D. none

## Answer: C

## D Watch Video Solution

21. The length of the perpendicular from origin to line is $\sqrt{3} x-y+24=0$ is:
A. $2 \sqrt{3}$
B. 8
C. 24
D. 12

Answer: D
22. If $(1,3)(2,1)(9,4)$ are collinear then $a$ is:
A. $\frac{1}{2}$
B. 2
C. 0
D. $-\frac{1}{2}$

Answer: A

- View Text Solution

23. The lines $x+2 y-3=0$ and $3 x-y+7=0$ are:
A. parallel
B. neither parallel nor perpendicular
C. perepndicular
D. parallel as well as perpendicular

## Answer: B

## D Watch Video Solution

24. Find the nearest point on the line $3 x+y=10$
from the origin is:
A. $(2,1)$
B. $(1,2)$
C. $(3,1)$
D. $(1,3)$

## Answer: C

## - Watch Video Solution

25. The slope of the line joining $A$ and $B$ where $A$ is $(-1,2)$ and $B$ is the point of intersection of the lines
$2 x+3 y=5$ and $3 x+4 y=7$ is:
A. -2
B. 2
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

## Answer: D

## - Watch Video Solution


A. $90^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $30^{\circ}$

## - Watch Video Solution

27. Find the point of intersection of the lines

$$
2 x^{2}+x y+y^{2}-5 x+3 y+2=0
$$

A. $(-1,-1)$
B. $(1,1)$
C. $(1,0)$
D. $(0,1)$

Answer: B
28. (i) If $(1,-1)$ lies on $2 x-3 y+k=0$ the k is -5 .
(ii) $2 x-3 y+11=0$ and $4 x-6 y+1=0 \quad$ are perpendicular.
(iii) Perpendicular distance from origin to the line $3 x-4 y-5=0$ is one unit.
(iv) Slope of the line $2 x+5 y-1=0$ is $\frac{1}{5}$.

State which of the folllowing are true.
A. (i) and (ii) are true
B. (i) and (iii) are true
C. (ii) and (iv) are true
D. (iii) and (iv) are true

Answer: B
(D) Watch Video Solution

