©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - PREMIERS PUBLISHERS

Vector Algebra -I

Work Example

1. Represent graphically the displacement of
(i) $45 \mathrm{~km} 30^{\circ}$ east of north,

- Watch Video Solution

2. Represent graphically the displacement of
(ii) $70 \mathrm{~km} 25^{\circ}$ south of west.
3. In a triangle $A B C$, if D and E are mid points of sides $A B$ and $A C$ respectively. Show that $\vec{B} E+\vec{D} C=\frac{3}{2} \vec{B} C$.

- Watch Video Solution

4. If P and Q are two points with position vectors $4 \vec{i}-3 \vec{j}$ and $2 \vec{i}+5 \vec{j}$. Find the position vectors of the points which divide the line joining the points. P and Q in the ration 2:3internally and externally.

- Watch Video Solution

5. Find the unit vector in the direction of the vector $\vec{i}-2 \vec{j}+3 \vec{k}$.

- Watch Video Solution

6. Find the direction ratios and direction cosines of the vectors
(i) $4 \vec{i}+2 \vec{j}-3 \vec{k}$,

- Watch Video Solution

7. Find the direction ratios and direction cosines of the vectors
(ii) $\vec{i}+\vec{j}+\vec{k}$.

- Watch Video Solution

8.

(i) Find the direction cosines of the vectors $10 \vec{i}-3 \vec{j}-4 \vec{k}$.

- Watch Video Solution

9.

(ii) Find the direction cosines of the vector $\vec{A} B$ if $\vec{A}=(1,-2,3)$ and $\vec{B}=(2,1,-2)$.
10.
(iii) Find the direction cosines of the line joining the points $(2,4,3)$ and (1,-2,5)

- Watch Video Solution

11. Show that the points whose position vectors are $\vec{i}-2 \vec{j}+3 \vec{k}$, $2 \vec{i}+3 \vec{j}-4 \vec{k}$, and $-7 \vec{j}+10 \vec{k}$ are collinear.

- Watch Video Solution

12. Find the unit vector parallel to $\vec{a}-\vec{b}+2 \vec{c}$ Where $\vec{a}=2 \vec{i}-\vec{j}+3 \vec{k}, \vec{b}=2 \vec{i}+3 \vec{j}+\vec{k}, \vec{c}=\vec{i}-2 \vec{j}+3 \vec{k}$.

- Watch Video Solution

13. Show that the points whose position vectors are $4 \vec{i}+5 \vec{j}+6 \vec{k}$, $5 \vec{i}+6 \vec{j}+4 \vec{k}$, and $6 \vec{i}+4 \vec{j}+5 \vec{k}$ form an equilateral triangle.

Watch Video Solution

14. Show that the points whose position vectors are $4 \vec{i}+5 \vec{j}+\vec{k}$, $-\vec{j}-\vec{k}$, and $3 \vec{i}+9 \vec{j}+4 \vec{k}$ and $-4 \vec{i}+4 \vec{j}+4 \vec{k}$ are co planar.

- Watch Video Solution

15. If $\vec{a}=3 \vec{i}-4 \vec{j}+3 \vec{k}, \vec{b}=2 \vec{i}-\vec{j}+k$, find $\vec{a} \cdot \vec{b}$ [OR] If \vec{a} and \vec{b} are vectors given by $(3,-4,3)$ and $(2,-1,1)$ respectively find $\vec{a} \cdot \vec{b}$.

- Watch Video Solution

16. Given that $\vec{a}=\vec{i}-\vec{j}-\vec{k}, \vec{b}=2 \vec{i}-\vec{j}+\vec{k}$, find $(2 \vec{a}+3 \vec{b}) \cdot(\vec{a}-2 \vec{b})$.
17. Given that $\vec{a}=5 \vec{i}+3 \vec{j}+4 \vec{k}, \vec{b}=3 \vec{i}-2 \vec{j}-\vec{k}$, vecc $=4$ veci3vecj+mvecksucht^veca'is perpendicular to ($b+c$) find m.

- Watch Video Solution

18. If $|\vec{a}+\vec{b}|^{2}-|\vec{a}-\vec{b}|^{2}=4$.Show that \vec{a} and \vec{b} are coincident, if \vec{a} and \vec{b} are unit vectors.

- Watch Video Solution

19. Find the value of m if $m \vec{i}+2 \vec{j}+3 \vec{k}$ and $2 \vec{i}-6 \vec{j}-3 \vec{k}$ are perpendicular.
20. Find the angle between the vectors $3 \vec{i}-4 \vec{j}+\vec{k}$ and $\vec{i}-3 \vec{j}+4 \vec{k}$.

- Watch Video Solution

21. Find the Projection of $\vec{a}=2 \vec{i}+\vec{j}+2 \vec{k}$ on $\vec{b}=5 \vec{i}-\vec{j}+3 \vec{k}$.

- Watch Video Solution

22. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

23. Show that the points $3 \vec{i}+4 \vec{j}+2 \vec{k}, 9 \vec{i}+\vec{j}+4 \vec{k}$, and $6 \vec{i}-\vec{j}-10 \vec{k}$ form a right angled triangle.
24. If $\vec{a}=5 \vec{i}-2 \vec{j}+3 \vec{k}, \vec{b}=2 \vec{i}+\vec{j}-\vec{k}$ find $\vec{a} X \vec{b}$.

(D) Watch Video Solution

25. Find the unit vector perpendicular to both vectors $2 \vec{i}+\vec{j}+2 \vec{k}$ and $3 \vec{i}+4 v e j+5 \vec{k}$. Find also angle between the given vector.

- Watch Video Solution

26. If $\vec{a}=3 \vec{i}-2 \vec{j}+\vec{k}$ and $\vec{b}=6 \vec{i}-2 \vec{j}+4 \vec{k}$, show that $\vec{a} X \vec{b}$ and \vec{a} are perpendicular.

- Watch Video Solution

27. Verify $\sin ^{2} \theta+\cos ^{2} \theta=1$ by find θ, the angle between the vectors $4 \vec{i}-2 \vec{j}-\vec{k}$ and $2 \vec{i}+3 \vec{j}+3 \vec{k}$
28. Find the area of parallelogram two of whose adjacent sides are $3 \vec{i}+4 \vec{j}+\vec{k}$ and $\vec{I}+\vec{j}-2 \vec{k}$.

- Watch Video Solution

29. Show that the points($3,-1,7$) $(9,3,-3)(6,-2,2)$ are collinear sing vector products.

- Watch Video Solution

30. Find the area of triangle $A B C$ given that vertices are $A(2,1,-2) B(1,4,2)$ and $\mathrm{C}(3,-1,-1)$.

- Watch Video Solution

1. Represent graphically the displacement of (i) $45 \mathrm{~km} 30^{\circ}$ north of east.
(ii) $80 \mathrm{~km}, 60^{\circ}$ south of west

- Watch Video Solution

2. Represent graphically the displacement of (i) $45 \mathrm{~km} 30^{\circ}$ north of east.
(ii) $80 \mathrm{~km}, 60^{\circ}$ south of west

- Watch Video Solution

3. Prove that the relation R defined on the set V of all vectors by $\vec{a} R \vec{b}$ if $\vec{a}=\vec{b}$, is an equivalence relation on V.

- Watch Video Solution

4. Let \vec{a} and \vec{b} be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment $A B$ are
$\frac{\vec{a}+2 \vec{b}}{3}$ and $\frac{\vec{b}+2 \vec{a}}{3}$.

Watch Video Solution

5. If D and E, are the midpoints of the sides $A B$ and $A C$ of a triangle $A B C$, prove that $\overrightarrow{B E}+\overrightarrow{D C}=\frac{3}{2} \overrightarrow{B C}$.

- Watch Video Solution

6. Prove that line segment joining the midpoints of two sides of a triangle is parallel to the third side whose length is half of the length of the third side.

- Watch Video Solution

7. Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
8. If \vec{a} and \vec{b} represent a side and a diagonal of a parallelogram, find the other sides and the other diagonal.

- Watch Video Solution

9. If $\vec{P} Q+\vec{O} Q=\vec{Q} O+\vec{O} R$, prove that the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear.

- Watch Video Solution

10. If D is the midpoint of the side $B C$ of a triangle $A B C$, prove that $\operatorname{vec}(A B)+\operatorname{vec}(A C)=2 \operatorname{vec}(A D)$

- Watch Video Solution

11. If G is the centroid of a triangle $A B C$, prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.
12. Let A, B, and C be the vertices of a triangle. Let D, E, and F be the midpoints of the sides $B C, C A$, and $A B$ respectively. Show that $\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=\overrightarrow{0}$.

- Watch Video Solution

13. If $A B C D$ is a quadrilateral and E and F are the midpoints of $A C$ and $B D$ respectively, then prove that $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}=4 \overrightarrow{E F}$.

- Watch Video Solution

Solution To Exercise 82

1. Verify whether the ratios are direction cosines of some vector or not.
$\frac{1}{5}, \frac{3}{5}, \frac{4}{5}$
2. Verify whether the ratios are direction cosines of some vector or not.
$\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}$

- Watch Video Solution

3. Verify whether the ratios are direction cosines of some vector or not.
$\frac{4}{3}, 0, \frac{3}{4}$

- Watch Video Solution

4. Find the direction cosines of a vector whose direction ratios are
(i) $1,2,3$
5. Find the direction cosines of a vector whose direction ratios are (i) 1,2,3, (ii) $3,-1,3$ (iii) $0,0,7$

Watch Video Solution

6. Find the direction cosines of a vector whose direction ratios are (i) 1,2,3,
(ii) $3,-1,3$ (iii) $0,0,7$

- Watch Video Solution

7. Find the direction cosines and direction ratios for the following vectors.
$3 \hat{i}-4 \hat{j}+8 \hat{k}$

D Watch Video Solution

8. Find the direction cosines and direction ratios for the following vectors.

$$
3 \hat{i}+\hat{j}+\hat{k}
$$

- Watch Video Solution

9. Find the direction cosines and direction ratios for the following vectors.
\hat{j}

- Watch Video Solution

10. Find the direction cosines and direction ratios for the following vectors.
$5 \hat{i}-3 \hat{j}-48 \hat{k}$

- Watch Video Solution

11. Find the direction cosines and direction ratios for the following
$3 \hat{i}-3 \hat{k}+4 \hat{j}$

- Watch Video Solution

12. Find the direction cosines and direction ratios for the following vectors. $\hat{i}-\hat{k}$

- Watch Video Solution

13. A triangle is formed by joining the points ($1,0,0$), ($0,1,0$) and ($0,0,1$). Find the direction cosines of the medians.

- Watch Video Solution

14. If $\frac{1}{2}, \frac{1}{\sqrt{2}}$ a are the direction cosines of some vector, then find a.
15. If $(a, a+b, a+b+c)$ is one set of direction ratios of the line joining $(1,0,0)$ and $(0,1,0)$, then find a set of values of a, b, c.

Watch Video Solution

16. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, 3 \hat{i}-4 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ form a right angled triangle.

- Watch Video Solution

17. Find the value of λ for which the vectors $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ are parallel.

- Watch Video Solution

18. Show that the vectors are coplanar
$\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{j}+2 \hat{k}$
19. Show that the following vectors are co-planar
(ii) $5 \hat{i}+6 \hat{j}+7 \hat{k}, 7 \hat{i}-8 \hat{j}+9 \hat{k},-3 \hat{i}+20 \hat{j}+5 \hat{k}$.

- Watch Video Solution

20. Show that the points whose position vectors
$4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}-\hat{k}, 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$ are coplanar.

- Watch Video Solution

$\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

22. If $\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}-4 \hat{j}-5 \hat{k}$,
$\vec{c}=-3 \hat{i}+2 \hat{j}+3 \hat{k}$, find the magnitude and direction cosines of $3 \vec{a}-2 \vec{b}+5 \vec{c}$

- Watch Video Solution

23. The position vectors of the vertices of a triangle are $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $-2 \hat{i}+3 \hat{j}-7 \hat{k}$. Find the perimeter of the triangle

- Watch Video Solution

24. Find the unit vector parallel to $3 \vec{a}-2 \vec{b}+4 \vec{c}$, if $\quad \vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}, \vec{c}=\hat{i}+2$

- Watch Video Solution

25. The position vectors $\vec{a}, \vec{b}, \vec{c}$ of three points satisfy the relation $2 \vec{a}-7 \vec{b}+5 \vec{c}=\overrightarrow{0}$. Are these points collinear?

- Watch Video Solution

26. The position vectors of the points P, Q, R, S are $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{k}+2 \hat{j}-3 \hat{k}$, and $\quad \hat{i}-6 \hat{j}-\hat{k}$ respectively. Prove that the line $P Q$ and $R S$ are parallel.

- Watch Video Solution

27. Find $\vec{a} \cdot \vec{b}$ when
$\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k} \quad$ and $\quad \vec{b}=6 \hat{i}-3 \hat{j}+2 \hat{k}$

- Watch Video Solution

1. Find the value or values of m for which $\mathrm{m}(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

2. Find $\vec{a} \cdot \vec{b}$ when
$\vec{a}=\hat{i}-2 \hat{j}+\hat{k} \quad$ and $\quad \vec{b}=3 \hat{i}-4 \hat{j}-2 \hat{k}$

- Watch Video Solution

3. Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k} \quad$ and $\quad \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$

- Watch Video Solution

4. Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where

$$
\vec{a}=2 \hat{i}+4 \hat{j}-\hat{k} \quad \text { and } \quad \vec{b}=3 \hat{i}-2 \hat{j}+\lambda \hat{k}
$$

(D) Watch Video Solution

5. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=10,|\vec{b}|=15 \quad$ and $\quad \vec{a} \cdot \vec{b}=75 \sqrt{2}$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

6. Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$.

- Watch Video Solution

7. Find the angle between the vectors
$2 \hat{i}+3 \hat{j}-6 \hat{k} \quad$ and $6 \hat{i}-3 \hat{j}+2 \hat{k}$

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

9. Show that the vectors
$\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{b}=6 \hat{i}+2 \hat{j}-3 \hat{k}, \quad$ and $\quad \vec{c}=3 \hat{i}-6 \hat{j}+2 \hat{k}$, are mutually orthogonal.

- Watch Video Solution

10. Show that the vectors $-\hat{i}-2 \hat{j}-6 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+3 \hat{j}+5 \hat{k}$, form a right angled triangle.

- Watch Video Solution

11. If $|\vec{a}|=5,|\vec{b}|=6,|\vec{c}|=7$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

12. Show that the points (2,-1,3), (4,3,1) and (3,1,2) are collinear.

- Watch Video Solution

13. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that $\sin \frac{\theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

14. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that
$\cos \frac{\theta}{2}=\frac{1}{2}|\vec{a}+\vec{b}|$

- Watch Video Solution

15. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that
$\tan \frac{\theta}{2}=\frac{|\vec{a}-\vec{b}|}{|\vec{a}+\vec{b}|}$

- Watch Video Solution

16. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.

(D) Watch Video Solution

17. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

- Watch Video Solution

18. Find λ, when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k} \quad$ is 4 units.

- Watch Video Solution

19. Three vectors \vec{a}, \vec{b} and \vec{c} are such that $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.
Find $4 \vec{a} \cdot \vec{b}+3 \vec{b} \cdot \vec{c}+3 \vec{c} \cdot \vec{a}$.

- Watch Video Solution

Solution To Exercise 84

1. Find the magnitude of $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

2.

$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$.

- Watch Video Solution

3. Find the vectors of magnitude $10 \sqrt{3}$ that are perpendicular to the plane which contains $\hat{i}+2 \hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+4 \hat{k}$

- Watch Video Solution

4. Find the unit vectors perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

5. Find the area of the parallelogram whose two adjacent sides are determined by the vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.
6. Find the area of the triangle whose vertices are $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

- Watch Video Solution

7. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices A, B, C of a triangle $A B C$, show that the area of the triangle $A B C$ is $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$. Also deduce the condition for collinearity of the points A, B and C .

- Watch Video Solution

8. For any vector \vec{a} prove that
$|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2|\vec{a}|^{2}$.
9. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. Prove that $\vec{a}= \pm \frac{2}{\sqrt{3}}(\vec{b} \times \vec{c})$.

- Watch Video Solution

10. Find the angle between the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ using vector product.

- Watch Video Solution

Solution To Exercise 85

1. The value of $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{D A}+\overrightarrow{C D}$ is
A. $\overrightarrow{A D}$
B. $\overrightarrow{C A}$
C. 0
D. $-\overrightarrow{A D}$

Answer: C

- Watch Video Solution

2. If $\vec{a}+2 \vec{b}$ and $3 \vec{a}+m \vec{b}$ are parallel, then the value of m is

- Watch Video Solution

3. The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k} \quad$ and $\quad \hat{i}-2 \hat{j}+\hat{k}$ is

- Watch Video Solution

4. A vector $\overrightarrow{O P}$ makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between $\overrightarrow{O P}$ and the z-axis is
5. If $\overrightarrow{B A}=3 \hat{i}+2 \hat{j}+\hat{k}$ and the position vector of B is $\hat{i}+3 \hat{j}-\hat{k}$ then the position vector A is

- Watch Video Solution

6. A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to

- Watch Video Solution

7. The vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are

- Watch Video Solution

8. If $A B C D$ is a parallelogram, then $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}$ is equal to
9. One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a}+\vec{b}$. The other diagonal $\overrightarrow{B D}$ is

- Watch Video Solution

10. If \vec{a}, \vec{b} are the position vectors A and B then which one of the following points whose position vector lies on $A B$, is

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of three collinear points, then which of the following is true?

- Watch Video Solution

12. If $\vec{r}=\frac{9 \vec{a}+7 \vec{b}}{16}$ then the point P whose position vector \vec{r} divides the line joining the points with position vectors \vec{a} and \vec{b} in the ratio

- Watch Video Solution

13. If $\lambda \hat{i}+2 \lambda \hat{j}+2 \lambda \hat{k}$ is a unit vector, then the value of λ is

- Watch Video Solution

14. Two vertices of a triangle have position vectors $3 \hat{i}+4 \hat{j}-4 \hat{k}$ and $2 \hat{i}+3 \hat{j}+4 \hat{k}$. If the position vector of the centroid is $\hat{i}+2 \hat{j}+3 \hat{k}$, then the position vector of the third vertex is

- Watch Video Solution

15. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40 \quad$ and $\quad|\vec{b}|=46$, then $|\vec{a}|$ is
16. If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is

- Watch Video Solution

17. The value of $\theta \in\left(0, \frac{\pi}{2}\right)$ for which the vectors $\vec{a}=(\sin \theta) \hat{i}+(\cos \theta) \hat{j}$ and $\hat{b}=\hat{i}-\sqrt{3} \hat{j}+2 \hat{k}$ are perpendicular, is equal to

- Watch Video Solution

18. If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60$ then $|\vec{a} \times \vec{b}|$ is

- Watch Video Solution

19. Vectors \vec{a} and \vec{b} are inclined at an angle $\theta=120^{\circ}$. If $|\vec{a}|=1,|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$ is equal to

- Watch Video Solution

20. If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at angle 60°, then the angle between \vec{a} and $\vec{a}+\vec{b}$ is

- Watch Video Solution

21. If the projection of $5 \hat{i}-\hat{j}-3 \hat{k}$ on the vector $\hat{i}+3 \hat{j}+\lambda \hat{k}$ is same as the projection of $\hat{i}+3 \hat{j}+\lambda \hat{k}$ on $5 \hat{i}-\hat{j}-3 \hat{k}$ then λ is equal to.

- Watch Video Solution

22. If $(1,2,4)$ and $(2,3 \lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5 \hat{j}-7 \hat{k}$, then value of λ is equal to

Watch Video Solution

23. If the points whose position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear then a is equal to

- Watch Video Solution

24. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+x \hat{j}+\hat{k}, \vec{c}=\hat{i}-\hat{j}+4 \hat{k} \quad$ and
$\vec{a} \cdot(\vec{b} \times \vec{c})=70$, then x is equal to

- Watch Video Solution

25. If $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k},|\vec{b}|=5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides is

- Watch Video Solution

1. If $\vec{a}, \vec{b}, \vec{c}$ are sides of triangle taken in order then $a \overrightarrow{+} b \overrightarrow{+} c{ }^{\text {is: }}$
A. perimeter
B. semi perimeter
C. Area of triangle
D. 0

Answer: D

- Watch Video Solution

2. Let O be the origin. Let A and B be two points whose position vectors are \vec{a} and \vec{b}.Then the position vector of a point P which divides AB internally in the ratio $\mathrm{I}: \mathrm{m}$ is:
A. $\frac{l \vec{a}+m \vec{b}}{l+m}$
B. $\frac{l \vec{b}+m \vec{a}}{l+m}$
C. $\frac{l \vec{a}-m \vec{b}}{l-m}$
D. $\frac{l \vec{b}-m \vec{a}}{l-m}$

Answer: B

D Watch Video Solution

3. Let $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ be the position vector of any point and let α, β, γ be the direction angle of \vec{r} then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is:
A. -2
B. 0
C. 2
D. 1

Answer: C

4. If $m(\vec{i}+\vec{j}+\vec{k})$ is a unit vector then value of m is:
A. $\pm \sqrt{3}$
B. $\pm \frac{1}{\sqrt{3}}$
C. ± 3
D. $\pm \frac{1}{3}$

Answer: B

- Watch Video Solution

5. A vector $\vec{O} P$ makes 60° each with positive direction of x and y axis then the angle between $\overrightarrow{O P}$ and z axis is:
A. 45°
B. 30°
C. 90°
D. 60°

- Watch Video Solution

6. If $\vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \vec{b}=2 \vec{i}-\vec{j}+2 \vec{k}, \vec{c}=3 \vec{i}+\vec{j}-\vec{k}$ be such that $\left(\frac{\vec{a}}{\lambda \vec{b}}\right)$ is perpendicular to c , the the value of λ is:
A. $\frac{1}{2}$
B. -1
C. 1
D. 0

Answer: D

- Watch Video Solution

7. If O is the origin and A, B are the points $(2,1,-3)$ and ($1,1,1$) respectively then the angle between $\vec{O} A$ and $\vec{O} B$ is:
A. 45°
B. 90°
C. 60°
D. 30°

Answer: B

- Watch Video Solution

8. For any two vectors \vec{a} and $\vec{b}|\vec{a} X \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|$ is:
A. $|\vec{a}|^{2} \cdot|\vec{b}|^{2}$
B. $|\vec{a}|^{2}+|\vec{b}|^{2}$
C. $|\vec{a}|^{2}-|\vec{b}|^{2}$
D. 0

Answer: A

9. If \vec{a}, \vec{b} and \vec{c} are three unit vectors satisfying $\vec{a}-\vec{b}-\sqrt{3} \vec{c}=0$ then the angle between \vec{a} and \vec{c} is:
A. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
B. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
C. $\cos ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$
D. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer: B

(Watch Video Solution

10.

Show
that
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$.
A. $2|\vec{a}||\vec{b}||\vec{c}|$
B. θ
C. 1
D. $\vec{a}+\vec{b}+\vec{c}$

Answer: B

- Watch Video Solution

11. Two vertices of a triangle hence position vetors $2 \vec{i}+4 \vec{j}-5 \vec{k}$ and $\vec{i}+3 \vec{j}-3 \vec{k}$.If the position vector of the centroid is $\vec{j}+2 \vec{k}$, then the position vector of the third vertex is
A. $-3 \vec{i}-4 \vec{j}+14 \vec{k}$
B. $3 \vec{i}+2 \vec{j}-14 \vec{k}$
C. $-3 \vec{i}+2 \vec{j}-14 \vec{k}$
D. $3 \vec{i}-2 \vec{j}+14 \vec{k}$
12. If $2 \vec{a}+6 \vec{b}$ and $3 \vec{a}+m \vec{b}$ are parallel then the vector of m is:
A. 3
B. 6
C. 9
D. 12

Answer: C

Watch Video Solution
13. Match the following

13.	$\|\cos \alpha \vec{i}+\cos \beta \vec{j}+\cos \gamma \vec{k}\|$ is: (Where α, β, γ are angles made by \vec{r} with coordinates axes.)	(a) 0
14.	$\vec{j} \times \vec{j}=$	(b) 2
15.	$\begin{aligned} & \vec{a}=2 \vec{i}+\vec{j}+\vec{k} \\ & \vec{b}=\vec{i}+2 \vec{j}+2 \vec{k} \end{aligned}$ Then $\|\vec{a} \times \vec{b}\|$ is:	(c) 1
16.	The projection of $\vec{i}+2 \vec{j}+\vec{k} \text { on } 2 \vec{i}+\vec{j}+2 \vec{k}$ is:	(d) $3 \sqrt{2}$

A. 0
B. 2
C. 1
D. $3 \sqrt{2}$

Answer: C
14. Find the incorrect statement
A. The sum of the square of the direction cosines of \vec{r} is 1 .
B. The direction ratios of $3 \vec{i}+4 \vec{k}$ are $\left(\frac{3}{5}, 0, \frac{4}{5}\right)$
C. If $\vec{a} \cdot \vec{b}=0$ then \vec{a} and \vec{b} are perpendicular vectors.
D. ${ }^{`}\left(\right.$ veca+vecb).(veca-vecb) $=|v e c a|^{\wedge}(2)-|v e c b| \wedge(2)$.

Answer: C

D Watch Video Solution

15. Find the incorrect statement
A. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
B. If $\vec{a} \cdot \vec{b}=0 \Rightarrow|\vec{a}|=0$ or $|\vec{b}|=0$ or $\theta=\frac{\pi}{2}$
C. Vector product is commutative.
D. $\vec{a} X \vec{a}=0$ for any vector \vec{a}.

- Watch Video Solution

16. Find the correct statement
A. $\vec{a} X \vec{b}=\vec{b} X \vec{a}$
B. For any two non zero vectors \vec{a} and $\vec{b} \vec{a} X \vec{b}=0 \Rightarrow \vec{a}$ and \vec{b} are parallel.
C. If $\quad \vec{A} B=\vec{i}-\vec{j}+2 \vec{k} \quad$ and $\quad \vec{O} B=2 \vec{i}+\vec{j}-\vec{k} \quad$ then
$\vec{O} A=\vec{i}+2 \vec{j}+3 \vec{k}$
D. $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \sin \theta \widehat{n}$

- Watch Video Solution

17. Find the correct statement: Given $\vec{O} A=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\vec{O} P=\frac{3 \vec{a}+5 \vec{b}}{8}$ implies that: P divides the line joining A nd B in the ratio:
A. 3:5 internally
B. 5:3 externally
C. 5:3 internally
D. 3:5 externally

Answer: C

- Watch Video Solution

18. The vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are
A. Parallel to each other
B. unit vectors
C. Mutually perpendicular vectors
D. co-planar vectors

Answer: D

- Watch Video Solution

19. Find the odd man out.
A. $(\vec{b} X \vec{a})=-(\vec{a} X \vec{b})$
B. $\vec{i} \cdot \vec{i}=0$
C. Scalar product is commutative
D. $\vec{a} X(\vec{b} \cdot \vec{c})$ is not defined.

Answer: B

- Watch Video Solution

20. Find which in suitable for the blank space given below: $|\vec{a} \cdot \vec{b}| \ldots \ldots .|\vec{a}||\vec{b}|$
A. \leq
B. \geq
C. =
D. $>$

Answer: A

- Watch Video Solution

21. Assertion If D is the midpoint of the side $B C$ of a triangle $A B C$ then $\vec{A} B+\vec{A} C=2 \vec{A}$ D.Reason: If \vec{a} and \vec{b} are two position vector of A and B , then the position vector of midpoint of AB in $\frac{\vec{a}+\vec{b}}{2}$
A. Assertion is direct application of Reason.
B. Assertion is not derived from Reason
C. Reason is true but Assertion is not True.
D. Assertion implies Reason.

Answer: A

D Watch Video Solution

22. Assertion If G is the centroid of the triangle $A B C$ then $\vec{G} A+\vec{G} B+\vec{G} C=0$.Reason: If $\vec{a}, \vec{b}, \vec{c}$ are two p.v of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of \triangle ` ABCthenthep. vofitscentroidis(veca+vecb+vecc)/(3). Also vec \(A B=\) vecb-veca`
A. Both Assertion and Reason are not correct.
B. Reason is correct, but Assertion is not correct.
C. Using Reason, Assertion can be proved.
D. Using Reason, Assertion cannot be proved.

Answer: C

23. Find $(\vec{i}+\vec{j}) \cdot\{(\vec{j}+\vec{k}) X(\vec{k}+\vec{i})\}$:
A. 2
B. 1
C. -2
D. -1

Answer: A

- Watch Video Solution

24. If $\vec{a}+5 \vec{b}$ and $4 \vec{a}+m \vec{b}$ are parallel then m is :
A. 25
B. 20
C. 4
D. none of the above

Answer: B

- Watch Video Solution

25. If the projection of \vec{a} on \vec{b} and projection of \vec{b} on \vec{a} are equal, then the angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ is:
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{2 \pi}{3}$

Answer: A

- Watch Video Solution

26. If $60^{\circ}, 45^{\circ}, \alpha^{\circ}$ are the directional angles of a vector $\vec{O} P$ then α is
A. 0°
B. 30°
C. 60°
D. 45°

Answer: C

- Watch Video Solution

27. If aplha, β, γ are the directional angles of a vector then $\sin ^{2}$ aplha $+\sin ^{2} \beta+\sin ^{2} \gamma$.
A. 2
B. -2
C. 1
D. 0

- Watch Video Solution

28. If $\vec{r}=\frac{5 \vec{a}-3 \vec{b}}{2}$, then the point P whose position vector r divides the line joining the points with position vectors \rightarrow and \vec{b} in the ratio:
A. 3:5 internally
B. 3:5 externally
C. 5:3 internally
D. 5:3 externally

Answer: B

D Watch Video Solution

29.

The
Position
vectors
of
A,B,C
are
$3 \vec{i}+2 \vec{j}-\vec{k}, 2 \vec{i}+4 \vec{j}+5 \vec{k}$ and veci+Ovecj+5veck then the
position vector of centroid is :
A. $3 \vec{i}+2 \vec{j}-4 \vec{k}$
B. $2 \vec{i}-2 \vec{j}-3 \vec{k}$
C. $2 \vec{i}+2 \vec{j}+3 \vec{k}$
D. none of these

Answer: C

- Watch Video Solution

30. The projection of $2 \vec{i}-\vec{j}+2 \vec{k}$ on $\vec{i}+2 \vec{j}+2 \vec{k}$ is:
A. $-\frac{3}{4}$
B. $\frac{3}{4}$
C. $-\frac{4}{3}$
D. $\frac{4}{3}$

Answer: D

Watch Video Solution

31. If $\vec{a}, \vec{b}, \vec{c}$ are sides of triangle taken in order then $a \overrightarrow{+} b \vec{c} \overrightarrow{\text { is: }}$
A. $\overrightarrow{0}$
B. 0
C. $2|\vec{a}||\vec{b}||\vec{c}|$
D. $|\vec{a}|+|\vec{b}|+|\vec{c}|$

Answer: A

- Watch Video Solution

32. If $\vec{a}=x \vec{i}+\vec{j}-\vec{k}, \vec{b}=\vec{i}-\vec{j}-\vec{k}, \vec{c}=\vec{i}-2 \vec{j}+3 \vec{k}$ and $\vec{a} \cdot \vec{b} X \vec{c}=7$ then x is :
A. 2
B. -2
C. 1
D. -1

Answer: B

- Watch Video Solution

33. If the points where position vector $5 \vec{i}+3 \vec{j}, 2 \vec{i}-\vec{j}$ and $x v e c i+3 v e c j$ are collinear then x is :
A. 5
B. 3
C. 3
D. 2

Answer: A

34. If \vec{a} and \vec{b} are unit vector which are included at an angle of 360° then $|(3 \vec{a}+2 \vec{b}) X(2 \vec{a}-\vec{b})|$.
A. 7
B. $\frac{7}{2}$
C. 14
D. none of these

Answer: B

- View Text Solution

35. If \vec{a} and \vec{b} are of equal magnitude and angle between them is 30° and their $|\vec{a} X \vec{b}|=\frac{1}{2}$ then $|\vec{a}|$ is:
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. 1
D. 0

Answer: C

- Watch Video Solution

36. In a quadrilateral $\mathrm{ABCD}, \vec{A} B+\vec{B} C+\vec{C} D$ is:
A. $\vec{D} A$
B. 0
C. 1
D. $\vec{A} D$

Answer: D

- Watch Video Solution

37. If the vectors $2 \vec{i}+\vec{j}-\vec{k}, \vec{i}+3 \vec{j}-4 \vec{k}$ and $-\vec{i}-4 \vec{j}+\lambda \vec{k}$ form a triangle then λ is:
A. -4
B. 2
C. -3
D. 3

Answer: D

- View Text Solution

38. (i) dot product of two vectors is not commutative
(ii) If $\vec{i}, \vec{j}, \vec{k}$ are unit vectors the $|\vec{i}+\vec{j}+\vec{k}|=\sqrt{3}$
(iii) $(\vec{a}, \vec{b}) X \vec{c}$ is not defined.
(iv)The magnitude of $2 \vec{i}+\vec{j}-2 \vec{k}$ is $\sqrt{3}$ Find which pair of statements are correct.
A. (i) and (ii) are true
B. (i) and (iv) are true
C. (iii) and (iv) are true
D. (ii) and (iii) are true

Answer: D

- Watch Video Solution

