©゙doubtnut

PHYSICS

BOOKS - PREMIERS PUBLISHERS

GRAVITATION

Evaluation Textbook Question Answers Multiple Choie Questions

1. The linear momentum and position vector of
the planet is perpendicular to each other at

A. perihelion and aphelion

B. at all points

C. only at perihelion
D. no point

Answer: A

D Watch Video Solution

2. If the masses of the Earth and Sun suddenly double, the gravitational force between them will

B. increase 2 times

C. increase 4 times
D. decrese 2 times

Answer: C

D Watch Video Solution

3. A planet moving along an elliptical orbit is
closest to the Sun at distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2} are linear
speeds at these points respectively. Then the
ratio $\frac{v_{1}}{v_{2}}$ is
A. $\frac{r_{2}}{r}$
r_{1}
B. $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
C. $\frac{r_{1}}{r_{2}}$
D. $\left(\frac{r_{1}}{r_{2}}\right)^{2}$

Answer: A
(Watch Video Solution
4. The time period of a satellite orbiting Earth in a circular orbit is independent of
A. Radius of the orbit
B. The mass of the satellite
C. Both the mass and radius of the orbit
D. Neither the mass nor the radius of its orbit Answer: B
5. If the distance between the Earth and Sun were to be doubled from its present value, the number of days in a year would be
A. 64.5
B. 1032
C. 182.5
D. 730

Answer: B
6. According to Kepler's second law, the radial
vector to a planet from the Sun sweeps out equal
areas in equal intervals of time. This law is a consequence of:
A. conservation of linear momentum
B. conservation of angular momentum
C. conservation of energy
D. conservation of kinetic energy

Answer: B

7. Binding energy of moon and earth is :-

A. always positive
B. always negative
C. can be positive or negative
D. always zero

Answer: B

D Watch Video Solution

8. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are
K_{A}, K_{B} and K_{C} respectively. AC is the major axis and $S B$ is perpendicular to $A C$ at the position of the Sun S as shown in the figure. Then:
A. $K_{A}>K_{B}>K_{C}$
B. $K_{B}<K_{A}<K_{C}$
C. $K_{A}<K_{B}<K_{C}$
D. $K_{B}>K_{A}>K_{C}$

Answer: A

- View Text Solution

9. The work done by the Sun's gravitational force

 on the Earth is:A. always zero
B. always positive
C. can be positive or negative
D. always negative

Answer: C

- View Text Solution

10. If the mass and radius of the Earth are both doubled, then the accelration due to gravity g
A. remains same
B. $\frac{g}{2}$
C. 2 g
D. 4 g

Answer: B

D Watch Video Solution

11. The magnitude of the Sun's gravitational field as experienced by Earth is:
A. same over the year
B. decreases in the month of January and increases in the month of July
C. decreases in the month of July and increases in the month of January

D. increases during day time and decreases

during night time.

Answer: C

D View Text Solution

12. If a person moves from Chennai to Trichy, his
weight:
A. increases
B. decreases
C. remains same

D. increases and then decreases

Answer: A

D Watch Video Solution

13. An object of mass 10 kg is hanging on a spring
scale which is attached to the roof of a lift. If the
lift is in free fall, the reading in the spring scale is
A. 98 N
B. zero
C. 49 N

D. 9.8 N

Answer: B

D Watch Video Solution

14. If the accelaration due to gravity becomes 4 times its original value, then escape speed
A. remains same
B. 2 times of original value
C. becomes halved
D. 4 times of original value

Answer: B

- Watch Video Solution

15. The kinetic energy of the satellite orbiting around the Earth is
A. equal to potential energy
B. less than potential energy
C. greater than kinetic energy
D. zero

Answer: B

D Watch Video Solution

16. The linear momentum and position vector of the planet is perpendicular to each other at
A. perihelion and aphelion
B. at all points
C. only at perihelion
D. no point

Answer: A

- Watch Video Solution

17. If the masses of the Earth and Sun suddenly double, the gravitational force between them will
A. remain the same
B. increase 2 times
C. increase 4 times
D. decrese 2 times

Answer: C

D Watch Video Solution

18. A planet moving along an elliptical orbit is
closest to the Sun at distance r_{1} and farthest
away at a distance of r_{2}. If v_{1} and v_{2} are linear speeds at these points respectively. Then the ratio $\frac{v_{1}}{v_{2}}$ is
A. $\frac{r_{2}}{r_{1}}$
B. $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
C. $\frac{r_{1}}{r}$
r_{2}
D. $\left(\frac{r_{1}}{r_{2}}\right)^{2}$

Answer: A

D Watch Video Solution

19. The time period of a satellite orbiting Earth in a circular orbit is independent of
A. Radius of the orbit

B. The mass of the satellite

C. Both the mass and radius of the orbit

D. Neither the mass nor the radius of its orbit

Answer: B

D Watch Video Solution

20. If the distance between the Earth and Sun were to be doubled from its present value, the number of days in a year would be
A. 64.5
B. 1032
C. 182.5

D. 730

Answer: B

D Watch Video Solution

21. According to Kepler's second law, the radial
vector to a planet from the Sun sweeps out equal areas in equal intervals of time. This law is a consequence of:
A. conservation of linear momentum
B. conservation of angular momentum
C. conservation of energy
D. conservation of kinetic energy

Answer: B

D Watch Video Solution

22. The gravitational potential energy of the Moon with respect to Earth is:
A. always positive
B. always negative
C. can be positive or negative

D. always zero

Answer: B

D Watch Video Solution

23. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are
K_{A}, K_{B} and K_{C} respectively. AC is the major axis and $S B$ is perpendicular to $A C$ at the position of the Sun S as shown in the figure. Then:
A. $K_{A}>K_{B}>K_{C}$
B. $K_{B}<K_{A}<K_{C}$
C. $K_{A}<K_{B}<K_{C}$
D. $K_{B}>K_{A}>K_{C}$

Answer: A

D View Text Solution

24. The work done by the Sun's gravitational force on the Earth is:
A. always zero
B. always positive
C. can be positive or negative
D. always negative

Answer: C

- View Text Solution

25. If the mass and radius of the Earth are both doubled, then the accelration due to gravity g
A. remains same
B. $\frac{g}{2}$
C. 2 g
D. 4 g

Answer: B

D Watch Video Solution

26. The magnitude of the Sun's gravitational field as experienced by Earth is:
A. same over the year
B. decreases in the month of January and increases in the month of July
C. decreases in the month of July and increases in the month of January

D. increases during day time and decreases

during night time.

Answer: C

D Watch Video Solution

27. If a person moves from Chennai to Trichy, his
weight:
A. increases
B. decreases in the month of January and increases in the month of July
C. remains same
D. increases and then decreases

Answer: A

(Watch Video Solution

28. An object of mass 10 kg is hanging on a spring scale which is attached to the roof of a
lift. If the lift is in free fall, the reading in the spring scale is
A. 98 N
B. zero
C. 49 N
D. 9.8 N

Answer: B
(D) Watch Video Solution
29. If the accelaration due to gravity becomes 4 times its original value, then escape speed
A. remains same
B. 2 times of original value
C. becomes halved
D. 4 times of original value

Answer: B

Watch Video Solution
30. The kinetic energy of the satellite orbiting around the Earth is
A. equal to potential energy
B. less than potential energy
C. greater than kinetic energy
D. zero

Answer: B

1. State Kepler's three laws.

- Watch Video Solution

2. State Newtons Universal law of gravitaion.
(D) Watch Video Solution
3. Will the angular momentum of a planet be conserved? Justify your answer.

D View Text Solution

4. Define the gravitational field. Give its unit.

(D) Watch Video Solution

5. What is meant by superposition of gravitational field?
6. Define gravitational potential energy.

D Watch Video Solution

7. Is potential energy the property of a single object? Justify.
(D) Watch Video Solution
8. Define gravitational potential.
9. What is the difference between gravitational potential and gravitational potential energy?

(D) Watch Video Solution

10. What is meant by escape speed in the case of the Earth?
(D) Watch Video Solution
11. Why is the energy of a satellite negative?
(D) Watch Video Solution
12. What are geostationary and polar satellites?

- Watch Video Solution

13. WEIGHT

14. Why is there no lunar eclipse and solar eclipse every month?

(D) Watch Video Solution

15. How will you prove that Earth itself is spinning?

(D) Watch Video Solution

16. State Kepler's three laws.
17. State Newtons Universal law of gravitaion.

(D) Watch Video Solution

18. Will the angular momentum of a planet be conserved? Justify your answer.

- Watch Video Solution

19. Define the gravitational field. Give its unit.
20. What is meant by superposition of gravitational field?

D Watch Video Solution

21. Define gravitational potential energy.

(Watch Video Solution

22. Is potential energy the property of a single
object? Justify.
23. Define gravitational potential.

D Watch Video Solution

24. What is the difference between gravitational potential and gravitational potential energy?

25. What is meant by escape speed in the case of

 the Earth?
(D) Watch Video Solution

26. The energy of the satellite is \qquad

- Watch Video Solution

27. What are geostationary and polar satellites?
28. Define weight.

D Watch Video Solution

29. Why is there no lunar eclipse and solar eclipse every month?

(D) Watch Video Solution

30. How will you prove that Earth itself is spinning?
31. Discuss the important features of the law of gravitation

D Watch Video Solution
2. Explain how Newton derived his law of gravitation from Kepler's third law.
3. Explain how Newton verified his law of gravitation.

D Watch Video Solution

4. Derive the expression for gravitational potential energy.

D View Text Solution
5. Prove that at points near the surface of the Earth, the gravitational potential energy of the object is $\mathrm{U}=\mathrm{mgh}$.

- View Text Solution

6. Explain in detail the idea of weightlessness using lift as an example.

- View Text Solution

7. Derive an expression for escape speed.
8. Explain the variation of ' g ' with latitude.

D Watch Video Solution

9. Explain the variation of ' g ' with altitude.

D Watch Video Solution

10. Explain the variation of g with depth from the

Earth's surface.
11. The time period of a satellite orbiting Earth in a circular orbit is independent of

(D) Watch Video Solution

12. Derive an expression for energy of satellite.

- Watch Video Solution

13. What are geostationary and polar satellites?

- Watch Video Solution

14. Explain how geocentric theory is replaced by heliocentric theory using the idea of retrograde motion of planets.

- View Text Solution

15. Explain in detail the Eratosthenes method of finding the radius of Earth.
16. Describe the measurement of Earth's shadow (umbra) radius during total lunar eclipse.

D Watch Video Solution

17. Discuss the important features of the law of gravitation

D Watch Video Solution

18. Explain how Newton derived his law of gravitation from Kepler's third law.
19. Explain how Newton verified his law of gravitation.

(Watch Video Solution

20. Define gravitational potential energy.

- Watch Video Solution

21. Prove that at points near the surface of the

Earth, the gravitational potential energy of the object is $\mathrm{U}=\mathrm{mgh}$.

(D) Watch Video Solution

22. Explain in detail the idea of weightlessness
using lift as an example.

D View Text Solution

23. Derive an expression for escape speed.
24. Explain the variation of 'g' with latitude.

D Watch Video Solution

25. Explain the variation of 'g' with altitude.

D Watch Video Solution

26. Explain the variation of g with depth from the

Earth's surface.
27. The time period of a satellite orbiting Earth in a circular orbit is independent of

- Watch Video Solution

28. Derive an expression for energy of satellite.

- Watch Video Solution

29. What are geostationary and polar satellites?
30. What is 'retrograde motion' of planets?

D Watch Video Solution

31. Explain in detail the Eratosthenes method of finding the radius of Earth.

- Watch Video Solution

32. Describe the measurement of Earth's shadow (umbra) radius during total lunar eclipse.

(D) Watch Video Solution

Evaluation Textbook Question Answers Conceptual Questions

1. In the following what are the quantities which that are conserved?
A. linear momentum of planet

B. angular momentum of planet

C. total energy of planet
D. potential energy of a planet

Answer: B

D Watch Video Solution

2. The work done by Sun on Earth in one year will be:
A. zero
B. non-zero
C. positive
D. negative

Answer: A

D Watch Video Solution

3. The work done by sun on Earth at any finite interval of time is
A. positive, negative or zero
B. strictly positive
C. strictly negative

D. it is always zero

Answer: C

D Watch Video Solution

4. If a comet suddenly hits the Moon and imparts energy which is more than the total energy of the Moon, what will happen?

D View Text Solution

5. If the Earth's pull on the Moon suddenly disappears, what will happen to the Moon?

D View Text Solution

6. If the Earth has no tilt what happens to the seasons of the Earth?

D View Text Solution

7. A student was asked a question why are there summer and winter for us? He replied as since

Earth is orbiting in an elliptical orbit. When the

Earth is very far away from the Sun(aphelion)
there will be winter, when the Earth is nearer to
the Sun(perihelion) there will be winter. Is this answer correct? If not, what is the correct explanation for the occurrence of summer and winter?

D View Text Solution

8. The following photographs are taken from the recent lunar eclipse which occurred on January

31, 2018. Is it possible to prove that Earth is a
sphere from these photographs?

- View Text Solution

9. In the following what are the quantities which that are conserved?
A. linear momentum of planet
B. angular momentum of planet
C. total energy of planet
D. potential energy of a planet

Answer: B

D Watch Video Solution

10. The work done by Sun on Earth in one year will be:
A. zero
B. non-zero
C. positive
D. negative

Answer: D

D Watch Video Solution

11. The work done by sun on Earth at any finite interval of time is
A. positive, negative or zero
B. strictly positive
C. strictly negative
D. it is always zero

Answer: C

- Watch Video Solution

12. If a comet suddenly hits the moon and imparts energy which is more than the toat energy of the moon, what will happen?

D Watch Video Solution

13. If the Earth's pull on the Moon suddenly disappears, what will happen to the Moon?
14. If the Earth has no tilt what happens to the seasons of the Earth?

D Watch Video Solution

15. A student was asked a question why are there summer and winter for us? He replied as since

Earth is orbiting in an elliptical orbit. When the
Earth is very far away from the Sun(aphelion) there will be winter, when the Earth is nearer to
the Sun(perihelion) there will be winter. Is this answer correct? If not, what is the correct explanation for the occurrence of summer and winter?

D Watch Video Solution

16. The following photographs are taken from the recent lunar eclipse which occurred on January

31, 2018. Is it possible to prove that Earth is a sphere from these photographs?

Evaluation Textbook Question Answers Numerical Problems

1. An unknown planet orbits the Sun with distance twice the semi major axis distance of the Earth's orbit. If the Earth's time period is T_{2}, what is the time period of this unknown planet.
2. Assume that you are in another solar system and provided with the set of data given below consisting of the planet's semi major axes and time periods. Can you infer the relation connecting semi major axis and time period?

- View Text Solution

3. If the masses and mutual distance between the
two objects are doubled, what is the change in the gravitational force between them?

- View Text Solution

4. Two bodies of masses m and 4 m are placed at a distance r. Calculate the gravitational potential at a point on the line joining them where the gravitational field is zero.

- View Text Solution

5. If the ratio of the orbital distance of two planets $\frac{d_{1}}{d_{2}}=2$, what is the ratio of gravitational field experienced by these two planets?

- View Text Solution

6. The Moon lo orbits Jupiter once in 1.769 days.

The orbital radius of the Moon lo is 421700 km .

Calculate the mass of Jupiter?

D View Text Solution
7. If the angular momentum of a planet is given
by $\vec{L}=5 t^{2} \hat{i}-6 t \hat{j}+3 \hat{k}$. What is the torque experienced by the planet? Will the torque be in
the same direction as that of the angular momentum?

D View Text Solution

8. Four particles, each of mass M and equidistant
from each other, move along a circle of radius R under the action of their mutual gravitational attraction. Calculate the speed of each particle
9. Suppose unknowingly you wrote the universal gravitational constant value as $G=6.67 \times 10^{11}$ instead of the correct value $G=6.67 \times 10^{-11}$, what is the acceleration due to gravity g^{\prime} for this incorrect G? According to this new acceleration due to gravity, what will be your weight W?

- View Text Solution

10. Calculate the gravitational field at point O
due to three masses m_{1}, m_{2} and m_{3} whose positions are given by the following figure. If the
masses m_{1} and m_{2} are equal what is the change in gravitational field at the point O ?

- View Text Solution

11. What is the gravitational potential energy of the Earth and sun ? The Earth to sun distance is arouund 150 million Km . The mass of the Earth is
$5.9 \times 10^{24} \mathrm{~kg}$ and the mass of the sun is $1.9 \times 10^{30} \mathrm{~kg}$.
12. Earth revolves around the sun at $30 \mathrm{kms}^{-1}$ calculated the kinetic energy of the Earth.What is the total energy of the Earth in that case? Is the total energy positive?Give reasons.(Potential energy of earth $\left.=-49.84 \times 10^{32}\right)$

(D) Watch Video Solution

13. An object is thrown from Earth is such a way that it reaches a point at infinity with non-zero kinetic energy $\left[K . E(r=\infty)=\frac{1}{2} M V_{\infty}^{0}\right]$, with
what velocity should the object be thrown from

Earth?

D Watch Video Solution

14. Suppose we go 200 km above and below the surface of the Earth, what are the g values at these two points? In which case, is the value of g small?
15. Calculated the change in g value in your district of Tamil nadu. (Hint: Get the latitude of
your district of Tamil nadu from the Google).
What is the difference in g values at Chennair and Kanyakumari?

(D) Watch Video Solution

16. An unknown planet orbits the sun with
distance twice the semi major axis distance of the Earth's orbit. It the Earths time period is T_{1}, what is the time period of this period is planet?
17. Assume that you are in another solar system and provided with the set of data given below consisting of the planet's semi major axes and time periods. Can you infer the relation connecting semi major axis and time period?
18. If the masses and mutual distance between
the two objects are doubled, what is the change in the gravitational force between them?

(D) Watch Video Solution

19. Two bodies of masses m and 4 m are placed at a distance r. Calculate the gravitational potential at a point on the joining them where the gravitational field is zero.

Watch Video Solution

20. If the ratio of the orbital distance of the two planets $\frac{d_{1}}{d_{2}}=2$, what is the ratio of gravitational field experienced by these two planets?

(D) Watch Video Solution

21. The Moon lo orbits jupiter once in 1.769 days.

The orbital radius of the Moon lo is 421700 Km .

Caculate the mass of jupiter?
22. If the angular momentum of a planet is given by $. \vec{L}=5 t^{2} \hat{i}-6 t \hat{j}+3 \hat{k}$. What is the torque experienced by the planet? Will the torque be in the same direction as that of the angular momentum?

D Watch Video Solution

23. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual
gravitational attraction. Calculate the speed of each particle

D Watch Video Solution

24. Suppose unknowingly you wrote the universal gravitational constant value as $G=6.67 \times 10^{11}$

Instead of the correct value $G=6.67 \times 10^{-11}$,
what is the acceleration due to this new
acceleration due to gravity, what will be your weight W'?
25. Calculate the gravitational field at point O due to three masses m_{1}, m_{2} and m_{3} whose positions are given by the following figure. If the masses m_{1} and m_{2} are equal what is the change in gravitational field at the point O ?

D View Text Solution

26. What is the gravitational potential energy of the Earth and sun ? The Earth to sun distance is arouund 150 million Km . The mass of the Earth is
$5.9 \times 10^{24} \mathrm{~kg}$ and the mass of the sun is $1.9 \times 10^{30} \mathrm{~kg}$.

D Watch Video Solution

27. Earth revolves around the sun at $30 \mathrm{kms}{ }^{-1}$
calculated the kinetic energy of the Earth.What is
the total energy of the Earth in that case? Is the
total energy positive?Give reasons.(Potential energy of earth $\left.=-49.84 \times 10^{32}\right)$
28. An object is thrown from Earth is such a way that it reaches a point at infinity with non-zero
kinetic energy $\left[K . E(r=\infty)=\frac{1}{2} M V_{\infty}^{0}\right]$, with what velocity should the object be thrown from

Earth?

- Watch Video Solution

29. Suppose we go 200 km above and below the surface of the Earth, what are the g values at these two points? In which case, is the value of g small?

- Watch Video Solution

30. Calculated the change in g value in your district of Tamil nadu. (Hint : Get the latitude of your district of Tamil nadu from the Google).

What is the difference in g values at Chennair and Kanyakumari?

- Watch Video Solution

Other Important Question Answers Multiple Choice Questions

1. A body is acted upon by a force towards a point. The magnitude of the force is inversely proportional to the square of the distance. The path of body will be:
A. ellipse
B. hyperbola
C. circle
D. parabola

Answer: A

D Watch Video Solution
2. Which of the following statements is an incorrect statement?

If M_{E} is the mass of the Earth,

G - Gravitational constant
R_{E} is the radius of the Earth and g is acceleration due to gravity the:
A. gravitational field intensity is

$$
E=-\frac{G M_{E}}{m} \vec{r}
$$

B. Relation between g and G is $G=-\frac{g M}{r^{2}}$
C. Gravitational potential is $V=\frac{G M_{E}}{R_{E}}$
D. Time period of a satellite is $T=2 \pi \sqrt{\frac{R_{E}}{g}}$

Answer: B

D Watch Video Solution

3. Accorrding to Kepler, the period of revolution of a planet (T) and its mean distance from the

Sun ${ }^{\circledR}$ related by the equation.
A. $T^{2} r^{-3}=$ constant
B. $T^{2} r=\mathrm{constant}$
C. $T^{3} r^{3}=$ constant
D. $T r^{3}=\mathrm{constant}$

Answer: A

- Watch Video Solution

4. The force of gravitation is:
A. repulsive force
B. electrostatic force
C. conservative force
D. non-conservative force
5. Which of the following pairs is a correct pair with reference to a satellite?
A. Potential energy $=-\frac{G m M}{R}$,

Kinetic energy $=\frac{G M m}{R+h}$
B. Potential energy $=-\frac{G M m}{R+h}$,

Kinetic energy $=\frac{G M m}{2(R+h)}$
C. Potential energy = mgh,

Kinetic energy $=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& \text { D. Potential energy }=-\frac{G M}{R^{2}} \\
& \qquad \text { Kinetic energy }=\frac{1}{2} \frac{G M}{(R+h)^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

6. The distance of two planets from the Sun are 10^{13} and 10^{12} metres respectively. The ratio of time periods of these two planets is:
A. 100
B. $\sqrt{10}$
C. $10 \sqrt{10}$
D. $\frac{1}{\sqrt{10}}$

Answer: C

D Watch Video Solution

7. The period of a planet around Sun is 27 times
that of Earth. The ratio of radius if planet's orbit to the radius of Earth's orbit is:
A. 4
B. 9
C. 27
D. 64

Answer: B

D Watch Video Solution

8. A planet moves around the Sun. It is closest to

Sun at a distant d_{1} and has velocity v_{1} and farthest with distance d_{2}, its speed at this point will be:
A. $\frac{d_{1}^{2} v_{1}}{d_{2}^{2}}$

> B. $\frac{d_{2} v_{1}}{d_{1}}$
> C. $\frac{d_{1} v_{1}}{d_{2}}$
> D. $\frac{d_{2}^{2} v_{1}}{d_{1}^{2}}$

Answer: C

D Watch Video Solution

9. Assertion: A planet is a heavenly body revolving around the sun.

Reason: Star is a self-luminous body made up of gaseous material.

Select the correct statement from the following statements.

A. Assertion and reason are true and reason

is the correct explanation of assertion.
B. Assertion and reason are true but reason is
not the correct explanation of assertion.
C. Assertion is true but reason is false.
D. Assertion is false and reason is true.

Answer: B

Watch Video Solution

10. Assertion: The earth is slowing down and as a result the moon is coming nearer to it.

Reason: The angular momentum of the earth moon system is not conserved.

Which one of the following statements is a correct staement?
A. Both assertion and reason are true and reason explains assertion correctly.
B. Both assertion and reason are true but
reason does not explain assertion correctly.
C. Both assertion and reason are false.

D. Assertion is true but reason is false.

Answer: C

D View Text Solution

11. A man waves his arms, while walking. This is due:
A. to keep constant velocity
B. to ease the tension
C. to increase the velociy
D. to balance the effect of Earth's gravity

Answer: D

D Watch Video Solution

12. Two spheres of same size, one of mass 2 kg and another of mass 4 kg are dropped simultaneously from the top of Qutab Minar (height $=72 \mathrm{~km}$) when they are 1 m above the ground, the two spheres have the same:
A. kinetic energy
B. potential energy
C. momentum
D. acceleration

Answer: D

D Watch Video Solution

13. Choose the odd man out from the following
laws.
A. Newton's first law of motion
B. Kepler's third law of planetary motion
C. Law of conservation of momentum

D. Law of conservation of energy

Answer: B

D Watch Video Solution

14. The figure shows elliptical orbit of a planet M about the Sun S. The shaded area of SCD is twice
the shaded area SAB. If t_{1} is the time for the planet to move from C to D and t_{2} is the time to move from A to B, then, which one of the following relations is correct?

$$
\text { A. } t_{1}=4 t_{2}
$$

B. $t_{1}>t_{2}$
C. $t_{1}=2 t_{2}$
D. $t_{1}=t_{2}$

Answer: C

D View Text Solution

15. When the elevator is moving uniformly in the upward and then in downward directions, which of the following pairs is a correct pair?
A. Apparent weight $=$ Actual weight and

Apparent weight $>$ Actual weight
B. Apparent weight $>$ Actual weight and

Apparent weight < Actual weight
C. Apparent weight $>$ Actual weight and

Apparent weight $=$ Actual weight
D. Apparent weight $<$ Actual weight and

Apparent weight $>$ Actual weight

Answer: B
16. The height at which the acceleration due to gravity becomes $\frac{g}{9}$ (where $g=$ the acceleration due to gravity on the surface of the Earth) in terms of R , the radius of the Earth, is:
A. 2 R
B. $\frac{R}{2}$
C. $\sqrt{2} R$
D. $\frac{R}{\sqrt{2}}$

Answer: A
17. Two particles of equal mass m go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

$$
\begin{aligned}
& \text { A. } v=\sqrt{\frac{1}{G M}} \\
& \text { B. } v=\sqrt{\frac{4 G M}{R}} \\
& \text { C. } v=\frac{1}{2} \sqrt{\frac{G M}{R}} \\
& \text { D. } v=\frac{1}{2 R} \sqrt{\frac{1}{G M}}
\end{aligned}
$$

Answer: C
18. A seconds pendulum is mounted in a rocket.

Its period of oscillation decreases when the rocket:
A. moves round the Earth in geo-stationary orbit
B. moves up with uniform acceleration
C. comes down with uniform acceleration
D. moves up with a unifrom velocity
19. Which of the following statements is an incorrect statement?
A. Radius of Moon $R_{m}=1737 \mathrm{~km}$
B. Radius of Earth $R_{E}=6436 \mathrm{~km}$
C. Distance between Sun and Venus is 0.38 AU
D. Distance between Sun and Mercury is 0.38

AU

D Watch Video Solution

20. Assertion: The time period of a pendulum on a satellite orbiting the Earth is infinity.

Reasons: Time period of a pendulum is inversely proportional to square root of acceleration due to gravity.

Which of the following statements is correct?
A. Both assertion and reason are true and reason explain assertion correctly.
B. Both assertion and reason are true and reason does not explain assertion correctly.
C. Assertion is true but reason is false.
D. Assertion is false and reason also false.

Answer: A

D Watch Video Solution

21. There are two bodies of masses 1 kg and 100 kg separated by a distance 1 m . At what distance
from the smaller body, the intensity of gravitational field will be zero?
A. $\frac{1}{9} \mathrm{~m}$
B. $\frac{10}{11} \mathrm{~m}$
C. $\frac{1}{10} \mathrm{~m}$
D. $\frac{1}{11} \mathrm{~m}$

Answer: D

- Watch Video Solution

22. A wire of length I and mass m is bent in the form of a semicircle. The gravitational field intensity at the centre of semicircle is:
A. $\frac{G m}{\pi l}$ along x -axis
B. $\frac{2 \pi G m}{l^{2}}$ along y-axis
C. $\frac{G m}{\pi l}$ along y-axis
D. $\frac{2 \pi G m}{l^{2}}$ along x -axis

Answer: B
23. Two stars of masses m_{1} and m_{2} are parts of a binary solar system. The radii of their orbits are r_{1} and r_{2} respectively. The magnitude of the gravitational force m_{1} exerts on m_{2} is:
A. $\frac{m_{1} m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$
$\left(r_{1}+r_{2}\right)^{2}$
B. $\frac{\left(m_{1}+m_{2}\right)}{\left(r_{1}+r_{2}\right)^{2}}$
C. $\frac{m_{1} G}{\left(r_{1}+r_{2}\right)^{2}}$
D. $\frac{m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$

Answer: A
24. A spherical planet has a mass M_{p} and diameter D_{p}. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity, equal to:

$$
\begin{aligned}
& \text { A. } \frac{4 G M_{p}}{D_{p}^{2}} \\
& \text { B. } \frac{G M_{p} m}{D_{p}^{2}} \\
& \text { C. } \frac{G M_{p}}{D_{p}^{2}} \\
& \text { D. } \frac{4 G M_{p} m}{D_{p}^{2}}
\end{aligned}
$$

- Watch Video Solution

25. Which of the following graphs shows the variation of acceleration due to gravity g with depth d from the surface of the Earth?
A.
B.
c.

R
D.
26. Two particles of mass m_{1} and m_{2}, approach
each other due to their mutual gravitational attraction only. Then:
A. acceleration of the particle of mass m_{1} is inversely proportional to m_{1}
B. acceleration of the particle of mass m_{1} is
proportional to m_{2}
C. acceleration of the particle of mass m_{1} is
proportional to m_{1}

D. acceleration of both the particles are equal

Answer: B

- Watch Video Solution

27. A planet is moving in an elliptical orbit around the Sun. If T, V, E and L stand respectively
for its kinetic energy, gravitational potential energy, total energy and magnitude of angular momentum about the centre of force, then which of the following is correct?
A. V is always positive
B. E is always negative
C. T is conserved
D. L is conserved but direction of vector L changes continuously.

Answer: B

D Watch Video Solution

28. A particle of mass M is situated at the centre of a spherical shell of same mass and radius a.

The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre will be:
A. $\frac{-3 G M}{a}$
B. $\frac{-4 G M}{a}$
C. $\frac{-2 G M}{a}$
D. $\frac{-G M}{a}$

Answer: A
(D) Watch Video Solution
29. Which one of the following statements is incorrect with reference to the weight of an object?
A. The magnitude of weight of an object is W

$$
=\mathrm{mg}
$$

B. The magnitude of weight is not equal to
the gravitational force acting on it.
C. The direction of weight of an object is in
the direction of gravitational force.
D. The weight of an object is a downward force

Answer: B

D Watch Video Solution

30. The kinetic energy needed to project a body of mass m from the Earth surface (radius R) to infinity is:
A. $\frac{m g R}{2}$
B. $2 m g R$
C. $m g R$
D. $\frac{m g R}{4}$

Answer: C

D Watch Video Solution

31. The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$. The potential energy of a body of mass 50 kg at a distance of $6.3 \times 10^{9} \mathrm{~m}$ from the centre of the Earth is:

$$
\text { A. }-3.23 \times 10^{9} \mathrm{~J}
$$

$$
\text { B. }-3.19 \times 10^{6} \mathrm{~J}
$$

C. $-2.5 \times 10^{6} J$
D. $-4.0 \times 10^{11} \mathrm{~J}$

Answer: B

D Watch Video Solution

32. A body of mass m falls from earth's surface at a height equal to twice the radius (R) each. Then the change in P.E. of body will be

$$
\text { A. } \frac{1}{3} m g R
$$

B. $3 m g R$
C. $\frac{2}{3} m g R$
D. $2 m g R$

Answer: C

D Watch Video Solution

33. Assertion: When a satellite is moving in a circular orbit around the Earth, total energy of a satellite, is half of its potential energy. Reason: The gravitational force obeys the inverse
square law of distance.

Select the correct statement of the following.
A. Assertion and reason are true and reason
explains assertions correctly.
B. Assertion and reason are true but reason
does not explain assertion correctly.
C. Assertion is true but reason is false.
D. Assertion is false but reason is true.

Answer: A

- View Text Solution

34. Work done is taking a mass from one point to another in a gravitational field depends on:
A. the end points only
B. the path followed
C. the velocity of the mass
D. both the length of the path and the end points

Answer: A
35. Three particles each of mass m are placed at the three corners of an equilateral triangle of
side a. The work done on the system to increase the sides of the triangle to 2 a is:
A. $\frac{3 G m^{2}}{a}$
B. $\frac{3 G m^{2}}{2 a}$
C. $\frac{2 G m^{2}}{3 a}$
D. $\frac{G m^{2}}{2 a}$

Answer: B
36. Two small and heavy sheres, each of mass M, are placed at a distance r apart on a horizontal surface. The gravitational potential at the midpoint on the line joining the centre of the spheres is:
A. zero
B. $-\frac{G M}{r}$
C. $-\frac{2 G M}{r}$
D. $-\frac{4 G M}{r}$
37. The radius and mass of Earth are increased by
0.5%. Which of the following statements is false at the surface of the Earth?
A. g will increase
B. g will not change
C. escape velocity will remain unchanged
D. potential energy will remain unchanged
38. The velocity of a projectile that must be projected by a rocket so that it escapes earth's gravitation, is independent of:
A. radius of the projectile orbit
B. mass of the projectile only
C. mass of the earth
D. gravitational constant
39. Select the odd man out from the following parameters.
A. Gravitational force
B. Gravitational potential
C. Electric potential
D. Gravitational potential energy

Answer: C

40. At what height from the surface of Earth the gravitational potential and the value of g are $-5.4 \times 10^{7} \mathrm{~J}^{\mathrm{Kg}} \mathrm{k}^{-1}$ and $6.0 \mathrm{~ms}^{-2}$ respectively? Take the radius of the Earth as 6400 km.
A. 2600 km
B. 1600 km
C. 1400 km
D. 2000 km
41. Two satellites of masses
m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are moving around the earth in orbits of radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$.

Which one of the following statements about their velocities is correct?
A. $v_{1}>v_{2}$
B. $v_{1}=v_{2}$
C. $v_{1}<v_{2}$

$$
\text { D. } \frac{v_{1}}{m_{1}}=\frac{v_{2}}{m_{2}}
$$

Answer: C

D Watch Video Solution

42. A person brings a mass of 1 kg from infinity to a point P. Initially the mass was at rest but it moves at a speed of $2 \mathrm{~ms}^{-1}$ as it reaches at P .

The work done by the person on the mass is -3 J .
The potential at P is:

$$
\begin{aligned}
& \text { A. }-2 J / k g \\
& \text { B. }-3 J / k g
\end{aligned}
$$

$$
\text { C. }-5 \mathrm{~J} / \mathrm{kg}
$$

$$
\text { D. }-7 \mathrm{~J} / \mathrm{kg}
$$

Answer: C

D Watch Video Solution

43. A body of mass m is placed on Earth surface which is taken from Earth surface to a height $h=$
$3 R$, then change in gravitaional potential energy is:

$$
\text { A. } \frac{1}{4} m g R
$$

> B. $\frac{2}{3} m g R$
> C. $\frac{3}{4} m g R$
> D. $\frac{1}{2} m g R$

Answer: C

D Watch Video Solution

44. Which one of the following plots represents the variation of gravitational field on a particle with distance r due to a thin spherical shell of
radius R ? (r is measured from the centre of the
spherical shell)
A.
B.
C.
D.

Answer: B

- View Text Solution

45. Variation of acceleration due to gravity (g) with distance x from the centre of the Earth is best represented by ($\mathrm{R} \rightarrow$ Radius of the Earth)
A.

B.

C.

Answer: D

D Watch Video Solution

46. Assertion : If a pendulum is suspended in a
lift and lift is falling freely, then its time period becomes infinite .

Reason : Free falling body has acceleration equal to acceleration due to gravity .
A. Both assertion and reason are true and reason explains assertion correctly.
B. Both assertion and reason are true and
reason does not explain assertion correctly.
C. Both assertion and reason are false.
D. Assertion is true but reason is false.

Answer: B

- Watch Video Solution

47. The gravitational field strength at the surface of a certain planet is g . Which of the following is the gravitational field strength at the surface of a planet with twice the radius and twice of the mass?
A. $\frac{g}{2}$
B. g
C. 2 g
D. 4 g
48. The gravitational potential energy of a rocket of mass 200kg at a height of $10^{7} \mathrm{~m}$ from the earth's surface is $10^{9} \mathrm{~s}$. The potential energy of the rocket at a height of $26.4 \times 10^{6} \mathrm{~m}$ from the surface of earth is:

$$
\begin{aligned}
& \text { A. }-1.5 \times 10^{9} \mathrm{~J} \\
& \text { B. }-0.5 \times 10^{9} \mathrm{~J} \\
& \text { C. }-2.5 \times 10^{9} \mathrm{~J} \\
& \text { D. }-2 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

Answer: B

- Watch Video Solution

49. When a body is taken from poles to equator on the Earth, its weight:
A. decreases
B. increases
C. remains the same
D. increases at South pole and decreases at

North pole.

Answer: A

D Watch Video Solution

50. If the mass of a body is M on the surface of the Earth, the mass of the same body on the surface of the Moon is:
A. M
B. zero
C. $\frac{M}{6}$
D. 6 M

Answer: A

- Watch Video Solution

51. A satellite is in an orbit around the earth. If its kinetic energy is doubled, then it will:
A. fall on the earth
B. rotates with a great speed
C. escape out of earth's gravitational field
D. maintain its path

Answer: C

D Watch Video Solution

52. The reading of a spring balance corresponds
to 100 N while situated at the North pole and a body is kept on it. The weight recorded on the same scale if it is shifted to the equator (take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and radius of the Earth
$\left.R=6.4 \times 10^{6} \mathrm{~m}\right)$ is:
A. 99.66 N
C. 97.66 N
D. 106 N

Answer: A

D Watch Video Solution

53. The radii of two planets are respectively R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity $\left(g_{1} / g_{2}\right)$ at their surfaces is:

$$
\text { A. } \frac{R_{1} \rho_{2}}{R_{2} \rho_{1}}
$$

B. $\frac{R_{1} \rho_{1}}{R_{2} \rho_{2}}$
C. $\frac{\rho_{1} R_{2}^{2}}{\rho_{2} R_{1}^{2}}$
D. $\frac{R_{1} R_{2}}{\rho_{1} \rho_{2}}$

Answer: B

D Watch Video Solution

54. Mass remaining constant, the radius of the Earth shrinks by 1%. The acceleration due to gravity on the Earth's surface would:
A. increase by 2%
B. increase by 1%
C. decrease by 1%
D. decrease by $1 / 2 \%$

Answer: A

(D) Watch Video Solution

55. What will be the effect on the weight of a body placed on the surface on the Earth, if Earth suddenly stops rotating?
A. no effect
B. weight will increase
C. weight will decrease
D. weight will become zero

Answer: B
(D) Watch Video Solution
56. The value of acceleration due to gravity at the surface of Earth:
A. is maximum at the poles
B. is maximum at the equator
C. remains constant everywhere on the

surface on the Earth

D. is maximum at the international timeline

Answer: A

D Watch Video Solution

57. Two satellites of earth S_{1} and S_{2} are moving in the same orbit. If the mass of S_{1} is four times the mass of S_{2} then which one of the following statements is true?
A. The potential energies of earth and satellite in both cases are equal.
B. The kinetic energies of two satellites are equal.
C. The time period of S_{1} is four times the time
period of S_{2}.
D. Satellites S_{1} and S_{2} are moving with same
speed.

Answer: D
58. The mass ratio of two planets is 1:5. They are revolving around the sun in circular paths of radii in the ratio $2: 5$. The ratio between the values of acceleration due to gravity on their surface is:
A. $2: 5$
B. 3:5
C. 5: 2
D. 5: 4
59. A planet in a distant solar system is 10 times more massive than the Earth and its radius is 10 times smaller. Given that the escape velocity from the Earth is $11 \mathrm{~km} s^{-1}$, the escape velocity from the surface of the planet would be:
A. $0.11 \mathrm{~km} s^{-1}$
B. $1.1 \mathrm{~km} s^{-1}$
C. $11 \mathrm{~km} \mathrm{~s}^{-1}$
D. $110 \mathrm{~km} \mathrm{~s}{ }^{-1}$

Answer: D

- Watch Video Solution

60. The escape velocity of a body depends upon its mass (m) as:
A. m^{0}
B. m^{1}
C. m^{2}
D. m^{3}

Answer: A

D Watch Video Solution

61. A satellite in free space sweeps stationary interplanetary dust at a rate $d M / d t=\alpha v$ where M is the mass and v is the velocity of the satellite and α is a constant. What is the deceleration of the satellite?
A. $-\alpha v^{2}$
B. $-\frac{\alpha v^{2}}{2 M}$

> C. $-\frac{\alpha v^{2}}{M}$
> D. $-\frac{2 \alpha v^{2}}{M}$

Answer: C

D Watch Video Solution

62. A satellite is revolving in a stable orbit of radius r with orbital velocity v_{0} around the earth.

The time period of the satellite is T , angular momentum L and its total energy is E.

Then which one of the following statement is not correct?
A. V_{0} is directly proportional to $r^{\frac{-3}{2}}$
B. T is directly proportional to $r^{\frac{3}{2}}$
C. L is directly proportional to r^{-1}
D. E is directly proportional to r

Answer: A

D View Text Solution

63. A planet has the radius twice that of earth
and has same density as that of earth. If V_{p} and V_{e} are the escape velocities for the
planet and earth, then which of the following
correct relation is:
A. $V_{p}=V_{e}$
B. $V_{e}=2 V_{p}$
C. $V_{p}=2 V_{e}$
D. $V_{p}=\sqrt{2} V_{e}$

Answer: C

- Watch Video Solution

64. A satellite is to revolve around the Earth in a
circle of radius 8000 km . The speed at which this
satellite be projected into an orbit, will be:
A. $3 \mathrm{~km} / \mathrm{s}$
B. $16 \mathrm{~km} / \mathrm{s}$
C. $7.15 \mathrm{~km} / \mathrm{s}$
D. $8 \mathrm{~km} / \mathrm{s}$

Answer: C
65. Assuming density d of a planet to be uniform,
we can say that the time period of its artificial satellite is proportional to:
A. d
B. \sqrt{d}
C. $\frac{1}{\sqrt{d}}$
D. $\frac{1}{d}$

Answer: C
(D) Watch Video Solution
66. The time period of a satellite orbiting Earth in a circular orbit is independent of
A. the mass of the satellite
B. radius of its orbit
C. both the mass of satellite and radius of the orbit

D. neither the mass of satellite nor the radius

of its orbit.

Answer: A
67. An Earth satellite is moving around the Earth in circular orbit. In such case, which of the following is conserved?
A. velocity
B. linear momentum
C. angular momentum
D. none of these

Answer: C
68. The kinetic energy of a satellite is 2 MJ . What is the total energy of the satellite?
A. $-2 M J$
B. $-1 M J$
C. $\frac{-1}{2} M J$
D. $-4 M J$

Answer: A
69. The distances of two satellites from the surface of the Earth are R and 7R. Their time periods of rotation are in the ratio:
A. $1: 7$
B. $1: 8$
C. 1: 49
D. $1: 7^{3 / 2}$

Answer: B
70. Select the correct pair from the following pairs with reference to acceleration due to gravity (g).
A. g is minimum at poles and it is maximum at equator.
B. g is maximum at poles and it is minimum at
equator
C. g is maximum at equator and it is minimum
at poles

D.g decreases with depth and it increases

with height.

Answer: B

D Watch Video Solution

71. A black hole is an object whose gravitational
field is so strong that even light cannot escape
from it. To what approximate radius would Earth
(mass $=5.98 \times 10^{24} \mathrm{~kg}$) have to be compressed to be a black hole?
A. $10^{-9} \mathrm{~m}$
B. $10^{-6} m$
C. $10^{-2} m$
D. 100 m

Answer: C

(Watch Video Solution

72. A satellite S is moving in an elliptical orbit around the Earth. The mass of the satellite is very
small compared to the mass of the Earth.Then, which one of the following statements is correct?
A. the linear momentum of S remains
constant in the magnitude
B. the acceleration of S is always directed
towards the centre of the Earth.
C. the angular momentum of S about the
centre of the Earth changes in direction,
but its magnitude remains constant
D. the total mechanical energy of S varies

Answer: B

- Watch Video Solution

73. Where should a geo-stationary satellite be launched?
A. At equator
B. At poles
C. Anywhere
D. None of these

Answer: A

D Watch Video Solution

74. The value of escape velocity on a certain planet is $2 \mathrm{~km} / \mathrm{s}$. Then the value of orbital speed for a satellite orbiting close to its surface is:
A. $12 \mathrm{~km} / \mathrm{s}$
B. $1 \mathrm{~km} / \mathrm{s}$
C. $\sqrt{2} \mathrm{~km} / \mathrm{s}$
D. $2 \sqrt{2} \mathrm{~km} / \mathrm{s}$

Answer: C

D Watch Video Solution

75. For a satellite moving in an orbit around the earth, the ratio of kinetic energy of potential
A. $1: \sqrt{2}$
B. 1: 2
C. 2: 1
D. $\sqrt{2}: 1$

Answer: B

D Watch Video Solution

76. All the known planets move in:
A. straight path
B. circular path
C. hyperbolic path
D. elliptical path
77. For a planet moving around the Sun in an elliptical orbit of semimajor and semiminor axes a and b respectively and Time period T.

For this situation which one of the following statements is correct?
A. The torque acting on the planet about the

Sun in non-zero
B. The angular momentum of the planet
about the Sun is constant
C. The planet moves with a constant speed
around the Sun
D. The areal velocity is $\pi a b / T$

Answer: B

D Watch Video Solution

78. An artificial satellite moving in a circular orbit around the Earth has a total (kinetic + potential) energy E_{0}. Its potential energy is:
A. $1.5 E_{0}$
B. E_{0}
C. $2 E_{0}$

$$
\text { D. }-E_{0}
$$

Answer: C

D Watch Video Solution

79. A missile is launched with a velocity less than escape velocity. The sum of its kinetic and potential energies is:
A. zero
B. negative
C. positive
D. first(a) then (b)

Answer: B

D Watch Video Solution

80. For a planet having mass equal to mass of the earth and radius is one fourth of radius of the earth. Then which one of the following statements is correct?
A. The escape velocity for this planet will be
$11.2 \mathrm{~km} / \mathrm{sec}$
B. The escape velocity for this planet will be
$5.6 \mathrm{~km} / \mathrm{sec}$
C. The escape velocity for this planet will be
$22.4 \mathrm{~km} / \mathrm{sec}$
D. The escape velocity for this planet will be
$44.8 \mathrm{~km} / \mathrm{sec}$

Answer: C
81. Weightlessness in satellite is due to:
A. zero gravitational acceleration
B. zero acceleration
C. zero mass
D. none of these

Answer: A

D Watch Video Solution
82. A body is acted upon by a force towards a point. The magnitude of the force is inversely proportional to the square of the distance. The path of body will be:
A. ellipse
B. hyperbola
C. circle
D. parabola

Answer: A
83. Which of the following statements is an incorrect statement?

If M_{E} is the mass of the Earth,

G - Gravitational constant
R_{E} is the radius of the Earth and
g is acceleration due to gravity the:
A. gravitational field intensity is

$$
E=-\frac{G M_{E}}{m} \vec{r}
$$

B. Relation between g and G is $G=-\frac{g M}{r^{2}}$
C. Gravitational potential is $V=\frac{G M_{E}}{R_{E}}$
D. Time period of a satellite is $T=2 \pi \sqrt{\frac{R_{E}}{g}}$

Answer: B

- View Text Solution

84. Accorrding to Kepler, the period of revolution of a planet (T) and its mean distance from the

Sun ${ }^{\circledR}$ related by the equation.
A. $T^{2} r^{-3}=$ constant
B. $T^{2} r=\mathrm{constant}$
C. $T^{3} r^{3}=$ constant
D. $T r^{3}=$ constant

Answer: A

D Watch Video Solution

85. The force of gravitation is:
A. repulsive force
B. electrostatic force
C. conservative force
D. non-conservative force

Answer: C

D Watch Video Solution

86. Which of the following pairs is a correct pair
with reference to a satellite?
A. Potential energy $=-\frac{G m M}{R}$,

Kinetic energy $=\frac{G M m}{R+h}$
B. Potential energy $=-\frac{G M m}{R+h}$,

Kinetic energy $=\frac{G M m}{2(R+h)}$
C. Potential energy $=\mathrm{mgh}$,

Kinetic energy $=\frac{1}{2} m v^{2}$
D. Potential energy $=-\frac{G M}{R^{2}}$

Kinetic energy $=\frac{1}{2} \frac{G M}{(R+h)^{2}}$

Answer: B

D Watch Video Solution

87. The distance of two planets from the Sun are
10^{13} and 10^{12} metres respectively. The ratio of time periods of these two planets is:
A. 100
B. $\sqrt{10}$
C. $10 \sqrt{10}$
D. $\frac{1}{\sqrt{10}}$

Answer: C

D Watch Video Solution

88. The period of a planet around Sun is 27 times
that of Earth. The ratio of radius if planet's orbit
to the radius of Earth's orbit is:
A. 4
B. 9
C. 27
D. 64

Answer: B

(D) Watch Video Solution

89. A planet moves around the Sun. It is closest
to Sun at a distant d_{1} and has velocity v_{1} and
farthest with distance d_{2}, its speed at this point
will be:

$$
\begin{aligned}
& \text { A. } \frac{d_{1}^{2} v_{1}}{d_{2}^{2}} \\
& \text { B. } \frac{d_{2} v_{1}}{d_{1}} \\
& \text { C. } \frac{d_{1} v_{1}}{d_{2}} \\
& \text { D. } \frac{d_{2}^{2} v_{1}}{d_{1}^{2}}
\end{aligned}
$$

Answer: C

90. Assertion: A planet is a heavenly body revolving around the sun.

Reason: Star is a self-luminous body made up of gaseous material.

Select the correct statement from the following statements.
A. Assertion and reason are true and reason
is the correct explanation of assertion.
B. Assertion and reason are true but reason is
not the correct explanation of assertion.
C. Assertion is true but reason is false.

D. Assertion is false and reason is true.

Answer: B

D Watch Video Solution

91. Assertion: The earth is slowing down and as a result the moon is coming nearer to it.

Reason: The angular momentum of the earth moon system is not conserved.

Which one of the following statements is a correct staement?
A. Both assertion and reason are true and reason explains assertion correctly. B. Both assertion and reason are true but reason does not explain assertion correctly.
C. Both assertion and reason are false.
D. Assertion is true but reason is false.

Answer: C

- Watch Video Solution

92. A man waves his arms, while walking. This is due:
A. to keep constant velocity
B. to ease the tension
C. to increase the velociy
D. to balance the effect of Earth's gravity

Answer: D

93. Two spheres of same size, one of mass 2 kg and another of mass 4 kg are dropped simultaneously from the top of Qutab Minar
(height $=72 \mathrm{~km}$) when they are 1 m above the ground, the two spheres have the same:
A. kinetic energy
B. potential energy
C. momentum
D. acceleration
94. Choose the odd man out from the following laws.
A. Newton's first law of motion
B. Kepler's third law of planetary motion
C. Law of conservation of momentum
D. Law of conservation of energy

Answer: B
95. The figure shows elliptical orbit of a planet M
about the Sun S. The shaded area of SCD is twice
the shaded area SAB. If t_{1} is the time for the planet to move from C to D and t_{2} is the time to move from A to B, then, which one of the following relations is correct?
A. $t_{1}=4 t_{2}$
B. $t_{1}>t_{2}$
C. $t_{1}=2 t_{2}$
D. $t_{1}=t_{2}$

Answer: C

- View Text Solution

96. When the elevator is moving uniformly in the upward and then in downward directions, which of the following pairs is a correct pair?
A. Apparent weight = Actual weight and

Apparent weight $>$ Actual weight
B. Apparent weight $>$ Actual weight and

Apparent weight < Actual weight
C.Apparent weight $>$ Actual weight and

Apparent weight = Actual weight
D. Apparent weight $<$ Actual weight and

Apparent weight $>$ Actual weight

Answer: B

D View Text Solution

97. The height at which the acceleration due to gravity becomes $\frac{g}{9}$ (where $\mathrm{g}=$ the acceleration
due to gravity on the surface of the Earth) in terms of R , the radius of the Earth, is:
A. 2 R
B. $\frac{R}{2}$
C. $\sqrt{2} R$
D. $\frac{R}{\sqrt{2}}$

Answer: A

- Watch Video Solution

98. Two particles of equal mass m go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

$$
\begin{aligned}
& \text { A. } v=\sqrt{\frac{1}{G M}} \\
& \text { B. } v=\sqrt{\frac{4 G M}{R}} \\
& \text { C. } v=\frac{1}{2} \sqrt{\frac{G M}{R}} \\
& \text { D. } v=\frac{1}{2 R} \sqrt{\frac{1}{G M}}
\end{aligned}
$$

Answer: C
99. A seconds pendulum is mounted in a rocket.

Its period of oscillation decreases when the rocket:
A. moves round the Earth in geo-stationary orbit
B. moves up with uniform acceleration
C. comes down with uniform acceleration
D. moves up with a unifrom velocity
100. Which of the following statements is an incorrect statement?
A. Radius of Moon $R_{m}=1737 \mathrm{~km}$
B. Radius of Earth $R_{E}=6436 \mathrm{~km}$
C. Distance between Sun and Venus is 0.38 AU
D. Distance between Sun and Mercury is 0.38

AU

101. Assertion: The time period of a pendulum on

 a satellite orbiting the Earth is infinity.Reasons: Time period of a pendulum is inversely proportional to square root of acceleration due to gravity.

Which of the following statements is correct?
A. Both assertion and reason are true and
reason explain assertion correctly.
B. Both assertion and reason are true and reason does not explain assertion correctly.
C. Assertion is true but reason is false.
D. Assertion is false and reason also false.

Answer: A

D Watch Video Solution

102. There are two bodies of masses 1 kg and 100 kg separated by a distance 1 m . At what distance
from the smaller body, the intensity of gravitational field will be zero?
A. $\frac{1}{9} \mathrm{~m}$
B. $\frac{10}{11} \mathrm{~m}$
C. $\frac{1}{10} \mathrm{~m}$
D. $\frac{1}{11} \mathrm{~m}$

Answer: D

- Watch Video Solution

103. A wire of length I and mass m is bent in the form of a semicircle. The gravitational field intensity at the centre of semicircle is:
A. $\frac{G m}{\pi l}$ along x -axis
B. $\frac{2 \pi G m}{l^{2}}$ along y -axis
C. $\frac{G m}{\pi l}$ along y-axis
D. $\frac{2 \pi G m}{l^{2}}$ along x -axis

Answer: B
104. Two stars of masses m_{1} and m_{2} are parts of a binary solar system. The radii of their orbits are r_{1} and r_{2} respectively. The magnitude of the gravitational force m_{1} exerts on m_{2} is:
A. $\frac{m_{1} m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$
$\left(r_{1}+r_{2}\right)^{2}$
B. $\frac{\left(m_{1}+m_{2}\right)}{\left(r_{1}+r_{2}\right)^{2}}$
C. $\frac{m_{1} G}{\left(r_{1}+r_{2}\right)^{2}}$
D. $\frac{m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$

Answer: A
105. A spherical planet has a mass M_{p} and diameter D_{p}. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity, equal to:

$$
\begin{aligned}
& \text { A. } \frac{4 G M_{p}}{D_{p}^{2}} \\
& \text { B. } \frac{G M_{p} m}{D_{p}^{2}} \\
& \text { C. } \frac{G M_{p}}{D_{p}^{2}} \\
& \text { D. } \frac{4 G M_{p} m}{D_{p}^{2}}
\end{aligned}
$$

106. Draw graphs showing the variation of accleeration due to gravity with (a) height above the Earth's surface, (b) depth below the Earth's surface.
A.
B.
C.
D.

Answer: B

D Watch Video Solution

107. Two particles of mass m_{1} and m_{2}, approach each other due to their mutual gravitational attraction only. Then:
A. acceleration of the particle of mass m_{1} is
inversely proportional to m_{1}
B. acceleration of the particle of mass m_{1} is
proportional to m_{2}
C. acceleration of the particle of mass m_{1} is proportional to m_{1}
D. acceleration of both the particles are equal

Answer: B

- Watch Video Solution

108. A planet is moving in an elliptical orbit around the Sun. If T, V, E and L stand respectively
for its kinetic energy, gravitational potential energy, total energy and magnitude of angular
momentum about the centre of force, then which of the following is correct?
A. V is always positive
B. E is always negative
C. T is conserved
D. L is conserved but direction of vector L
changes continuously.

Answer: B

D Watch Video Solution
109. A particle of mass M is situated at the centre of a spherical shell of same mass and radius a.

The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre will be:
A. $\frac{-3 G M}{a}$
B. $\frac{-4 G M}{a}$
C. $\frac{-2 G M}{a}$
D. $\frac{-G M}{a}$

Answer: A
110. Which one of the following statements is incorrect with reference to the weight of an object?
A. The magnitude of weight of an object is W

$$
=\mathrm{mg}
$$

B. The magnitude of weight is equal to the gravitational force acting on it.
C. The direction of weight of an object is in the direction of gravitational force.
D. The weight of an object is a downward force

Answer: B

D Watch Video Solution

111. The kinetic energy needed to project a body of mass m from the Earth surface (radius R) to infinity is:
A. $\frac{m g R}{2}$
B. $2 m g R$
C. $m g R$

$$
\text { D. } \frac{m g R}{4}
$$

Answer: C

D Watch Video Solution

112. The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$. The potential energy of a body of mass 50 kg at a distance of $6.3 \times 10^{9} \mathrm{~m}$ from the centre of the Earth is:
A. $-3.23 \times 10^{9} J$

$$
\text { B. }-3.19 \times 10^{6} \mathrm{~J}
$$

C. $-2.5 \times 10^{6} \mathrm{~J}$
D. $-4.0 \times 10^{11} \mathrm{~J}$

Answer: B

D Watch Video Solution

113. A body of mass m falls from earth's surface at a height equal to twice the radius (R) each. Then the change in P.E. of body will be

$$
\text { A. } \frac{1}{3} m g R
$$

B. $3 m g R$
C. $\frac{2}{3} m g R$
D. $2 m g R$

Answer: C

D Watch Video Solution

114. Assertion: When a satellite is moving in a circular orbit around the Earth, total energy of a satellite, is half of its potential energy. Reason: The gravitational force obeys the inverse
square law of distance.

Select the correct statement of the following.
A. Assertion and reason are true and reason
explains assertions correctly.
B. Assertion and reason are true but reason
does not explain assertion correctly.
C. Assertion is true but reason is false.
D. Assertion is false but reason is true.

Answer: A

- Watch Video Solution

115. Work done is taking a mass from one point to another in a gravitational field depends on:
A. the end points only
B. the path followed
C. the velocity of the mass
D. both the length of the path and the end points

Answer: A
116. Three particles each of mass m are placed at the three corners of an equilateral triangle of
side a. The work done on the system to increase the sides of the triangle to 2 a is:
A. $\frac{3 G m^{2}}{a}$
B. $\frac{3 G m^{2}}{2 a}$
C. $\frac{2 G m^{2}}{3 a}$
D. $\frac{G m^{2}}{2 a}$

Answer: B
117. Two small and heavy sheres, each of mass M, are placed at a distance r apart on a horizontal surface. The gravitational potential at the midpoint on the line joining the centre of the spheres is:
A. zero
B. $-\frac{G M}{r}$
C. $-\frac{2 G M}{r}$
D. $-\frac{4 G M}{r}$
118. The radius and mass of Earth are increased by 0.5%. Which of the following statements is false at the surface of the Earth?
A. g will increase
B. g will decrease
C. escape velocity will remain unchanged
D. potential energy will remain unchanged
119. The velocity of a projectile that must be projected by a rocket so that it escapes earth's gravitation, is independent of:
A. radius of the projectile orbit
B. mass of the projectile only
C. mass of the earth
D. gravitational constant
120. Select the odd man out from the following parameters.
A. Gravitational force
B. Gravitational potential
C. Electric potential
D. Gravitational potential energy

Answer: C

121. At what height from the surface of Earth the gravitational potential and the value of g are $-5.4 \times 10^{7} \mathrm{~J}^{-1} \mathrm{~kg}^{-1}$ and $6.0 \mathrm{~ms}^{-2}$ respectively? Take the radius of the Earth as 6400 km.
A. 2600 km
B. 1600 km
C. 1400 km
D. 2000 km

Answer: A

122. Two satellites of masses

m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are moving around the earth in orbits of radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$.

Which one of the following statements about their velocities is correct?
A. $v_{1}>v_{2}$
B. $v_{1}=v_{2}$
C. $v_{1}<v_{2}$

$$
\text { D. } \frac{v_{1}}{m_{1}}=\frac{v_{2}}{m_{2}}
$$

Answer: C

D Watch Video Solution

123. A person brings a mass of 1 kg from infinity to a point P. Initially the mass was at rest but it moves at a speed of $2 \mathrm{~ms}^{-1}$ as it reaches at P .

The work done by the person on the mass is -3 J .
The potential at P is:

$$
\begin{aligned}
& \text { A. }-2 J / k g \\
& \text { B. }-3 J / k g
\end{aligned}
$$

$$
\text { C. }-5 \mathrm{~J} / \mathrm{kg}
$$

$$
\text { D. }-7 \mathrm{~J} / \mathrm{kg}
$$

Answer: C

D Watch Video Solution

124. A body of mass m is placed on Earth surface which is taken from Earth surface to a height $h=$
$3 R$, then change in gravitaional potential energy is:

$$
\text { A. } \frac{1}{4} m g R
$$

> B. $\frac{2}{3} m g R$
> C. $\frac{3}{4} m g R$
> D. $\frac{1}{2} m g R$

Answer: C

D Watch Video Solution

125. Which one of the following plots represents the variation of the gravitational field on a particle with distance r due to a thin spherical
shell of raduis R ? (r is measured from the centre of the spherical shell).
A.
B.
c.
D.

Answer: B

- Watch Video Solution

126. Variation of acceleration due to gravity (g) with distance x from the centre of the Earth is best represented by ($R \rightarrow$ Radius of the Earth)
A.

B.

C.

Answer: D

D Watch Video Solution

127. Assertion : If a pendulum is suspended in a
lift and lift is falling freely, then its time period becomes infinite.

Reason : Free falling body has acceleration equal to acceleration due to gravity .
A. Both assertion and reason are true and reason explains assertion correctly.
B. Both assertion and reason are true and
reason does not explain assertion correctly.
C. Both assertion and reason are false.
D. Assertion is true but reason is false.

Answer: B

- Watch Video Solution

128. The gravitational field strength at the surface of a certain planet is g. Which of the following is the gravitational field strength at the surface of a planet with twice the radius and twice of the mass?
A. $\frac{g}{2}$
B. g
C. 2 g
D. 4 g
129. The gravitational potential energy of a rocket of mass 200 kg at a height of $10^{7} \mathrm{~m}$ from the earth's surface is $10^{9} \mathrm{~s}$. The potential energy of the rocket at a height of $26.4 \times 10^{6} \mathrm{~m}$ from the surface of earth is:

$$
\begin{aligned}
& \text { A. }-1.5 \times 10^{9} \mathrm{~J} \\
& \text { B. }-0.5 \times 10^{9} \mathrm{~J} \\
& \text { C. }-2.5 \times 10^{9} \mathrm{~J} \\
& \text { D. }-2 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

Answer: B

- Watch Video Solution

130. When a body is taken from poles to equator on the Earth, its weight:
A. decreases
B. increases
C. remains the same
D. increases at South pole and decreases at

North pole.

Answer: A

D Watch Video Solution

131. If the mass of a body is M on the surface of the Earth, the mass of the same body on the surface of the Moon is:
A. M
B. zero
C. $\frac{M}{6}$
D. 6 M

Answer: A

D Watch Video Solution

132. If the K.E. of a satellite revolving around the earth in any orbit is doubled then what will happen to satellite?
A. fall on the earth
B. rotates with a great speed
C. escape out of earth's gravitational field
D. maintain its path

Answer: C

D Watch Video Solution

133. The reading of a spring balance corresponds
to 100 N while situated at the North pole and a body is kept on it. The weight recorded on the same scale if it is shifted to the equator (take, $g=10 m / s^{2}$ and radius of the Earth $\left.R=6.4 \times 10^{6} \mathrm{~m}\right)$ is:
A. 99.66 N
C. 97.66 N
D. 106 N

Answer: A

D Watch Video Solution

134. The radii of two planets are respectively
R_{1} and R_{2} and their densities are respectively
ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity $\left(g_{1} / g_{2}\right)$ at their surfaces is:

$$
\text { A. } \frac{R_{1} \rho_{2}}{R_{2} \rho_{1}}
$$

> B. $\frac{R_{1} \rho_{1}}{R_{2} \rho_{2}}$
> C. $\frac{\rho_{1} R_{2}^{2}}{\rho_{2} R_{1}^{2}}$
> D. $\frac{R_{1} R_{2}}{\rho_{1} \rho_{2}}$

Answer: B

D Watch Video Solution

135. If the radius of the Earth were to shrink by
one percent its mass remaining the same, the
acceleration due to gravity on the Earth's surface
would
A. increase by 2%
B. increase by 1%
C. decrease by 1%
D. decrease by $1 / 2 \%$

Answer: A

D Watch Video Solution

136. What will be the effect on the weight of a body placed on the surface on the Earth, if Earth suddenly stops rotating?
A. no effect
B. weight will increase
C. weight will decrease
D. weight will become zero

Answer: B

(D) Watch Video Solution

137. The value of acceleration due to gravity at the surface of Earth:
A. is maximum at the poles
B. is maximum at the equator
C. remains constant everywhere on the

surface on the Earth

D. is maximum at the international timeline

Answer: A

D Watch Video Solution

138. Two satellites of earth S_{1} and S_{2} are moving in the same orbit. If the mass of S_{1} is
four times the mass of S_{2} then which one of the following statements is true?
A. The potential energies of earth and satellite in both cases are equal.
B. The kinetic energies of two satellites are
equal.
C. The time period of S_{1} is four times the time
period of S_{2}.
D. Satellites S_{1} and S_{2} are moving with same speed.

Answer: D

D Watch Video Solution

139. The mass ratio of two planets is 1:5. They are revolving around the sun in circular paths of radii in the ratio $2: 5$. The ratio between the values of acceleration due to gravity on their surface is:
A. 2: 5
B. 3:5
C. $5: 2$
D. 5: 4

Answer: D

D Watch Video Solution

140. A planet in a distant solar system is 10 times more massive than the Earth and its radius is 10 times smaller. Given that the escape velocity from the Earth is $11 \mathrm{~km} \mathrm{~s}{ }^{-1}$, the escape velocity from the surface of the planet would be:

A. $0.11 \mathrm{~km} \mathrm{~s}^{-1}$

B. $1.1 \mathrm{~km}^{-1}$
C. $11 \mathrm{~km} \mathrm{~s}^{-1}$
D. $110 \mathrm{~km} s^{-1}$

Answer: D

D Watch Video Solution

141. The escape velocity of a body depends upon its mass (m) as:
A. m^{0}
B. m^{1}
C. m^{2}
D. m^{3}

Answer: A

D Watch Video Solution

142. A satellite in free space sweeps stationary interplanetary dust at a rate $d M / d t=\alpha v$ where M is the mass and v is the velocity of the
satellite and α is a constant. What is the

deceleration of the satellite?

$$
\begin{aligned}
& \text { A. }-\alpha v^{2} \\
& \text { B. }-\frac{\alpha v^{2}}{2 M} \\
& \text { C. }-\frac{\alpha v^{2}}{M} \\
& \text { D. }-\frac{2 \alpha v^{2}}{M}
\end{aligned}
$$

Answer: C
(D) Watch Video Solution
143. A satellite is revolving in a stable orbit of radius r with orbital velocity v_{0} around the earth.

The time period of the satellite is T , angular momentum L and its total energy is E.

Then which one of the following statement is not correct?
A. V_{0} is directly proportional to $r^{\frac{-3}{2}}$
B. T is directly proportional to $r^{\frac{3}{2}}$
C. L is directly proportional to r^{2}
D. E is directly proportional to r^{-1}

Answer: A

D Watch Video Solution

144. A planet has the radius twice that of earth and has same density as that of earth. If V_{p} and V_{e} are the escape velocities for the planet and earth, then which of the following correct relation is:
A. $V_{p}=V_{e}$

$$
\text { B. } V_{e}=2 V_{p}
$$

C. $V_{p}=2 V_{e}$
D. $V_{p}=\sqrt{2} V_{e}$

Answer: C

D Watch Video Solution

145. A satellite is to revolve around the Earth in a
circle of radius 8000 km . The speed at which this
satellite be projected into an orbit, will be:
A. $3 \mathrm{~km} / \mathrm{s}$
B. $16 \mathrm{~km} / \mathrm{s}$
C. $7.15 \mathrm{~km} / \mathrm{s}$
D. $8 \mathrm{~km} / \mathrm{s}$

Answer: C

D Watch Video Solution

146. Assuming density d of a planet to be uniform, we can say that the time period of its artificial satellite is proportional to:
A. d
B. \sqrt{d}

> C. $\frac{1}{\sqrt{d}}$
> D. $\frac{1}{d}$

Answer: C

- Watch Video Solution

147. The time period of a satellite orbiting Earth in a circular orbit is independent of
A. the mass of the satellite
B. radius of its orbit
C. both the mass of satellite and radius of the orbit

D. neither the mass of satellite nor the radius

of its orbit.

Answer: A

D Watch Video Solution

148. An Earth satellite is moving around the Earth in circular orbit. In such case, which of the following is conserved?
A. velocity
B. linear momentum
C. angular momentum
D. none of these

Answer: C

D Watch Video Solution

149. The kinetic energy of a satellite is 2 MJ . What is the total energy of the satellite?
A. $-2 M J$

$$
\begin{aligned}
& \text { B. }-1 M J \\
& \text { C. } \frac{-1}{2} M J \\
& \text { D. }-4 M J
\end{aligned}
$$

Answer: A

D Watch Video Solution

150. The distances of two satellites from the surface of the Earth are $2 R$ and $8 R$. Their time periods of rotation are in the ratio:
A. 1:7
B. 1: 8
C. 1: 49
D. $1: 7^{3 / 2}$

Answer: B

(Watch Video Solution

151. Select the correct pair from the following pairs with reference to acceleration due to gravity (g).
A. g is minimum at poles and it is maximum at equator.
B. g is maximum at poles and it is minimum at
equator
C. g is maximum at equator and it is minimum
at poles
D.g decreases with depth and it increases
with height.

Answer: B
152. A black hole is an object whose gravitational
field is so strong that even light cannot escape
from it. To what approximate radius would Earth
(mass $=5.98 \times 10^{24} \mathrm{~kg}$) have to be compressed to
be a black hole?
A. $10^{-9} m$
B. $10^{-6} \mathrm{~m}$
C. $10^{-2} m$
D. 100 m
153. A satellite S is moving in an elliptical orbit around the Earth. The mass of the satellite is very small compared to the mass of the Earth.Then, which one of the following statements is correct?
A. the linear momentum of S remains constant in the magnitude
B. the acceleration of S is always directed towards the centre of the Earth.
C. the angular momentum of S about the centre of the Earth changes in direction, but its magnitude remains constant

D. the total mechanical energy of S varies periodically with time

Answer: B

D Watch Video Solution

154. Where should a geo-stationary satellite be
A. At equator
B. At poles
C. Anywhere

D. None of these

Answer: A

D Watch Video Solution

155. The value of escape velocity on a certain planet is $2 \mathrm{~km} / \mathrm{s}$. Then the value of orbital speed for a satellite orbiting close to its surface is:
A. $12 \mathrm{~km} / \mathrm{s}$
B. $1 \mathrm{~km} / \mathrm{s}$
C. $\sqrt{2} \mathrm{~km} / \mathrm{s}$
D. $2 \sqrt{2} \mathrm{~km} / \mathrm{s}$

Answer: C

(Watch Video Solution

156. For a satellite moving in an orbit around the earth, the ratio of kinetic energy of potential
A. $1: \sqrt{2}$
B. $1: 2$
C. 2: 1
D. $\sqrt{2}: 1$

Answer: B
(D) Watch Video Solution
157. All the known planets move in:
A. straight path
B. circular path
C. hyperbolic path

D. elliptical path

Answer: D

D Watch Video Solution

158. For a planet moving around the Sun in an
elliptical orbit of semimajor and semiminor axes
a and b respectively and Time period T.
For this situation which one of the following statements is correct?
A. The torque acting on the planet about the

Sun in non-zero

B. The angular momentum of the planet
about the Sun is constant
C. The planet moves with a constant speed
around the Sun
D. The areal velocity is $\pi a b / T$

Answer: B

D Watch Video Solution

159. An artificial satellite moving in a circular orbit around the Earth has a total (kinetic + potential) energy E_{0}. Its potential energy is:
A. $1.5 E_{0}$
B. E_{0}
C. $2 E_{0}$
D. $-E_{0}$

Answer: C
(D) Watch Video Solution
160. A missile is launched with a velocity less than escape velocity. The sum of its kinetic and potential energies is:
A. zero
B. negative
C. positive
D. first(a) then (b)

Answer: B
(Watch Video Solution
161. For a planet having mass equal to mass of the earth and radius is one fourth of radius of the earth. Then which one of the following statements is correct?
A. The escape velocity for this planet will be
$11.2 \mathrm{~km} / \mathrm{sec}$
B. The escape velocity for this planet will be
$5.6 \mathrm{~km} / \mathrm{sec}$
C. The escape velocity for this planet will be
$22.4 \mathrm{~km} / \mathrm{sec}$

D. The escape velocity for this planet will be

44.8 km/sec

Answer: C

D Watch Video Solution

162. Weightlessness in satellite is due to:
A. zero gravitational acceleration
B. zero acceleration
C. zero mass

D. none of these

Answer: A

(Watch Video Solution

Other Important Question Answers Very Short Answer Question

1. Distinguish between the terms gravitation and gravity.
2. Distinguish between Geocentric model and Heliocentric model.

(Watch Video Solution

3. What is free fall of a body ?

(Watch Video Solution

4. What are the values of g and G at the centre of the earth?
5. Does the escape velocity depend on the location from where it is projected?

- Watch Video Solution

6. Calculate the gravitational potential near the surface of the Earth.
7. Does the acceleration with which a body falls towards the centre of the earth depend on the mass of the body?

(D) Watch Video Solution

8. Explain how the mass of the Earth can be estimated from the knowledge of G ?
9. On what factors the value of "g" at any place on the Earth depends?

D Watch Video Solution

10. What is the gravitational field strength of a planet where the weight of a 60 kg astronaut is

300N?
11. How much will be the weight of the object at the centre of the Earth?

(Watch Video Solution

12. At the centre of the earth, does a simple pendulum oscillate?

D Watch Video Solution

13. What is the use of measuring ' g ' accurately on

Earth surface?
14. What is satellite?

(D) Watch Video Solution

15. Draw a graph showing the variation of 'g' with distance from the centre of the Earth.

- Watch Video Solution

16. Distinguish between natural and artificial satellite.

(D) Watch Video Solution

17. A satellite revolving around the earth loses
height. What happens to its time period?

(D) Watch Video Solution

18. What is the relation between escape and orbital velocity?
19. State the condition for satellite to be geostationary.

D Watch Video Solution

20. At what circumstances weightlessness arise?

- Watch Video Solution

21. What do you understand by the term 'epicycle' in geocentric theory?

(D) Watch Video Solution

22. Distinguish between the terms gravitation and gravity.

D Watch Video Solution

23. Distinguish between Geocentric model and Heliocentric model.
24. What is free fall of a body ?

- Watch Video Solution

25. What are the values of g and G at the centre of the earth?

D Watch Video Solution
26. Does the escape velocity depend on the location from where it is projected?

(D) Watch Video Solution

27. What is the maximum number of electrons in the ' n ' th orbit?

D Watch Video Solution

28. Calculate the gravitational potential near the
surface of the Earth.

- Watch Video Solution

29. Does the acceleration with which a body falls towards the centre of the earth depend on the mass of the body?

- Watch Video Solution

30. Explain how the mass of the Earth can be estimated from the knowledge of G ?
31. On what factors the value of "g" at any place on the Earth depends?

(Watch Video Solution

32. What is the gravitational field strength of a planet where the weight of a 60kg astronaut is

300N?
33. How much will be the weight of the object at the centre of the Earth?

(D) Watch Video Solution

34. At the centre of the earth, does a simple pendulum oscillate?

D Watch Video Solution

35. What is the use of measuring ' g ' accurately on

Earth surface?
36. What is satellite?

(D) Watch Video Solution

37. Draw a graph showing the variation of 'g' with distance from the centre of the Earth.

- Watch Video Solution

38. Distinguish between natural and artificial satellite.

(D) Watch Video Solution

39. A satellite revolving around the earth loses
height. What happens to its time period?

D Watch Video Solution

40. What is the relation between escape and orbital velocity?
41. State the condition for satellite to be geostationary.

(D) Watch Video Solution

42. At what circumstances weightlessness arise?

- Watch Video Solution

43. What do you understand by the term 'epicycle' in geocentric theory?

(D) Watch Video Solution

Other Important Question Answers Short Answer Questions

1. Define ' G '. What are the units and dimensions of 'G' ?
2. Two satellites are at different heights from the surface of earth. Which would have greater velocity?

- Watch Video Solution

3. What is the gravitational field strength of a planet where the weight of a 60 kg astronaut is 300N?
4. A satellite does not need any fuel to move around the earth. Give reason.

D Watch Video Solution

5. When a comet orbits the sun in highly elliptical orbit does a comet have a constant linear velocity?
(D) Watch Video Solution
6. What is 'retrograde motion' of planets?

- Watch Video Solution

7. On what factors does escape speed depends on?

- Watch Video Solution

8. Does the escape speed depends on the direction in which object is thrown?
(D) Watch Video Solution
9. Important points to remember

(D) Watch Video Solution

10. What is meant by superposition of gravitational field?

(Watch Video Solution

11. State the condition in which gravitational potential energy is said to be (i) Negative,

Positive.

- Watch Video Solution

12. Why hydrogen an helium are not found in abudance on the Earth's atmosphere?

- Watch Video Solution

13. Derive the expression for gravitational potential energy.
14. Why do we have seasons on Earth?

D Watch Video Solution

15. Define ' G '. What are the units and dimensions of 'G' ?

(Watch Video Solution

16. Two satellites are at different heights from the surface of earth. Which would have greater velocity?

- Watch Video Solution

17. What is the gravitational field strength of a planet where the weight of a 60 kg astronaut is 300N?
(D) Watch Video Solution
18. A satellite does not need any fuel to move around the earth. Give reason.
(D) Watch Video Solution
19. A comet orbits the sun is highly elliptical orbit. Does a comet has a constant.
(i) Linear speed
(D) Watch Video Solution
20. What is 'retrograde motion' of planets?

D Watch Video Solution

21. On what factors does escape speed depends
22. Does the escape speed depends on the direction in which object is thrown?

- Watch Video Solution

23. State the important points to be remembered in gravitational field.
24. What is meant by superposition of gravitational field?

(D) Watch Video Solution

25. State the condition in which gravitational potential energy is said to be (i) Negative,

Positive.
26. Why hydrogen an helium are not found in abudance on the Earth's atmosphere?

D Watch Video Solution

27. Derive the expression for gravitational potential energy.

D Watch Video Solution

28. Why do we have seasons on Earth?

Other Important Question Answers Long Answer Questions

1. Prove that gravitational field intensity at any point in equal to acceleration experienced at that point.

(D) Watch Video Solution

2. Using Newton's law of gravitation, prove

Kepler's $I I I^{\text {rd }}$ law of planetary motion for
circular orbits.

(D) Watch Video Solution

3. Derive an expression for orbital velocity of the satellite.

(D) Watch Video Solution

4. A man of mass " m " is standing on the floor of
the lift. Find his apparent weight when:
(i) elevator is rest
(ii) elevator is accelerating upwards
(iii) elevator is accelerating downwards.

D Watch Video Solution

5. Find the distance between Venus and Sun.

(D) Watch Video Solution

6. Prove that gravitational field intensity at any point in equal to acceleration experienced at that point.
7. Using Newton's law of gravitation, prove Kepler's $I I I^{\text {rd }}$ law of planetary motion for circular orbits.

D Watch Video Solution

8. Derive an expression for orbital velocity of the satellite.
9. A man of mass " m " is standing on the floor of the lift. Find his apparent weight when:
(i) elevator is rest
(ii) elevator is accelerating upwards
(iii) elevator is accelerating downwards.

- Watch Video Solution

10. Find the distance between Venus and Sun.

D Watch Video Solution

1. A satellite revolves round a planet in an
elliptical orbit. Its maximum and minimum distance from planet are 1.5×10^{7} metre and 0.5×10^{7} metre respectively. If the speed of the satellite at the farthest point is $5 \times 10^{3} \mathrm{~m} / \mathrm{s}$.

Calculate the speed at the nearest point.
2. At what height from the surface of Earth the gravitational force will be reduced by 10% if the radius of Earth is 6400 km ?

- Watch Video Solution

3. Two particles of equal mass m go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is
4. On a planet whose size is the same and mass 4 times as that of the Earth, find the amount of energy needed to lift a 2 kg mass vertically upwards through a distance 3 m of the planet. (value of g on the surface of th Earth is $\left.10 \mathrm{~m} / \mathrm{sec}^{2}\right)$.

(D) Watch Video Solution

5. If a planet were suddenly stopped in its
circular orbit, how much time it would take to fall
onto the Sun. Assume the planets time-period of revolution as T .

D Watch Video Solution

6. An apple of mass 250 g falls from a tree.

Calculate the acceleration of Earth towards the apple.

Mass of the Earth $=5.983 \times 10^{24} \mathrm{~kg}$
Radius
of
the
Earth
$=6.378 \times 10^{6} \mathrm{~m}$ and $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
7. If the radius of the Earth were increased by a factor 5, by what factor would its density have to be changed to keep the value of acceleration due to gravity the same?

D Watch Video Solution

8. Find the percentage decrease in the weight of
the body when taken to a height of 16 km above the surface of Earth. Radius of the Earth is 6400 km.
9. Determine the speed with which the Earth would have to rotate on is axis. So that a person on the equator would weigh $\frac{3^{\text {th }}}{5}$ as much as at present. Take the equatorial radius as 6400 km .

$$
g=9.8 m / s^{2}
$$

D Watch Video Solution

10. At a point above the surface of Earth, the gravitational potential is $-5.12 \times 10^{7} \mathrm{Jkg}^{-1}$ and the acceleration due to gravity is $6.4 m s^{-2}$.

Assuming the mean radius of the Earth to be 6400 km , calculate the height of this point above the Earth's surface.

D Watch Video Solution

11. A remote sensing satellite of the Earth revolves in a circular orbit at a height of 250 km above the Earth's surface. What is the (i) Orbital speed and (ii) period of revolution of the satellite. Radius of the Earth, $R=6.38 \times 10^{6} m$, and acceleration due to gravity on the surface of the Earth, $g=9.8 m s^{-2}$

- Watch Video Solution

12. A body of mass 100 kg falls on the Earth from infinity. What will be its velocity on reaching the Earth? What will be its K.E. ? Radius of the Earth is 6400 km and $g=9.8 \mathrm{~ms}^{-2}$

- Watch Video Solution

13. What is the relation between height h and depth d for the same change in g ?
14. A satellite orbits the earth at a height of 500km from its surface.

Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$
Radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$

Mass of the satellite $=300 \mathrm{~kg}$
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

Calculate (i) kinetic energy (ii) potential energy
and (iii) total energy of the satellite.
(D) Watch Video Solution
15. A satellite revolves round a planet in an elliptical orbit. Its maximum and minimum distance from planet are 1.5×10^{7} metre and 0.5×10^{7} metre respectively. If the speed of the satellite at the farthest point is $5 \times 10^{3} \mathrm{~m} / \mathrm{s}$.

Calculate the speed at the nearest point.

D Watch Video Solution

16. At what height from the surface of Earth the gravitational force will be reduced by 10% if the radius of Earth is 6400 km ?
17. Two particles of equal mass m go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

- Watch Video Solution

18. On a planet whose size is the same and mass

4 times as that of the Earth, find the amount of energy needed to lift a 2 kg mass vertically
upwards through a distance 3 m of the planet.
(value of g on the surface of th Earth is $\left.10 \mathrm{~m} / \mathrm{sec}^{2}\right)$.

- Watch Video Solution

19. If a planet were suddenly stopped in its
circular orbit, how much time it would take to fall
onto the Sun. Assume the planets time-period of revolution as T.

D Watch Video Solution

20. An apple of mass 250 g falls from a tree.

Calculate the acceleration of Earth towards the
apple.
Mass of the Earth $=5.983 \times 10^{24} \mathrm{~kg}$
Radius
of
the
Earth
$=6.378 \times 10^{6} \mathrm{~m}$ and $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
(D) Watch Video Solution
21. If the radius of the Earth were increased by a
factor 5, by what factor would its density have to
be changed to keep the value of acceleration due to gravity the same?

D Watch Video Solution

22. Find the percentage decrease in the weight of the body when taken to a height of 16 km above the surface of Earth. Radius of the Earth is 6400 km.
23. Determine the speed with which the Earth would have to rotate on is axis. So that a person on the equator would weigh $\frac{3^{\text {th }}}{5}$ as much as at present. Take the equatorial radius as 6400 km .

$$
g=9.8 m / s^{2}
$$

(Watch Video Solution

24. At a point above the surface of Earth, the gravitational potential is $-5.12 \times 10^{7} \mathrm{Jkg}^{-1}$ and the acceleration due to gravity is $6.4 m s^{-2}$.

Assuming the mean radius of the Earth to be

6400 km, calculate the height of this point above the Earth's surface.

D Watch Video Solution

25. A remote sensing satellite of the Earth revolves in a circular orbit at a height of 250 km above the Earth's surface. What is the (i) Orbital speed and (ii) period of revolution of the satellite. Radius of the Earth, $R=6.38 \times 10^{6} m$, and acceleration due to gravity on the surface of the Earth, $g=9.8 m s^{-2}$
26. A body of mass 100 kg falls on the Earth from infinity. What will be its velocity on reaching the

Earth? What will be its K.E. ? Radius of the Earth is 6400 km and $g=9.8 \mathrm{~ms}^{-2}$

(D) Watch Video Solution

27. What is the relation between height h and depth d for the same change in g ?
28. A satellite orbits the earth at a height of

500 km from its surface.
Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$
Radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$

Mass of the satellite $=300 \mathrm{~kg}$
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Calculate (i) kinetic energy (ii) potential energy and (iii) total energy of the satellite.

D Watch Video Solution

Other Important Question Answers Conceptual

1. Why a body weighs less at the equator than at the poles?

(Watch Video Solution

2. Where does a body weigh less? At the sea level or on the mountains?

D Watch Video Solution

3. Why do you feel giddy while moving on Raatinam (or) Carrousel?

- Watch Video Solution

4. Explain why one can jump higher on the surface of the Moon than that on the Earth.

- Watch Video Solution

5. A planet revolves in an elliptical orbit around the Sun. The semi-major and semi-minor axis are

A and B. How time-period is related with them?
6. If Earth be at one fourth its present distance
from the Sun, how many days will there be in a year?

D Watch Video Solution

7. State Newtons Universal law of gravitaion.

D Watch Video Solution

8. Why does the gravitational potential energy
$\mathrm{U}(\mathrm{r})$ is always negative?

- Watch Video Solution

9. What happens to the acceleration due to gravity on account of rotation?

- Watch Video Solution

10. Under what condition, the gravitational potential energy of a body will be zero?

D Watch Video Solution

11. Can we determine the gravitational mass of a body inside an artificial satellite?

(D) Watch Video Solution

12. Mention the factors which determine whether
a planet would have an atmosphere or not.

D Watch Video Solution

13. If the Earth stops rotating about its axis, then
by what value will the acceleration due to gravity
change at the equator?

- Watch Video Solution

14. A hippopotamus and a frog are to be projected out of Earth into space. Do we need different velocities to do so?

- Watch Video Solution

15. Tides arise in the ocean. Give reason.
16. Why does an astronaut in a spacecraft feel weightlessness?

(D) Watch Video Solution

17. Where does the weight of a body become
zero?
(D) Watch Video Solution
18. Why a body weighs less at the equator than at the poles?

(D) Watch Video Solution

19. Where does a body weigh less? At the sea level or on the mountains?

D Watch Video Solution

20. Why do you feel giddy while moving on Raatinam (or) Carrousel?

- Watch Video Solution

21. Explain why one can jump higher on the surface of the Moon than that on the Earth.

- Watch Video Solution

22. A planet revolves in an elliptical orbit around the Sun. The semi-major and semi-minor axis are A and B. How time-period is related with them?
23. If Earth be at one fourth its present distance
from the Sun, how many days will there be in a year?

(D) Watch Video Solution

24. Why is Newton's law of gravitation called a universal law?
(D) Watch Video Solution
25. Why does the gravitational potential energy $\mathrm{U}(\mathrm{r})$ is always negative?

(Watch Video Solution

26. What happens to the acceleration due to gravity on account of rotation?

D Watch Video Solution

27. Under what condition, the gravitational potential energy of a body will be zero?

- Watch Video Solution

28. Can we determine the gravitational mass of a body inside an artificial satellite?

(D) Watch Video Solution

29. Mention the factors which determine whether
a planet would have an atmosphere or not.

D Watch Video Solution

30. If the Earth stops rotating about its axis, then by what value will the acceleration due to gravity change at the equator?

(D) Watch Video Solution

31. A hippopotamus and a frog are to be projected out of Earth into space. Do we need different velocities to do so?

- Watch Video Solution

32. Tides arise in the ocean. Give reason.

D Watch Video Solution

33. How does an astronaut float in a space shuttle?

(D) Watch Video Solution

34. Where does the weight of a body become zero?

