©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PREMIERS PUBLISHERS

KINEMATICS

Textbook Questions Answers I Multiple Choice Questions

1. Which one of the following Cartesian coordinate systems is not follwed in physics?

Answer: D

Watch Video Solution
2. Identify the unit vector in the following .
A. $\hat{i}+\hat{j}$
B. $\frac{\hat{i}}{\sqrt{2}}$
C. $\hat{k}-\frac{\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: D

- Watch Video Solution

3. A particle moves in a straight line according to the relation:
$x=t^{3}-4 t^{2}+3 t$
Find the acceleration of the particle at displacement equal to zero.
A. $(-8,-2,10)$
B. $(-1,-2,10)$
C. $(8,2,10)$
D. $(1,2,10)$

Answer: A

- Watch Video Solution

4. Two objects of masses m_{1} and m_{2} fall from the heights h_{1} and h_{2} respectively. The ratio of the magntidue of their momenta when they hit the ground is
A. $\sqrt{\frac{h_{1}}{h_{2}}}$
B. $\sqrt{\frac{m_{1} h_{1}}{m_{2} h_{2}}}$
C. $\frac{m_{1}}{m_{2}} \sqrt{\frac{h_{1}}{h_{2}}}$
D. $\frac{m_{1}}{m_{2}}$

Answer: C

- Watch Video Solution

5. What is Trajectory of a projectile ?

(Watch Video Solution

6. If the velocity is $\vec{v}=2 \hat{i}+t^{2} \hat{j}-9 \vec{k}$, then the magnitude of acceleration at $t=0.5 \mathrm{~s}$ is :
A. $1 m s^{-2}$
B. $2 m s^{-2}$
C. zero
D. $-1 m s^{-2}$

Answer: A

- Watch Video Solution

7. What determines the nature of path followed by the particle?
A. Speed
B. Velocity
C. Acceleration
D. Both (2) and (3)

- Watch Video Solution

8. A ball is projected vertically upwards with a velocity v . It comes back to ground in time t . which v-t graph shows the motion correctly?

C.

Answer: C

- Watch Video Solution

9. A point travelled half of the distance with velocity v_{0}. The half of remaining part of the distance was covered with velocity $v_{1} \&$ second half of remaining part by v_{2} velocity. The mean value of the point averaged over the whole time of motion is
A. $\frac{v_{0}+v_{1}+v_{2}}{3}$
B. $\frac{2 v_{0}+v_{1}+v_{2}}{3}$
C. $\frac{v_{0}+2 v_{1}+2 v_{2}}{3}$
D. $\frac{2 v_{0}\left(v_{1}+v_{2}\right)}{\left(2 v_{0}+v_{1}+v_{2}\right)}$

Answer: D

(D) Watch Video Solution

10. A ball is dropped from some height towards the ground :

Which one of the following represents the correct motion of the ball?

Answer: A

D Watch Video Solution
11. If a particle executes uniform circular motion in the $x y$ plane in clock wise direction, then the angular velocity is in :
A. +y direction
B. $+z$ direction
C. -z direction
D. -x direction

Answer: C

D Watch Video Solution

12. If a particle executes uniform circular motion, choose the correct statement
A. The velocity and speed are constant
B. The acceleration and speed are constant
C. The velocity and acceleration are constant
D. The speed and magnitude of acceleration are constant

Answer: D

D Watch Video Solution

13. If an object is thrown vertically up with initial speed u from the ground, then the time taken by the object to return back to ground is
A. $\frac{u^{2}}{2 g}$
B. $\frac{u^{2}}{g}$
C. $\frac{u}{2 g}$
D. $\frac{2 u}{g}$

Answer: D

(D) Watch Video Solution

14. Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction. The range of two objects are denoted as $R_{30^{\circ}}$ and $R_{60^{\circ}}$. Choose the correct relation from the following.
A. $R_{30^{\circ}}=R_{60^{\circ}}$
B. $R_{30^{\circ}}=4 R_{60^{\circ}}$
C. $R_{30^{\circ}}=\frac{R_{60^{\circ}}}{2}$
D. $R_{30^{\circ}}=2 R_{60^{\circ}}$

Answer: A

- Watch Video Solution

15. An object is dropped is an unknown planet from height 50 m , it reaches the ground is 2 s . The acceleration due to gravity in this unknwon planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$

- Watch Video Solution

16. Which one of the following Cartesian coordinate systems is not follwed in physics?

Answer: D

D Watch Video Solution

17. Identify the unit vector in the following .
A. $\hat{i}+\hat{j}$
B. $\frac{\hat{i}}{\sqrt{2}}$
C. $\hat{k}-\frac{\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
18. Which one of the following physical quantities cannot be represented by a scalar?
A. mass
B. length
C. momentum
D. magbutude of acceleration

Answer: C

- Watch Video Solution

19. Two objects of masses m_{1} and m_{2} fall from the heights
h_{1} and h_{2} respectively. The ratio of the magntidue of their momenta when they hit the ground is
A. $\sqrt{\frac{h_{1}}{h_{2}}}$
B. $\sqrt{\frac{m_{1} h_{1}}{m_{2} h_{2}}}$
C. $\frac{m_{1}}{m_{2}} \sqrt{\frac{h_{1}}{h_{2}}}$
D. $\frac{m_{1}}{m_{2}}$

Answer: C

- Watch Video Solution

20. If a particle has negative velocity and negative acceleration, its speed
A. increases
B. decreases
C. remains same
D. zero

Answer: A

D Watch Video Solution

21. If the velocity is $\vec{v}=2 \hat{i}+t^{2} \hat{j}-9 \vec{k}$, then the magnitude of acceleration at $t=0.5 \mathrm{~s}$ is :
A. $1 m s^{-2}$
B. $2 m s^{-2}$
C. zero
D. $-1 m s^{-2}$

Answer: A

- Watch Video Solution

22. If an object is dropped from the top of a building and it reaches the ground at $t=4 \mathrm{~s}$, then the height of the building is (ignoring air resistance) $\left(g=9.8 m s^{-2}\right)$
A. 77.3 m
B. 78.4 m
C. 80.5 m
D. 79.2 m

- Watch Video Solution

23. A ball is projected vertically upwards with a velocity v . It comes back to ground in time t . which v-t graph shows the motion correctly?

C.

Answer: C

(Watch Video Solution

24. If one object is dropped vertically downward and another object is thrown horizontally from the same height, then the ratio of vertical distance covered by both objects at any instant t is
A. 1
B. 2
C. 4
D. 0.5

Answer: A

- Watch Video Solution

25. A ball is dropped from some height towards the ground :

Which one of the following represents the correct motion of the ball?

Answer: A

- Watch Video Solution

26. If a particle executes uniform circular motion in the $x y$ plane in clock wise direction, then the angular velocity is in :
A. +y direction
B. $+z$ direction
C. -z direction
D. $-x$ direction

Answer: C

D Watch Video Solution

27. If a particle executes uniform circular motion, choose the correct statement
A. The velocity and speed are constant
B. The acceleration and speed are constant
C. The velocity and acceleration are constant
D. The speed and magnitude of acceleration are constant

- Watch Video Solution

28. If an object is thrown vertically up with initial speed u from the ground, then the time taken by the object to return back to ground is
A. $\frac{u^{2}}{2 g}$
B. $\frac{u^{2}}{g}$
C. $\frac{u}{2 g}$
D. $\frac{2 u}{g}$

Answer: D

29. Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction. The range of two objects are denoted as $R_{30^{\circ}}$ and $R_{60^{\circ}}$. Choose the correct relation from the following.
A. $R_{30^{\circ}}=R_{60^{\circ}}$
B. $R_{30^{\circ}}=4 R_{60^{\circ}}$
C. $R_{30^{\circ}}=\frac{R_{60^{\circ}}}{2}$
D. $R_{30^{\circ}}=2 R_{60^{\circ}}$

Answer: A

- Watch Video Solution

30. An object is dropped is an unknown planet from height 50 m , it reaches the ground is 2 s . The acceleration due to gravity in this unknwon planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$

Answer: B

D Watch Video Solution

1. What is meant by Cartesian coordinate system?

- Watch Video Solution

2. Define a vector. Give examples.

- Watch Video Solution

3. Define a scalar. Give examples

- Watch Video Solution

4. A particle has an initial velocity $2 \hat{i}+3 \hat{j}$ and acceleration $0.3 \hat{i}+0.2 \hat{j}$. The magnitude of velocity after 10 seconds will
A. $9 \sqrt{2}$ units
B. $5 \sqrt{2}$ units
C. 5 units
D. 9 units

Answer: B

- Watch Video Solution

5. Write a short note on vector product between two vectors.

- Watch Video Solution

6. How do you deduce that two vectors are perpendicular?

- Watch Video Solution

7. Define displacement and distance.

- Watch Video Solution

8. A bird flies for 4 s with a velocity of $|\mathrm{t}-2| \mathrm{m} / \mathrm{s}$ in a straight line, where time, t in seconds. It covers a distance of
A. $2 m$
B. 4 m
C. 6 m
D. 8 m

- Watch Video Solution

9. A body starts from rest with constant acceleration. What is the ratio of the distance travelled by the body during the 4th and 3 rd seconds ?
A. $7 / 5$
B. 5/7
C. 7/3
D. 3/7

Answer: A

- Watch Video Solution

10. A balloon starts rising from the ground with an acceleration of $1.25 \mathrm{~m} / s^{2}$. A stone is released from the balloon after 10s. Determine
(i) maximum height of stone from the ground.
(ii) time taken by stone to reach the ground.
(Assume, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

D Watch Video Solution

11. A car covers a distance of 80 km at a speed of $60 \mathrm{~km} / \mathrm{hr}$ and another 140 km at a speed of $70 \mathrm{~km} / \mathrm{hr}$. What is the average speed of the journey?
12. A boy can throw a stone up to a maximum height of 10 m .

The maximum horizontal distance that the boy can throw the same stone up to will be :
A. $20 \sqrt{2} \mathrm{~m}$
B. 10 m
C. $10 \sqrt{2} \mathrm{~m}$
D. 20 m

Answer: D

(Watch Video Solution

13. If $\vec{A}=4 \hat{i}-3 \hat{j}$ and $\vec{B}=6 \hat{i}+8 \hat{j}$. Find out the magnitude and direction of $\vec{A}-\vec{B}$
14. A balloon starts rising from the ground with a constant acceleration of $1.25 \mathrm{~m} / \mathrm{s}^{2}$. After 8 s , a stone is released from the balloon. Find the time taken by the stone to reach the ground. (Assume, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(D) Watch Video Solution

15. Write down the expression for angle made by resultant acceleration and radius vector in the non uniform circular motion.
16. What is meant by Cartesian coordinate system?

D Watch Video Solution

17. Define a vector. Give examples.

- Watch Video Solution

18. Define a scalar. Give examples

- Watch Video Solution

19. Write a short note on the scalar product between two vectors.
20. Write a short note on vector product between two vectors.

- Watch Video Solution

21. How do you deduce that two vectors are perpendicular?

- Watch Video Solution

22. Define displacement and distance.

- Watch Video Solution

23. Define velocity and speed.

- Watch Video Solution

24. Define acceleration.

(D) Watch Video Solution

25. What is the difference between velocity and average velocity?

- Watch Video Solution

26. Define a radian.
27. Define angular displacement and angular velocity.

D Watch Video Solution

28. What is non uniform circular motion?

- Watch Video Solution

29. Write down the Kinematic equations for Angular motion.

(
 Watch Video Solution

30. Write down the expression for angle made by resultant acceleration and radius vector in the non uniform circular motion.

- Watch Video Solution

Textbook Questions Answers lif Long Answer Questions

1. If $\vec{A}=8 \hat{i}+6 \hat{j}$ and $\vec{B}=4 \hat{i}+2 \hat{j}$. Then find $|\vec{A}+\vec{B}|$

(D) Watch Video Solution

2. Discuss the properties of scaiar and vector
3. Derive the kinematic equations of motion for constant acceleration .

D View Text Solution

4. Derive the equations of motion for a particle Falling vertically

D View Text Solution

5. Derive the equations of motion for a particle (a) falling vertically (b) projected vertically.
6. Derive the equation of motion, range and maximum height reached by the particle thrown at an oblique angle θ with respect to the horizontal direction.

D Watch Video Solution

7. Derive the expression for centripetal acceleration.

D Watch Video Solution

8. Derive the expression for total acceleration in the nonuniform circular motion.
9. Explain in detail the triangle law of addition.

- Watch Video Solution

10. Discuss the properties of scalar and vector

- Watch Video Solution

11. Derive the kinematic equations of motion for constant acceleration.
12. Derive the equations of motion for a particle (a) falling vertically (b) projected vertically.

- Watch Video Solution

13. Derive the equations of motion for a particle (a) falling vertically (b) projected vertically.

- Watch Video Solution

14. The maximum height attained by a projectile when thrown at an angle θ with the horizontal is found to be half the horizontal range.Then $\theta=$
15. Derive the expression for centripetal acceleration.

- Watch Video Solution

16. Derive the expression for total acceleration in the nonuniform circular motion.

(D) Watch Video Solution

Textbook Questions Answers Iv Numerical Problems

1. The position vectors particle has length 1 m and makes 30°
with the x-axis. What are the lengths of the x and y components of the position vector?
2. A particle has its position moved from $\overrightarrow{r_{1}}=3 \hat{i}+4 \hat{j}$ to $\overrightarrow{r_{2}}=\hat{i}+2 \hat{j}$. Calculate the displacment vector $(\Delta \vec{r})$ and draw the $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\Delta \vec{r}$ vector in a two dimensional Cartesian coordinate system.

- Watch Video Solution

3. Calculate the average velocity of the particle whose $\begin{array}{ll}\text { position } & \text { vector changes } \\ \overrightarrow{r_{1}}=5 \hat{i}+6 \hat{j} & \text { to } \overrightarrow{r_{2}}=2 \hat{i}+3 \hat{j} \text { in a tine } 5 \text { second. }\end{array}$

D Watch Video Solution

4. Convert the vector $\vec{r}=3 \hat{i}+2 \hat{j}$ into a unit vector.

- Watch Video Solution

5. What are the resultants of the vector product of two given vectors given
$\vec{A}=4 \hat{i}-2 \hat{j}+\hat{k}$ and $\operatorname{brc}(B)=5 \hat{i}+\hat{j}-4 \hat{k} ?$

- Watch Video Solution

6. An object at an angle such that the horizontal range is 4 time of the maximum height. What is the angle of projection of the object?
7. The following graphs represent velocity- time graph. Identify what kind of motion a particle undergoes in each graph
(a)

(d)

(c)

(Watch Video Solution

8. The following velocity-time graph represents a particle moving in the positive x-direction. Analyse its motion from 0 to 7s. Calculate the displacement covered and distance
travelled by the particle from 0 to 2 s

- View Text Solution

9. A particle is projected at an angle of θ with respect to the horizontal direction. Match the following for the above motion.
(a) $V_{x} \quad-\quad$ decrease and increases
(b) $V_{y} \quad-\quad$ remains constant
(c) Acceleration - varies
(d) Position vector - remains downward

- Watch Video Solution

10. A water fountain on the ground sprinkles water all around it. If the speed of the water coming out of the fountain is v.

Calculate the total area around the fountain that gets wet.

- Watch Video Solution

11. The following table gives the range of a particle when thrown on different planets. All the particles are thrown at the same angle with the horizontal and with the same initial speed. Arrange the planets in ascending order according to
their acceleration due to gravity (g value)

Planet Range

Jupiter 50 m
Earth 75m
Mars $90 m$
Mercury $95 m$

- Watch Video Solution

12. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B.

Then the angle between A and B is

- Watch Video Solution

13. Compare the components for the following vector equations
(a) $T \hat{j}-m g \hat{j}=m a \hat{j}$, (b) $\vec{T}+\vec{F}=\vec{A}+\vec{B}$
(c) $\vec{T}-\vec{F}=\vec{A}-\vec{B}$, (d) $T \hat{j}+m g \hat{j}=m a \hat{j}$

- View Text Solution

14. Calculate the area of the triangle for which two of its sides are given by the vectors
$\vec{v}=5 \hat{i}-3 \hat{j}, \vec{B}=4 \hat{i}+6 \hat{j}$

- Watch Video Solution

15. If Earth completes one revolution in 24 hours, what is the angular displacement made by Earth in one hour? Express your answer in both radian and degree.
16. An object is thrown with initial speed $5 m s^{-1}$ with an angle of projection 30°. What is the maximum height and range reached by the particle?

- Watch Video Solution

17. A foot - ball player hits tha ball with speed $20 \mathrm{~ms}^{-1}$ with angle 30° with respect to horizontal direction as shown in the figure. The goal post is at distance of 40 m from him. Find
out whether ball reaches the goal post

- Watch Video Solution

18. If an object is thrown horizontally with an initial speed $10 \mathrm{~ms}^{-1}$ from the top of a building of height 100 m . What is the horizontal distance covered by the particle.
19. An object is executing uniform circular motion with an angular speed of $\frac{\pi}{12}$ radian per second. At $t=0$, the object starts at an angle $\theta=0$. What is the angular displacement of the particle after $4 s$?

- Watch Video Solution

20. Consider the x - axis as representing east, the y - axis as north and z - axis as vertically upwards. Give the vector representing each of the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up
21. Consider the x - axis as representing east, the y-axis as north and z - axis as vertically upwards. Give the vector representing each of the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up

(D) Watch Video Solution

22. Consider the x - axis as representing east, the y - axis as north and z - axis as vertically upwards. Give the vector representing each of the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up

- Watch Video Solution

23. The moon is orbiting the Earth approximately in 27 days, what is the angle transversed by the Moon per day?

- Watch Video Solution

24. An object of mass m has angular acceleration $\alpha=0.2 \mathrm{rads}^{-2}$. What is the angular displacement covered by the object after 3 second ? (Assume that the object started with angle zero with angular velocity).
25. The position vectors particle has length 1 m and makes 30° with the x-axis. What are the lengths of the x and y components of the position vector?

- Watch Video Solution

26. A particle has its position moved from $\overrightarrow{r_{1}}=3 \hat{i}+4 \hat{j}$ to
$\overrightarrow{r_{2}}=\hat{i}+2 \hat{j}$. Calculate the displacment vector $(\Delta \vec{r})$ and draw the $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\Delta \vec{r}$ vector in a two dimensional

Cartesian coordinate system.

- Watch Video Solution

27. Calculate the average velocity of the particle whose
$\overrightarrow{r_{1}}=5 \hat{i}+6 \hat{j}$ to $\overrightarrow{r_{2}}=2 \hat{i}+3 \hat{j}$ in a tine 5 second.

(Watch Video Solution

28. Convert the vector $\vec{r}=3 \hat{i}+2 \hat{j}$ into a unit vector.

- Watch Video Solution

29. What are the resultants of the vector product of two given vectors given
$\vec{A}=4 \hat{i}-2 \hat{j}+\hat{k}$ and $\operatorname{brc}(B)=5 \hat{i}+\hat{j}-4 \hat{k} ?$

- Watch Video Solution

30. An object at an angle such that the horizontal range is 4 time of the maximum height. What is the angle of projection of the object?

- Watch Video Solution

31. The following graphs represent velocity- time graph. Identify what kind of motion a particle undergoes in each graph
(a)

(c)

(d)

- Watch Video Solution

32. The following velocity-time graph represents a particle moving in the positive x-direction. Analyse its motion from 0 to 7s . Calculate the displacement covered and distance travelled by the particle from 0 to 2 s

33. A particle is projected at an angle of θ with respect to the horizontal direction. Match the following for the above motion.
(a) $V_{x} \quad-\quad$ decrease and increases
(b) $V_{y} \quad-\quad$ remains constant
(c) Acceleration - varies
(d) Position vector - remains downward

(D) Watch Video Solution

34. A water fountain on the ground sprinkles water all around it. If the speed of the water coming out of the fountain is v.

Calculate the total area around the fountain that gets wet.
35. The following table gives the range of a particle when thrown on different planets. All the particles are thrown at the same angle with the horizontal and with the same initial speed. Arrange the planets in ascending order according to their acceleration due to gravity (g value)
Planet Range

Jupiter 50m
Earth $75 m$
Mars 90 m
Mercury $95 m$

- Watch Video Solution

36. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B. Then the angle between A and B is :
(a) 30°
(b) 45°
(c) 150° (d) 120°

(D) Watch Video Solution

37. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}$, find the value of $(\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})$.

- Watch Video Solution

38. Calculate the area of the triangle for which two of its sides are given by the vectors
$\vec{A}=5 \hat{i}-3 \hat{j}, \vec{B}=3 \hat{i}+5 \hat{j}$
(D) Watch Video Solution
39. If Earth completes one revolution in 24 hours, what is the angular displacement made by Earth in one hour? Express your answer in both radian and degree.

(D) Watch Video Solution

40. An object is thrown with initial speed $5 m s^{-1}$ with an angle of projection 30°. What is the maximum height and range reached by the particle?

- Watch Video Solution

41. A foot - ball player hits tha ball with speed $20 \mathrm{~ms}^{-1}$ with angle 30° with respect to horizontal direction as shown in the figure. The goal post is at distance of 40 m from him. Find
out whether ball reaches the goal post

- Watch Video Solution

42. If an object is thrown horizontally with an initial speed $10 \mathrm{~ms}^{-1}$ from the top of a building of height 100 m . What is the horizontal distance covered by the particle.

- Watch Video Solution

43. An object is executing uniform circular motion with an angular speed of $\frac{\pi}{12}$ radian per second. At $t=0$, the object starts at angle $\theta=0$. What is the angular displacement of the particle after $4 s$?

D Watch Video Solution

44. Consider the x-axis as representing east, the y-axis as north and z-axis as vertically upwards. Give the vector representing each of the following points .

5 m north east and 2 m up,

(Watch Video Solution

45. Consider the x - axis as representing east, the y - axis as north and z - axis as vertically upwards. Give the vector representing each of the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up

(D) Watch Video Solution

46. Consider the x - axis as representing east, the y - axis as north and z - axis as vertically upwards. Give the vector representing each of the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up

- Watch Video Solution

47. The moon is orbiting the Earth approximately in 27 days, what is the angle transversed by the Moon per day?

(D) Watch Video Solution

48. An object of mass m has angular acceleration $\alpha=0.2 \mathrm{rad} \mathrm{s}^{-2}$. What is the angular displacement covered by the object after 3 second ? (Assume that the object started with angle zero with angular velocity).

Other Important Questions Answers I Multiple Choice Questions

1. Kinematics is the branch of mechanics which delas with the motion of objects without taking \qquad into account
A. mass
B. force
C. velocity
D. all the above

Answer: B

2. Which of the following statements is an incorrect statement?
A. Kinematics deals with the motion of objects .
B. Kinematics deals with the equilibrium of objects .
C. Kinema means motion.
D. The conceptof root and motion can be understood in kinematics.

Answer: B

- Watch Video Solution

3. A person performing a somersault is an example of Motion.
A. circular
B. vibratory
C. linear
D. rotational

Answer: D

D Watch Video Solution

4. A motion of a shell fired from the gun is an example for
. Dimensional motion.
A. two
B. three
C. one
D. both (a) and (b)

Answer: A

- Watch Video Solution

5. Match the following :

Column I

1. Work
2. Torque
3. Plane angle
4. Meaning of Kinema
(iv)Vector
(v)Scalar
A. 1-(i), 2-(iii), 3-(iv), 4-(v)
B. 1 - (iv), 2 - (iii), 3 - (i), 4 - (ii)
C. 1 - (v), 2 - (iv), 3 - (i), 4- (ii)
D. 1 - (iv), 2 -(iii), 3 - (ii), 4 - (v)

D View Text Solution

6. The length of a vector is \qquad
A. negative
B. positive
C. unit
D. zero

Answer: B

Watch Video Solution
7. Displacement (y) of a body is represented by $y=p t+q t^{2}-r t^{3}$ where p, q and r are constants of motion. The velocity of the body when its acceleration is 0 :
A. $p+\frac{q^{2}}{2 r}$
B. $p+\frac{q^{2}}{r}$
C. $p+\frac{q^{2}}{4 r}$
D. $p+\frac{q^{2}}{3 r}$

Answer: D

(Watch Video Solution

8. What is the resultant vectors, when two vectors are at right angles to each other ?
A. $R=\sqrt{P^{2} Q^{2}}$
B. $R=P+Q$
C. $\mathrm{R}=\mathrm{P}-\mathrm{Q}$
D. $R=\sqrt{\frac{P}{Q}}$

Answer: A

- Watch Video Solution

9. Resultant of the two vector is maximum when angle between them is :
A. 90°
B. 180°
C. 0°
D. 270°

Answer: C

D Watch Video Solution

10. Two vectors act along the mutually perpendicular directions are called Vectors .
A. equal
B. opposite
C. orthogonal
D. zero

Answer: D
11. Choose the correct statement from the following statement?
A. The dot product is associative
B. The dot product is commutative
C. The dot product is not commutative
D. The dot product is applied only to unit vectors .

Answer: B

(D) Watch Video Solution

12. If \vec{A} and \vec{B} are perpendicular then $\vec{A} \cdot \vec{B}=\ldots$
A. $|\vec{A} \| \vec{B}|$
B. $|\vec{A} \times \vec{B}|$
C. $|\vec{A}||\vec{B}| \cos 180^{\circ}$
D. $|\vec{A}||\vec{B}| \cos 90^{\circ}$

Answer: D

D Watch Video Solution

13. Which of the following rule is applied to know the diretion of the vectors product ?
A. Fleming's left hand rule
B. Fleming's right hand rule
C. Right handed screw rule
D. Left handed screw rule

Answer: C

D Watch Video Solution

14. The parallelogram law of vector addition is equivalent to . .
. . Method.
A. polygon
B. coplanar
C. triangle
D. collinear

Answer: C
15. If for two vectors \vec{A} and $\vec{B}, \vec{A} \times \vec{B}=0$ then the vectors are :
A. perpendicular to each other
B. parallel to each other
C. act at an angle 60°
D. act at an angle 30°

Answer: B

(D) Watch Video Solution
16. Which of the following statements is /are not true ?
A. v,a and s are vectors
B. Mass, energy, work are vectors
C. Vector has only magnitude whereas scalar has both
magnitude and direction
D. Both (b) and (c)

Answer: C

D Watch Video Solution

17. If the magnitude of sum of two vectors is equal to the magnitude of difference to two vectors, the angle between these vector is :
A. 0°
B. 45°
C. 90°
D. 180°

Answer: C

(Watch Video Solution

18. If \vec{A} and \vec{B} are two vectors, which of the statement is wrong ?
А. $\vec{A}+\vec{B}=\vec{B}+\vec{A}$
B. $\vec{A}-\vec{B}=-(\vec{B}-\vec{A})$
C. $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$
D. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$

D Watch Video Solution

19. The displacement of a body is given by $x=2 t^{3}-6 t^{2}+12 t+6$. The acceleration of body is zero at time ti is equal to :
A. 3 s
B. 2 s
C. 1s
D. 10 s

Answer: C

- Watch Video Solution

20. If \vec{A} and \vec{B} are two vectors, $\vec{A} \cdot \vec{B}=\vec{A} \times \vec{B}$ then resultant vector is:
A. $A+B$
B. A-B
C. $\sqrt{A^{2}+B^{2}}$
D. $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$

Answer: D

D Watch Video Solution

21. A force of 5 N acts on a particle along a direction making an angle of 30° with vertical. Its vertical component will be :
A. 10 N
B. 3 N
C. 4 N
D. 2.5 N

Answer: D

D Watch Video Solution

22. The expression $\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right)$ is a :
A. unit vector
B. null vector
C. vector of magnitude $\sqrt{2}$
D. scalar

- Watch Video Solution

23. For the figure, which of the following is correct ?

A. $\vec{A}+\vec{B}=\vec{C}$
B. $\vec{B}+\vec{C}=\vec{A}$
c. $\vec{C}+\vec{A}=\vec{B}$
D. $\vec{A}+\vec{B}+\vec{C}=0$

Answer: C

(D) Watch Video Solution

24. It is found that $|A+B|=|A|$. This necessarily implies:
A. $B=0$
B. A, B are anti- parallel
C. A, B are perpendicular
D. $A, B \leq 0$

Answer: B
25. The magnitude of the resultant of the two orthogonal vectors of 3 units and 4 units is:
A. 7
B. 25
C. 5
D. 1

Answer: C

D Watch Video Solution

26. The unit vector along the negative z-axis is :
A. $-\hat{k}$
B. $-\hat{j}$
C. \hat{i}
D. $+\hat{k}$

Answer: A

D Watch Video Solution

27. If \vec{A} is a vector of magnitude 4 units due east. What is the magnitude and direction of a vector $-4 \vec{A}$?
A. 4 units due east
B. 8 units due east
C. 16 units due east
D. 16 units due west

Answer: D

- Watch Video Solution

28. Figure shows the orientation of two vectors u and v in te XY plane. If $u=a \hat{i}+b \hat{j}$ and $v=p \hat{i}+q \hat{j}$. Which of the following is correct ?

A. a and p are positive while b and q are negative
B. a, p and b are positive while q is negative
C. a, q and b are positive while p is negative
D. a,b,p and q are all positive

Answer: B

D Watch Video Solution

29. Assertion : Circular motion is a motion described by a particle traversing a circular path .

Reason : The whirling motion of a stone attached to a string .
from the following statements select the correct statement
A. Assertion is false and reason is true.
B. Assertion is true and reason is false.
C. Assertion is ture and reason is the correct explanation of assertion.
D. Assertion is true and reason is not the correct explanation of assertion .

Answer: C

D Watch Video Solution

30. If is given that $\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=6 \hat{i}+9 \hat{j}+3 \hat{k}$ which of the following statements is correct?
A. \vec{A} and \vec{B} are equal vectors
B. \vec{A} and \vec{B} are parallel vectors
C. \vec{A} and \vec{B} are perpendicular vectors
D. None of these

Answer: B

D Watch Video Solution

31. A vector having unit magnitude is called Vector.
A. like
B. unlike
C. orthogonal
D. unit
32. Select the correct pair from the following statements. Vectors can be added :
A. algebrically and vectorially
B. algebrically and geometrically
C. graphically and geometrically
D. graphically and algebrically

Answer: C

- Watch Video Solution

33. According to parallelogram law of vector addition, the resultant is given by :
A. $\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}$
B. $\sqrt{P^{2}+Q^{2}-2 P Q \cos \theta}$
C. $\sqrt{\frac{P^{2}}{Q^{2}}}$
D. $\sqrt{P^{2} \cos ^{2} \theta+Q^{2} \sin ^{2} \theta}$

Answer: A

- View Text Solution

34. According to triangle law of vector addition, the direction of the resultant is given by:
A. $\tan \alpha=\frac{P \cos \theta}{P+Q \sin \theta}$
B. $\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta}$
C. $\tan \alpha=\frac{Q \cos \theta}{P+Q \sin \theta}$
D. $\tan \alpha=\frac{Q \cos \theta}{Q \sin \theta}$

Answer: B

- View Text Solution

35. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to the vector \vec{A} and its magnitude is equal to half of the magnitude of vector \vec{B} (figure). The angle between \vec{A} and \vec{B} is

A. 120°
B. 150°
C. 135°
D. None of these

Answer: B

(D) Watch Video Solution

36. A hall has the dimensions $10 m \times 12 m \times 14 m$. A fly starting at one corner ends up at a diametrically opposite corner, what is the magnitude of its displacement?
A. 17 m
B. 26 m
C. 36 m
D. 21 m

Answer: D

(D) Watch Video Solution

37. What is the angle between $\hat{i}+\hat{j}+\hat{k}$ and \hat{j} ?
A. 0°
B. 45°
C. 60°
D. None of these

Answer: D
38. If $\vec{A}+\vec{B}+\vec{C}=0$, then $\vec{A} \times \vec{B}$ is :
A. $\vec{B} \times \vec{C}$
B. $\vec{C} \times \vec{B}$
C. $\vec{A} \times \vec{C}$
D. None of these

Answer: A

(D) Watch Video Solution

39.

The
angle between two
vectors
$2 \hat{i}+3 \hat{j}+\hat{k}$ and $-3 \hat{i}+6 \hat{k}$ is :
A. 0°
B. 45°
C. 60°
D. 90°

Answer: D

D Watch Video Solution

40. Assertion : Vibratory motion is sometimes called oscillatory motion.

Reason : Spinning of the Earth about its axis .

Choose the correct statement from the following :
A. Assertion is false and reason is true.
B. Assertion is true and reason is false.
C. Assertion is ture and reason does not give the correct explanation of assertion.
D. Assertion is true and reason explains the assertion correctly.

Answer: C

D Watch Video Solution

41. The scalar product of two \vec{A} and \vec{B} is:
A. $\mathrm{AB} \sin \theta$
B. $A B \cos \theta$
C. $A B \sin \theta \widehat{n}$
D. $A B \cos \theta \widehat{n}$

Answer: B

D Watch Video Solution

42. Angle of inclination of the resultant when two vectors act at right to each other is :
A. $\frac{Q}{P}$
B. Q-P
C. $\mathrm{Q}+\mathrm{P}$
D. $\frac{P}{Q}$

Answer: A
43. Horizontal component of a vector is represented as :
A. $\sin \theta$
B. $R \tan \theta$
C. $R \cos \theta$
D. $R \cos e c \theta$

Answer: C

(Watch Video Solution

44. Resultant of two vectors which are parallel to each other and are in the same direction is obtained by Of vectors .
A. addition
B. subtraction
C. multiplication
D. division

Answer: A

- Watch Video Solution

45. A stone is allowed to fall from a top of a tower 100 m high and at the same time another stone is projected vertically upwards from the ground with a velocity of $25 \mathrm{~m} / \mathrm{s}$. The two stones will melt after :
A. 40 s
B. 0.4 s
C. 4 s
D. 0.04 s

Answer: C

(D) Watch Video Solution

46. A ball is thrown vertically upwards. Which of the following plots represent the speed graph of the ball during its flight if the air resistence is not ignored?

Answer: D

- Watch Video Solution

47. If a particle has moved from one position to another position, then :
A. its distance is zero
B. its displacement is zero
C. neither distance nor displacement is zero
D. average velocity is zero

Answer: B

- Watch Video Solution

48. Which one out of the following statement is false?
A. A body can have zero velocity and still be accelerated
B. A body can have a constant velocity and still have a varying speed
C. A body can have a constant speed and still have a varying velocity
D. The direction of the velocity of a body can change when
its acceleration is constant

Answer: B

- Watch Video Solution

49. Which of the following curves does not represent motion in one dimension ?

B.

C.

D.

Answer: B

50. Position-time graph for motion with negative acceleration is :

A.

B.

D.

Answer: B

- Watch Video Solution

51. A tiger chases a deer 30 m ahead of it and gains 3 m in 5 second after the chase began. The distance gained by the tiger in 10 second is :
A. 18 m
B. 20 m
C. 6 m
D. 12 m

D Watch Video Solution

52. Which graph pertains to uniform acceleration .
A.

B.

C.

Answer: A

D Watch Video Solution

53. Retardation means that acceleration :
A. decreases with time
B. increases with time
C. increases and decreases
D. decreases and increases
54. Slope of displacement-time graph at any instant gives :
A. speed
B. acceleration
C. retardation
D. velocity

Answer: D

D Watch Video Solution

55. is given by the slope of velocity -time graph at any instant
A. speed
B. acceleration
C. retardation
D. velocity

Answer: B

- Watch Video Solution

56. Which of the following is represented by the area under a-
t curve?
A. change in acceleration
B. change in velocity
C. change in distance
D. constant acceleration

Answer: B

- Watch Video Solution

57. Two projectiles thrown from the same point at angles 60° and 30° with the horizontal attain the same height.

Which of the following statements is a correct statement ?
A. The ratio of their initial velocityies is $\sqrt{3}$
B. The ratio of their initial velocities is $\frac{1}{\sqrt{3}}$
C. The ratio of their initial velocities is 1 .
D. The ratio of their initial velocities is infinity .

- Watch Video Solution

58. The range of a projectile fired at angle of 15° is 40 m . If it is fired with the same speed at an angle of 45° then, which one of the following statement is an incorrect statement ?
A. Final range is twice the initial range.
B. Final range is half of the initial range.
C. Final range is greater then the initial range
D. Final range is 80 m

Answer: B

- Watch Video Solution

59. If $x=a \cos t$ is the displacement in time t then, acceleration is :
A. $a \cos t$
B. $-a \cos t$
C. $a \sin t$
D. $-a \sin t$

Answer: B

D Watch Video Solution

60. Choose the correct statement :
A. motion is an absolute term but rest is relative
B. motion is a relative term but rest is an absolute
C. both motion and rest are relative
D. both motion and rest are absolute

Answer: C

(Watch Video Solution

61. Statement 1 represents Assertion, statement 2 represent Reasons.

Statement I: One radian is the angle subtended at the center of a circle by an arc that is equal to the radius of the circle .

Setement 2: Radian describes the planar angle subtended by a circular arc at the centre of the circle .

Which one of the following statements is a correct statement
A. Statement 1 is true and statement 2 is false
B. Statement 1 is false and statement 2 is true
C. Statement 1 is true and statement 2 does not explain
statement 1.
D. Statement 1 is true and statement 2 explains statement
1.

Answer: D

- Watch Video Solution

62. Statement 1 represents Assertion, statement 2 represent Reasons.

Statement I: In a non uniform circular motion, a body has one acceleration along the tangent to the circle and the other
acceleration acts towards the centre of the circular motion .
Setement 2: The magnitude and direction of the velocity of the body change with time in the non-uniform circular motion.
A. Statement 1 is true and statement 2 is ture and explains
statement 1 correctly.
B. Statement 1 is true and statement 2 is true but it is not the correct explanation for statement 1
C. Statement 1 is true and statement 2 is false.
D. Statement 1 is false and statement 2 is true.

Answer: A

(D) Watch Video Solution

63. In the following question statement 1 represent Assertion and statement 2 represents Reason .

Statement 1: The velocity of a particle at a point on its trajectory is equal to the slope at that point .

Statement 2: The velocity of the particle acts along the tangent to the trajectory at the point .

Select the correct statement from the following statements .
A. Statement 1 is true, statement 2 is true and it explains statement 1 correctly.
B. Statement 1 is true, statement 2 is true and does not explain statement 1 correctly .
C. Statement 1 is true, statement 2 is false.
D. Statement 1 is false , statement 2 is true .

(D) Watch Video Solution

64. A particle moves with uniform velocity which of the following statements about the motion of the particle is true ?
A. Its speed is zero
B. Its acceleration is zero
C. Its acceleration is opposite to the velocity
D. Its speed may by variable

Answer: B

D Watch Video Solution
65. A body is allowed to fall from a height of 100 m . If the time taken for the first 50 m is t_{1} and for the remaining 50 m is t_{2}, then :
A. $t_{1}=t_{2}$
B. $t_{1}>t_{2}$
C. $t_{1}<t_{2}$
D. Depends upon the mass

Answer: B

(D) Watch Video Solution

66. A coin is dropped in a lift. It takes time t_{1} second to reach the floor when lift is stationary. It takes t_{2} second when the
lift is moving up with constant acceleration. Then,
A. $t_{2}<t_{1}$
B. $t_{1}=t_{2}$
C. $t_{1} \geq t_{2}$
D. $t_{1}<t_{2}$

Answer: A

(Watch Video Solution

67. s-t graph shown in figure is a parabola. From this graph we find that:

A. the body is moving with uniform velocity
B. the body is moving with uniform speed
C. the body is starting from rest and moving with uniform acceleration
D. the body is not moving at all

Answer: C

68. The acceleration of a moving body can be found from :
A. area under velocity- time graph
B. area under distance-time graph
C. slope of the velocity-time graph
D. slope of distance-time graph

Answer: C

- Watch Video Solution

69. Choose the old man out from the following equations of motion.

$$
\text { A. } v=u+a t
$$

B. $y=\frac{1}{2} g t^{2}$
C. $s=u t+\frac{1}{2} a t^{2}$
D. $v^{2}-u^{2}=2 a s$

Answer: B

(D) Watch Video Solution

70. the displacement of particle is given by $X=a_{0}+\frac{a_{1} t}{2}-\frac{a_{2} t^{2}}{3}$. What is its acceleration?
A. $\frac{2 a_{2}}{3}$
B. $-\frac{2 a_{2}}{3}$
C. a_{2}
D. zero

D Watch Video Solution

71. The equation for the motion of a particle is $v=$ at . The distance travelled by the particle in the first 4 second is :
A. 8 a
B. 6 a
C. 12a
D. $4 a$

Answer: A
72. Select the correct statement from the following statement ,

For retarded motion, the
A. slope of velcoity - time graph is zero.
B. slope of velocity - time graph is positive .
C. slope of velocity - time graph is negative.
D. slope of velocity - time graph is negative or positive .

Answer: C

D Watch Video Solution

73. Match the following :

Column I

1. Scalar product of two vectors
2. Cross product of two vectors
3. Trajectory of a projectile
4. Maximum range of a projectile

Column II

(i) parabola
(ii) Circle
(iii) u^{2} / g
(iv)Torque
(v) $u^{2} \sin 2 \theta / g$
(vi)Work
A. 1 - (iv), 2 - (vi), 3 - $9 i i), 4-(v)$
B. 1 - (vi), 2 - (iv), 3 - (i), 4 - (iii)
C. 1 - (v), 2 - (iii), 3 - (iv), 4 - (vi)
D. 1 - (i), 2 - (ii), 3 - (iv), 4 - (v)

Answer: B

74. A train is moving towards east and a car is along north, both with speed. The passenger in the train is observed the car moving in whivh of the following direction ?
A. East - north direction
B. West - north direction
C. South - east direction
D. None of these

Answer: B

D Watch Video Solution

75. Which one of the following graphs represents uniform motion ?

C.

D.

76. A man should hold his umbrella with vertical, when rain fals vertically with velocity V_{R} and man walk horizontally with velocity V_{M}. It's direction is given by :
A. $\tan ^{-1}\left(\frac{V_{M}}{V_{R}}\right)$
B. $\tan ^{-1}\left(\frac{V_{R}}{V_{M}}\right)$
C. $\tan ^{-1}\left(V_{R}\right)$
D. $\tan ^{-1}\left(V_{M}\right)$

Answer: A

(D) Watch Video Solution

77. Relative velocity of A with respect to B when A and B are in the opposite direction is :
A. $V_{A}+V_{B}$
B. $V_{A}-V_{B}$
C. $\nabla_{A}+\nabla_{B}$
D. $\sqrt{V_{A}^{2}+V_{B}^{2}=2 V_{A} V_{B} \cos \theta}$

Answer: A

D Watch Video Solution

78. Two stones of different masses are dropped simultaneously from the top of a building. In this situation which one of the following is correct statement?
A. smaller stone hit the ground earlier
B. larger stone hits the ground earlier
C. both stones reach the ground simulataneously.
D. which of the stones reach the ground earlier depends one the composition of the stone.

Answer: C

- Watch Video Solution

79. A body a starts from rest with an acceleration a_{1}. After 2 s , another body B starts from rest with an acceleration a_{2}. If they travel equal distances in the $5^{\text {th }}$ second after the start of A then, the ratio $a_{1}: a_{2}$ is equal to :
A. $9: 7$
B. 9:5
C. $5: 7$
D. $5: 9$

Answer: D

(D) Watch Video Solution

80. When a ball is thrown up vertically with velocity v_{0} it reaches a maximum height of h. when the ball reaches to triple t he maximum height. The velocity with which the ball was thrown is :
A. $3 v_{0}$
B. $9 v_{0}$
C. $\sqrt{3} v_{0}$
D. $2 v_{0}$

Answer: C

D Watch Video Solution

81. Two projectiles P and Q are fired from the same point with same velocity at angle 30° and 60°. The horizontal range of :
A. P is equal to Q
B. P is less than Q
C. P is greater than Q
D. none of the above
82. Choose the correct pair of the following for this situation.

During projectile motion the quantities that remain unchanged are :
A. force and vertical velocity
B. acceleration and horizontal velocity
C. kinetic energy and acceleration
D. acceleration and momentum

Answer: B

- Watch Video Solution

83. Match the following given in both columns correctly .
Column I Column II
84. Centripetal force (i)radius \times angular velocity
85. Centrifugal force (ii) $1 / 2 a t^{2}$
86. Linear velocity v

(iii) mass \times velocity4. Momentum
(iv) mass \times acceleration
(v) towards the centre of the circle
(vi) away from the centre of the circle
A. 1-(v), 2-(i), 3-(iv), 4-(iii)
B. 1-(iii), 2 - (iv), 3-(v), 4-(iv)
C. 1-(i), 2 - (ii), 3 - (iii), 4 - (iv)
D. 1-(v), 2-(vi), 3-(i), 4-(iii)

Answer: D

D Watch Video Solution

84. If a projectile is projected with initial velocity $98 \mathrm{~m} / \mathrm{s}$ in a direction of 30° above the horizontal. For this situation which one of the following is a correct statement?
A. Time of flight is 100 s
B. Time of flight is 10 s
C. Time of flight is 5 s
D. Time of flight is 0.5 s

Answer: B

(Watch Video Solution

85. Neglecting the air resistance, the time of flight of a projectile is determined by :
A. $u_{\text {vertical }}$
B. $u_{\text {horizontal }}$
C. $u=u_{\text {vertical }}^{2}+u_{\text {horizontal }}^{2}$
D. $u=u\left(u_{\text {vertical }}^{2}+u_{\text {horizontal }}^{2}\right)^{1 / 2}$

Answer: A

- Watch Video Solution

86. From the following paramenters, select the odd man out .
A. Time of flight
B. Range
C. maximum height attained by a projectile
D. Linear velocity

(D) Watch Video Solution

87. A aeroplane is flying at a constanct horizontal velocity of $600 \mathrm{~km} / \mathrm{hr}$ at an elevation of 6 km towards a point directly above the target on the earth's surface. At a approprate time, the pilot releases a ball so that it strikes the taraget at the earth. The ball will appear to be falling :
A. on a parabolic path at seen by pilot in the plane
B. vertically alone a straight path as seen by an observer on the ground near the target
C. on a parabolic as seen by an observer on the ground near the target
D. on a zig-zag path as seen by pilot in the plane

Answer: C

D Watch Video Solution

88. The time of flight is the time taken to attain the maximum height .
A. thrice
B. same
C. twice
D. four times

Answer: C
89. When a bady undergoes an oblique projection, maximum range of it is :
A. $\frac{u^{2}}{g}$
B. $\frac{u}{g}$
C. $\frac{u^{2}}{g^{2}}$
D. $\frac{u^{2}}{2 g}$

Answer: A

(D) Watch Video Solution
90. The angle of projection for a projectile to cover maximum
range is :
A. 30°
B. 60°
C. 0°
D. 45°

Answer: D

(D) Watch Video Solution

91. A particle is projected at such an angle that the horizontal range is three times the greates height attained. For this situation which one of the following statements is correct ?
A. The angle of projection is $25^{\circ} 8^{\prime}$
B. The angle of projection is $54^{\circ} 1^{\prime}$
C. The angle of projection is $53^{\circ} 1^{\prime}$
D. The angle of projection is 32.7°

Answer: C

(D) Watch Video Solution

92. For a projectile, projected at an angle, the resultant velocity is :
A. $\sqrt{u^{2}+g^{2} t^{2}-2 u t g \sin \theta}$
B. $\sqrt{u^{2}+g^{2} t^{2}}$
C. $\sqrt{u^{2}-g^{2} t^{2}}$
D. $\sqrt{u^{2}+g^{2} t^{2}+2 u t g \sin \theta}$

(D) Watch Video Solution

93. At the top of the trajectory of a projectile the acceleration
is:
A. maximum
B. minimum
C. zero
D. acceleration due to gravity

Answer: D

Watch Video Solution

94. Which of the following is correct statement ragarding projectile motion?
A. horizontal velocity of projectile is constant
B. vertical velocity of projectile is constant
C. acceleration is not costant
D. momentum is constant

Answer: A

D Watch Video Solution

95. In the following question statement 1 represent Assertion and statement 2 represents Reason .

Statement 1: In a uniform circular motion the momentum of a
particle does not change with time .
Statement 2 : The kinetic energy of the particle remains constnat.

Choose the correct statement of the following statements
A. Statement 1 is true and statement 2 is true and it explains statement 1.
B. Statement 1 is true and statement 2 is true and it does not explain statement 1.
C. Statement 1 is true and statement 2 is false.
D. Statement 1 is false and statement 2 is true.

Answer: D

- Watch Video Solution

96. When a projectile is projected in oblique motion expressions for time of flight and range of the projectile are given .

Which of the following pair is correct ?
A. $t_{f}=\frac{u \sin \theta}{2 g}: R=\frac{u^{2} \sin 2 \theta}{2 g}$
B. $t_{f}=\frac{2 u \sin \theta}{g}: R=\frac{u^{2} \sin 2 \theta}{g}$
c. $t_{f}=\frac{2 u \cos \theta}{g}: R=\frac{u^{2} \cos 2 \theta}{g}$
D. $t_{f}=\frac{2 u \sin \theta}{g}: R=\frac{u^{2} \sin 2 \theta}{2 g}$

Answer: B

- Watch Video Solution

97. The expression for horizontal range when a body is projected at an angle with the horizontal is $\mathrm{R}=$
A. $\frac{u \sin \theta}{g}$
B. $\frac{u^{2} \sin 2 \theta}{g}$
C. $\frac{u^{2} \sin \theta}{g}$
D. $\frac{u^{2} \sin \theta}{2 g}$

Answer: B

D Watch Video Solution

98. Which one of the following statement is correct ?
the equation $\mathrm{y}=\frac{8}{2 u^{2}} x^{2}$ represents :
A. the path of a freely falling body
B. the path of a thrown bodies
C. the path of a projectile
D. hyperbola

Answer: C

- Watch Video Solution

99. Select the odd man out from the following :
A. Angular acceleration
B. Linear displacement
C. Angular velocity
D. Angular displacement

Answer: B

100. During a projectile motion if the maximum height equals the horizontal range,then the angle of projection with the horizontal is :
A. $\tan ^{-1}(1)$
B. $\tan ^{-1}(2)$
C. $\tan ^{-1}(3)$
D. $\tan ^{-1}(4)$

Answer: D

- Watch Video Solution

101. A ball is thrown upwards at a certain angle with the horizontal and it returns to the ground describing a parabolic
path. Which of the following remains constant ?
A. Momentum of the ball
B. Kinetic energy of the ball
C. vertical component of the velocity
D. Horizontal component of the velocity

Answer: D

(Watch Video Solution

102. The expression for maximum height attained when the body is projected at an angle with the horizontal is :
A. $\frac{u \sin \theta}{2 g}$
B. $\frac{u \sin ^{2} \theta}{2 g}$
C. $\frac{u^{2} \sin ^{2} \theta}{g}$
D. $\frac{u^{2} \sin ^{2} \theta}{2 g}$

Answer: D

- Watch Video Solution

103. The angula speed of a fly-wheel making 120 revolutions /minute is :
A. $\pi \mathrm{rad} / \mathrm{sec}$
B. $4 \pi \mathrm{rad} / \mathrm{sec}$
C. $2 \pi \mathrm{rad} / \mathrm{sec}$
D. $4 \pi^{2} \mathrm{rad} / \mathrm{sec}$

- Watch Video Solution

104. What is the ratio of the angular speeds of the minute hand second hand of a clock?
A. $1: 12$
B. $12: 1$
C. 1: 60
D. $60: 1$

Answer: D

105. In the following situation which one of the following is a correct statement ?

When a body moves on circular path, the :
A. magnitude of velocity changes and its direction remain
constant
B. magnitude of velocity remains constant and its direction change continuously
C. magnitude of velocity remains constant and direction
remains constant
D. magnitude of velocity and direction change
continuously

Answer: B

106. Dimension of angular velocity is :
A. $M L T^{-1}$
B. $M^{0} L^{0} T-1$
C. $M L T^{-2}$
D. $M^{0} L^{0} T^{-2}$

Answer: B

- Watch Video Solution

107. Choose the correct pair of the following pairs .
A. Angular velocity $\omega=v r$

Angular acceleration $\propto=r a$
B. Angular velocity $\omega=\frac{v}{r}$

Angular acceleration $\alpha=\frac{a}{r}$
C. Angular velocity $\omega=\frac{r}{v}$

Angular acceleration $\alpha=\frac{r}{a}$
D. Angular velocity $\omega=\frac{v^{2}}{r}$

Angular acceleration $\alpha=\frac{a}{r^{2}}$

Answer: B

- Watch Video Solution

108. Radial acceleration is :
A. $v \omega^{2}$
B. $r \omega$
C. $r^{2} \omega$
D. $r \omega^{2}$

Answer: D

D Watch Video Solution

109. A body moving with a constant speed v in a circle of radius r. its angular acceleration is :
A. 0
B. vr
C. $\frac{v}{r}$
D. $\frac{v^{2}}{r}$

Answer: A

- Watch Video Solution

110. If ω_{0}, ω are initial and final angular velocities θ is the angular displacement and α is the angular acceleration then, choose the correct statement .
A. omrga $^{2}=\omega_{0}^{2}-2 \alpha \theta$
B. $\omega_{0}^{2}=\omega^{2}-22 \alpha \theta$
C. $\omega_{0}^{2}+\omega^{2}+2 \alpha \theta$
D. $\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$

- Watch Video Solution

111. A particle moving in a circular path of certain radius, with uniform angular velocity ω has an angular acceleration equal to :
A. 0
B. unity
C. infinity
D. 1

Answer: A

- Watch Video Solution

112. In which direction of the motion of the particle does centripetal force act ?
A. parallel
B. radial
C. tangential
D. right angle

Answer: B

D Watch Video Solution

113. A body is moving with a constant speed v in a circle of radius r. its angualr acceleration is :
A. vr
B. $\frac{v}{r}$
C. zero
D. $\frac{v}{r^{2}}$

Answer: C

D Watch Video Solution

114. For one complete revolution, the angle swept by the radius vector is :
A. 360°
B. 180°
C. 270°
D. 0°

Answer: A

- Watch Video Solution

115. Match the following :

Column I
Column II

1. Centripetal force
2. Relative velocity $\vec{V}_{A B}$
(ii) $u t+\frac{1}{2} a t^{2}$
3. Distance in linear motion s
(iii) $\frac{m r}{v^{2}}$
4. $h_{\text {Mas }}$ of a
(iv) $\nabla_{A}-\nabla_{B}$
(v) $\frac{m v^{2}}{r}$
A. 1 - (iv), 2 - (i), 3 - (iii), 4 - (v)
B. 1-(i), 2 - (iii), 3 - (ii), 4 - (iv)
C. 1 - (ii), 2 - (v), 3 - (iv), 4 - (i)
D. 1 - (v), 2-(iv), 3 - (ii), 4 - (i)

Answer: D

D Watch Video Solution

116. In non-uniform circular motion, particle will have

And tangential acceleration
A. centripetal
B. centrifugal
C. both (a) and (b)
D. neither (a) nor (b)
117. Select the correct statement of the following
A. 1 radian $=5.729^{\circ}$
B. 1 radian $=57^{\circ} 29{ }^{\prime}$
C. 1 radian $=57.295^{\circ}$
D. 1 radian $=572.9^{\circ}$

Answer: C

(D) Watch Video Solution

118. A butterfly and stone (mass of later is greater than earlier
) is moving with same velocity. Momentum of the stone is
. Than the momentum of butterfly .
A. equal
B. greater
C. lesser
D. lesser (or) equal to

Answer: B

D Watch Video Solution

119. Kinematics is the branch of mechanics which delas with the motion of objects without taking \qquad into account
A. mass
B. force
C. velocity
D. all the above

Answer: B

- Watch Video Solution

120. Which of the following statement is incorrect?
A. Kinematics deals with the motion of objects .
B. Kinematics deals with the equilibrium of objects .
C. Kinema means motion.
D. The conceptof root and motion can be understood in kinematics.
121. A person performing a somersault is an example of Motion.
A. circular
B. vibratory
C. linear
D. rotational

Answer: D

(D) Watch Video Solution

122. A motion of a shell fired from the gun is an example for . .
... Dimensional motion.
A. two
B. three
C. one
D. both (a) and (b)

Answer: A

(D) Watch Video Solution

123. Match the following :
Column I
Column II
124. Work
(i) Supplementary unit in SI system
125. Torque
(ii)Kinematics
126. Plane angle
(iii)Motion
127. Meaning of Kinema (iv)Vector
(v)Scalar
A. 1 - (i), 2-(iii), 3-(iv), 4-(v)
B. 1 - (iv), 2 - (iii), 3 - (i), 4 - (ii)
C. 1-(v), 2-(iv), 3-(i), 4- (iii)
D. 1 - (iv), 2 -(iii), 3 - (ii), 4 - (v)

Answer: C

(Watch Video Solution

124. Length of the vector is always Quantity
A. negative
B. positive
C. unit
D. zero

- Watch Video Solution

125. Displacement (y) of a body is represented by $y=p t+q t^{2}-r t^{3}$ where p, q and r are constants of motion. The velocity of the body when its acceleration is 0 :
A. $p+\frac{q^{2}}{2 r}$
B. $p+\frac{q^{2}}{r}$
C. $p+\frac{q^{2}}{4 r}$
D. $p+\frac{q^{2}}{3 r}$

Answer: D

126. What is the resultant vectors, when two vectors are at right angles to each other ?
A. $R=\sqrt{P^{2} Q^{2}}$
B. $R=P+Q$
C. $R=P-Q$
D. $R=\sqrt{\frac{P}{Q}}$

Answer: A

D Watch Video Solution

127. Resultant of the two vector is maximum when angle between them is :
A. 90°
B. 180°
C. 0°
D. 270°

Answer: C

D Watch Video Solution

128. Two vectors act along the mutually perpendicular directions are called Vectors .
A. equal
B. opposite
C. orthogonal
D. orthogonal unit

Answer: D

D Watch Video Solution

129. Choose the correct statement from the following statement?
A. The dot product is associative
B. The dot product is commutative
C. The dot product is not commutative
D. The dot product is applied only to unit vectors .
130. If \vec{A} and \vec{B} are perpendicular then $\vec{A} \cdot \vec{B}=\ldots$
A. $|\vec{A}||\vec{B}|$
B. $|\vec{A} \times \vec{B}|$
C. $|\vec{A}||\vec{B}| \cos 180^{\circ}$
D. $|\vec{A}||\vec{B}| \cos 90^{\circ}$

Answer: D

- Watch Video Solution

131. Which of the following rule is applied to know the diretion of the vectors product?
A. Fleming's left hand rule
B. Fleming's right hand rule
C. Right handed screw rule
D. Left handed screw rule

Answer: C

- Watch Video Solution

132. The parallelogram law of vector addition is equivalent to .
... Method.
A. polygon
B. coplanar
C. triangle
D. collinear

Answer: C

D Watch Video Solution

133. If for two vectors \vec{A} and $\vec{B}, \vec{A} \times \vec{B}=0$ then the vectors are :
A. perpendicular to each other
B. parallel to each other
C. act at an angle 60°
D. act at an angle 30°
134. Which of the following statements is /are not true?
A. v,a and s are vectprs
B. Mass, energy, work are vectors
C. Vector has only magnitude whereas scalar has both magnitude and direction
D. Both (b) and (c)

Answer: C

(D) Watch Video Solution

135. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle
between these vectors is
A. 0°
B. 45°
C. 90°
D. 180°

Answer: C

(Watch Video Solution

136. If \vec{A} and \vec{B} are two vectors, which of the statement is wrong ?
A. $\vec{A}+\vec{B}=\vec{B}+\vec{A}$
B. $\vec{A}-\vec{B}=-(\vec{B}+\vec{A})$
c. $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$
D. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$

Answer: C

(D) Watch Video Solution

137. The displacement of a body is given by $x=2 t^{3}-6 t^{2}+12 t+6$. The acceleration of body is zero at time ti is equal to :
A. 3 s
B. 2 s
C. 1s
D. 10 s

Answer: C

D Watch Video Solution

138. If \vec{A} and \vec{B} are two vectors,$\vec{A} \cdot \vec{B}=\vec{A} \times \vec{B}$ then resultant vector is :
A. $A+B$
B. $A-B$
C. $\sqrt{A^{2}+B^{2}}$
D. $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$

Answer: D
(Watch Video Solution
139. A force of 5 N acts on a particle along a direction making an angle of 30° with vertical . Its vertical component will be :
A. 10 N
B. 3 N
C. 4 N
D. 2.5 N

Answer: D

- Watch Video Solution

140. The expression $\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right)$ is a :
A. unit vector
B. null vector
C. vector of magnitude $\sqrt{2}$
D. scalar

Answer: A

(D) Watch Video Solution

141. In the following figure (not to scale), AD bisects $\angle B A C$. If $\angle B A D=45^{\circ}$ is inscribed in a circle, then which of the
following is the longest?

Answer: C
142. It is found that $|A+B|=|A|$,This necessarily implies.
A. $B=0$
B. A,B are anti- parallel
C. A, B are perpendicular
D. $A, B \leq 0$

Answer: B

- Watch Video Solution

143. The magnitude of the resultant of the two orthogonal vectors of 3 units and 4 units is:
A. 7
B. 25
C. 5
D. 1

Answer: C

(Watch Video Solution

144. The unit vector along the negative z-axis is:
A. $-\hat{k}$
B. $-\hat{j}$
C. \hat{i}
D. $+\hat{k}$

D Watch Video Solution

145. If \vec{A} is a vector of magnitude 4 units due east. What is the magnitude and direction of a vector $-4 \vec{A}$?
A. 4 units due east
B. 8 units due east
C. 16 units due east
D. 16 units due west

Answer: D

D Watch Video Solution

146. Figure 2 (EP). 13 shows the orientation of two vectors \vec{u} and \vec{v} in the (XY) plane.

If $\vec{u}=a \hat{i}+b \hat{j}$ and $\vec{v}=p \hat{i}+q \hat{j}$ which of the following is correct ?

0
A. a and p are positive while b and q are negative
B. a, p and b are positive while q is negative
C. a, q and b are positive while p is negative
D. a,b,p and q are all positive

Answer: B

- Watch Video Solution

147. Assertion : Circular motion is a motion described by a particle traversing a circular path .

Reason : The whirling motion of a stone attached to a string .
from the following statements select the correct statement
A. Assertion is false and reason is true.
B. Assertion is true and reason is false.
C. Assertion is ture and reason is the correct explanation of assertion.
D. Assertion is true and reason is not the correct explanation of assertion .

Answer: C

(D) Watch Video Solution

148.

If
is
given
that
$\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=6 \hat{i}+9 \hat{j}+3 \hat{k}$ which of the following statements is correct ?
A. \vec{A} and \vec{B} are equal vectors
B. \vec{A} and \vec{B} are parallel vectors
C. \vec{A} and \vec{B} are perpendicular vectors
D. None of these

D Watch Video Solution

149. A vector having unit magnitude is called Vector.
A. like
B. unlike
C. orthogonal
D. unit

Answer: D

- Watch Video Solution

150. Select the correct pair from the following statements.

Vectors can be added :
A. algebrically and vectorially
B. algebrically and geometrically
C. graphically and gemetrically
D. graphically and algebrically

Answer: C

- Watch Video Solution

151. According to parallelogram law of vector addition, the resultant is given by :
A. $\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}$
B. $\sqrt{P^{2}+Q^{2}-2 P Q \cos \theta}$
C. $\sqrt{\frac{P^{2}}{Q^{2}}}$
D. $\sqrt{P^{2} \cos ^{2} \theta+Q^{2} \sin ^{2} \theta}$

Answer: A

- Watch Video Solution

152. According to triangle law of vector addition, the direction of the resultant is given by :
A. $\tan \alpha=\frac{P \cos \theta}{P+Q \sin \theta}$
B. $\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta}$
C. $\tan \alpha=\frac{Q \cos \theta}{P+Q \sin \theta}$
D. $\tan \alpha=\frac{Q \cos \theta}{Q \sin \theta}$

Answer: B

- Watch Video Solution

153. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B.

Then the angle between A and B is
A. 120°
B. 150°
C. 135°
D. None of these

- Watch Video Solution

154. A hall has the dimensions $10 m \times 12 m \times 14 m$. A fly starting at one corner ends up at a diametrically opposite corner, what is the magnitude of its displacement ?
A. 17 m
B. 26 m
C. 36 m
D. 21 m

Answer: D

155. What is the angle between $\hat{i}+\hat{j}+\hat{k}$ and \hat{j} ?
A. 0°
B. 45°
C. 60°
D. None of these

Answer: D

- Watch Video Solution

156. If $\vec{A}+\vec{B}+\vec{C}=0$, then $\vec{A} \times \vec{B}$ is :
A. $\vec{B} \times \vec{C}$
B. $\vec{C} \times \vec{B}$
c. $\vec{A} \times \vec{C}$
D. None of these

Answer: A

(D) Watch Video Solution

157. The angle between two vectors
$2 \hat{i}+3 \hat{j}+\hat{k}$ and $-3 \hat{i}+6 \hat{k}$ is:
A. 0°
B. 45°
C. 60°
D. 90°
158. Assertion : Vibratory motion is sometimes called oscillatory motion.

Reason : Spinning of the Earth about its axis .
Choose the correct statement from the following :
A. Assertion is false and reason is true.
B. Assertion is true and reason is false.
C. Assertion is ture and reason does not give the correct explanation of assertion.
D. Assertion is true and reason explains the assertion correctly.

- Watch Video Solution

159. The scalar product of two \vec{A} and \vec{B} is:
A. $\mathrm{AB} \sin \theta$
B. $A B \cos \theta$
C. $A B \sin \theta \widehat{n}$
D. $A B \cos \theta \widehat{n}$

Answer: B
(D) Watch Video Solution
160. Angle of inclination of the resultant when two vectors act at right to each other is :
A. $\frac{Q}{P}$
B. Q-P
C. $\mathrm{Q}+\mathrm{P}$
D. $\frac{P}{Q}$

Answer: A

D View Text Solution

161. Horizontal component of a vector is represented as :
A. $\sin \theta$
B. $R \tan \theta$
C. $R \cos \theta$
D. $R \cos \theta$

D Watch Video Solution

162. Resultant of two vectors which are parallel to each other and are in the same direction is obtained by Of vectors .
A. addition
B. subtraction
C. multiplication
D. division

Answer: A
163. A stone is allowed to fall from a top of a tower 100 m high and at the same time another stone is projected vertically upwards from the ground with a velocity of $25 \mathrm{~m} / \mathrm{s}$. The two stones will melt after :
A. 40 s
B. 0.4 s
C. 4 s
D. 0.04 s

Answer: C

D Watch Video Solution

164. A ball is thrown vertically upwards. Which of the following
plots represent the speed graph of the ball during its flight if
the air resistence is not ignored?

A.
B.

C.

D.

- Watch Video Solution

165. If a particle has moved from one position to another position, then :
A. its distance is zero
B. its displacement is zero
C. neither distance nor displacement is zero
D. average velocity is zero

Answer: B

- Watch Video Solution

166. Which of the followig statement is false ?
A. A body can have zer velocity and still be accelerated
B. A body can have a constant velocity and still have a varying speed
C. A body can have a constant speed and still have a varying velocity
D. The direction of the velocity of a body can change when its acceleration is constant

Answer: B

D Watch Video Solution

167. Which of the following curves does not represent motion in one dimension ?

B.

C.

D.

Answer: B

168. Position-time graph for motion with negative acceleration is :

A.

B.

D.

Answer: B

- Watch Video Solution

169. A tiger chases a deer 30 m ahead of it and gains 3 m in 5 second after the chase began. The distance gained by the tiger in 10 second is :
A. 18 m
B. 20 m
C. 6 m
D. 12 m

D Watch Video Solution

170. Which graph pertains to uniform acceleration .
A.

B.

C.

Answer: A

- Watch Video Solution

171. Retardation means that acceleration :
A. decreases with time
B. increases with time
C. increases and decreases
D. decreases and increases
172. Slope of displacement-time graph at any instant gives :
A. speed
B. acceleration
C. retardation
D. velocity

Answer: D

D Watch Video Solution

173. is given by the slope of velocity -time graph at any instant
A. speed
B. acceleration
C. retardation
D. velocity

Answer: B

- Watch Video Solution

174. Which of the following is represented by the area under a-t curve?
A. change in acceleration
B. change in velocity
C. change in distance
D. constant acceleration

Answer: B

- Watch Video Solution

175. Two projectiles thrown from the same point at angles 60° and 30° with the horizontal attain the same height.

Which of the following statements is a correct statement ?
A. The ratio of their initial velocityies is $\sqrt{3}$
B. The ratio of their initial velocities is $\frac{1}{\sqrt{3}}$
C. The ratio of their initial velocities is 1 .
D. The ratio of their initial velocities is infinity .

- Watch Video Solution

176. The range of a projectile fired at angle of 15° is 40 m . If it is fired with the same speed at an angle of 45° then, which one of the following statement is an incorrect statement?
A. Final range is twice the initial range.
B. Final range is half of the initial range.
C. Final range is greater then the initial range
D. Final range is 80 m

Answer: B

D Watch Video Solution

177. If $x=a \cos t$ is the displacement in time t then, acceleration is :
A. $a \cos t$
B. $-a \cos t$
C. $a \sin t$
D. $-a \sin t$

Answer: B

- Watch Video Solution

178. Choose the correct statement
A. motion is an absolute term but rest is relative
B. motion is a relative term but rest is an absolute
C. both motion and rest are relative
D. both motion and rest are absolute

Answer: C

(Watch Video Solution

179. Statement 1 represents Assertion, statement 2 represent Reasons.

Statement I: One radian is the angle subtended at the center of a circle by an arc that is equal to the radius of the circle .

Setement 2: Radian describes the planar angle subtended by a circular arc at the centre of the circle .

Which one of the following statements is a correct statement
A. Statement 1 is true and statement 2 is false
B. Statement 1 is false and statement 2 is true
C. Statement 1 is true and statement 2 does not explain
statement 1.
D. Statement 1 is true and statement 2 explains statement
1.

Answer: D

- Watch Video Solution

180. Statement 1 represents Assertion, statement 2 represent

Reasons.

Statement I: In a non uniform circular motion, a body has one acceleration along the tangent to the circle and the other
acceleration acts towards the centre of the circular motion.
Setement 2: The magnitude and direction of the velocity of the body change with time in the non-uniform circular motion.
A. Statement 1 is true and statement 2 is ture and explains
statement 1 correctly.
B. Statement 1 is true and statement 2 is true but it is not the correct explanation for statement 1
C. Statement 1 is true and statement 2 is false.
D. Statement 1 is false and statement 2 is true.

Answer: A

(D) Watch Video Solution

181. In the following question statement 1 represent Assertion and statement 2 represents Reason .

Statement 1 : The velocity of a particle at a point on its trajectory is equal to the slope at that point .

Statement 2 : The velocity of the particle acts along the tangent to the trajectory at the point .

Select the correct statement from the following statements .
A. Statement 1 is true, statement 2 is true and it explains
statement 1 correctly.
B. Statement 1 is true, statement 2 is true and does not explain statement 1 correctly.
C. Statement 1 is true, statement 2 is false.
D. Statement 1 is false, statement 2 is true .

- Watch Video Solution

182. A particle moves with uniform velocity which of the following statements about the motion of the particle is true ?
A. Its speed is zero
B. Its acceleration is zero
C. Its acceleration is opposite to the velocity
D. Its speed may by variable

Answer: B

- Watch Video Solution

183. A body is allowed to fall from a height of 100 m . If the time taken for the first 50 m is t_{1} and for the remaining 50 m is t_{2}, then :
A. $t_{1}=t_{2}$
B. $t_{1}>t_{2}$
C. $t_{1}<t_{2}$
D. Depends upon the mass

Answer: B

- Watch Video Solution

184. A coin is dropped in a lift. It takes time t_{1} second to reach the floor when lift is stationary. It takes t_{2} second when
the lift is moving up with constant acceleration. Then,
A. $t_{2}<t_{1}$
B. $t_{1}=t_{2}$
C. $t_{1} \geq t_{2}$
D. $t_{1}<t_{2}$

Answer: A

- Watch Video Solution

185. s-t graph shown in figure is a parabola. From this graph we find that :

A. the body is moving with uniform velocity
B. the body is moving with uniform speed
C. the body is starting from rest and moving with uniform acceleration
D. the body is not moving at all

Answer: C

186. The acceleration of a moving body can be found from
A. area under velocity- time graph
B. area under distance-time graph
C. slope of the velocity-time graph
D. slope of distance-time graph

Answer: C

- Watch Video Solution

187. Choose the old man out from the following equations of motion.

$$
\text { A. } v=u+a t
$$

B. $y=\frac{1}{2} g t^{2}$
C. $s=u t+\frac{1}{2} a t^{2}$
D. $v^{2}-u^{2}=2 a s$

Answer: B

- Watch Video Solution

188. the displacement of particle is given by
$X=a_{0}+\frac{a_{1} t}{2}-\frac{a_{2} t^{2}}{3}$. What is its acceleration?
A. $\frac{2 a_{2}}{3}$
B. $-\frac{2 a_{2}}{3}$
C. a_{2}
D. zero

D Watch Video Solution

189. The equation for the motion of a particle is $v=$ at . The distance travelled by the particle in the first 4 second is :
A. 8 a
B. 6 a
C. 12a
D. $4 a$

Answer: A
190. Select the correct statement from the following statement,

For retarded motion, the
A. slope of velcoity - time graph is zero.
B. slope of velocity - time graph is positive .
C. slope of velocity - time graph is negative.
D. slope of velocity - time graph is negative or positive .

Answer: C

D Watch Video Solution

191. Match the following :

Column I

1. Scalar product of two vectors
2. Cross product of two vectors
3. Trajectory of a projectile
4. Maximum range of a projectile

Column II

(i)parabola
(ii) Circle
(iii) u^{2} / g
(iv)Torque (v) $u^{2} \sin 2 \theta / g$
(vi)Work
A. 1 - (iv), 2 - (vi), $3-9 i i), 4-(v)$
B. 1 - (vi), 2 - (iv), 3 - (i), 4 - (iii)
C. 1 - (v), 2 - (iii), 3 - (iv), 4 - (vi)
D. 1 - (i), 2 - (ii), 3 - (iv), 4 - (v)

Answer: B

192. A train is moving towards east and a car is along north, both with speed. The passenger in the train is observed the car moving in whivh of the following direction?
A. East - north direction
B. West - north direction
C. South - east direction
D. None of these

Answer: B

- Watch Video Solution

193. Which one of the following graphs represents uniform motion ?

C.

D.

194. A man should hold his umbrella with vertical, when rain fals vertically with velocity V_{R} and man walk horizontally with velocity V_{M}. It's direction is given by :
A. $\tan ^{-1}\left(\frac{V_{M}}{V_{R}}\right)$
B. $\tan ^{-1}\left(\frac{V_{R}}{V_{M}}\right)$
C. $\tan ^{-1}\left(V_{R}\right)$
D. $\tan ^{-1}\left(V_{M}\right)$

Answer: A

(Watch Video Solution

195. Relative velocity of A with respect to B when A and B are in the opposite direction is :
A. $\nabla_{A}-\nabla_{B}$
B. $\nabla_{B}-\nabla_{A}$
C. $\nabla_{A}+\nabla_{B}$
D. $\sqrt{V_{A}^{2}+V_{B}^{2}=2 V_{A} V_{B} \cos \theta}$

Answer: B

- Watch Video Solution

196. Two stones of different masses are dropped simultaneously from the top of a building. In this situation which one of the following is correct statement?
A. smaller stone hit the ground earlier
B. larger stone hits the ground earlier
C. both stones reach the ground simulataneously.
D. which of the stones reach the ground earlier depends one the composition of the stone.

Answer: C

- Watch Video Solution

197. A body a starts from rest with an acceleration a_{1}. After 2 s , another body B starts from rest with an acceleration a_{2}. If they travel equal distances in the $5^{\text {th }}$ second after the start of A then, the ratio $a_{1}: a_{2}$ is equal to :
A. $9: 7$
B. $9: 5$
C. 5: 7
D. $5: 9$

Answer: D

D Watch Video Solution

198. When a ball is thrown up vertically with velocity v_{0} it reaches a maximum height of h. when the ball reaches to triple t he maximum height. The velocity with which the ball was thrown is :
A. $3 v_{0}$
B. $9 v_{0}$
C. $\sqrt{3} v_{0}$
D. $2 v_{0}$

Answer: C

- Watch Video Solution

199. Two projectiles P and Q are fired from the same point with same velocity at angle 30° and 60°. The horizontal range of :
A. P is equal to Q
B. P is less than Q
C. P is greater than Q
D. none of the above

- Watch Video Solution

200. Choose the correct pair of the following for this situation

During projectile motion the quantities that remain unchanged are :
A. force and vertical velocity
B. acceleration and horizontal velocity
C. kinetic energy and acceleration
D. acceleration and momentum

Answer: B

201. Match the following given in both columns correctly .
Column I

Column II

1. Centripetal force
(i)radius \times angular velocity
2. Centrifugal force
(ii) $1 / 2 a t^{2}$
3. Linear velocity v
4. Momentum
(iii) mass \times velocity
(iv) mass \times acceleration
(v) towards the centre of the circle
(vi) away from the centre of the circle
A. 1 - (v), 2-(i), 3-(iv), 4-(iii)
B. 1 - (iii), 2 - (iv), 3 - (v), 4 - (iv)
C. 1-(i), 2-(ii), 3-(iii), 4-(iv)
D. 1-(v), 2-(vi), 3-(i), 4-(iii)

Answer: D

- Watch Video Solution

202. If a projectile is projected with initial velocity $98 \mathrm{~m} / \mathrm{s}$ in a direction of 30° above the horizontal. For this situation which one of the following is a correct statement?
A. Time of flight is 100 s
B. Time of flight is 10 s
C. Time of flight is 5 s
D. Time of flight is 0.5 s

Answer: B

- Watch Video Solution

203. Neglecting the air resistance, the time of flight of a projectile is determined by :
A. $u_{\text {vertical }}$
B. $u_{\text {horizontal }}$
C. $u=u_{\text {vertical }}^{2}+u_{\text {horizontal }}^{2}$
D. $u=u\left(u_{\text {vertical }}^{2}+u_{\text {horizontal }}^{2}\right)^{1 / 2}$

Answer: A

D Watch Video Solution

204. From the following paramenters, select the odd man out
A. Time of flight
B. Range
C. maximum height attained by a projectile
D. Linear velocity

Answer: D

- Watch Video Solution

205. A aeroplane is flying at a constanct horizontal velocity of $600 \mathrm{~km} / \mathrm{hr}$ at an elevation of 6 km towards a point directly above the target on the earth's surface. At a approprate time, the pilot releases a ball so that it strikes the taraget at the earth. The ball will appear to be falling :
A. on a parabolic path at seen by pilot in the plane
B. vertically alone a straight path as seen by an observer on the ground near the target
C. on a parabolic as seen by an observer on the ground near the target
D. on a zig-zag path as seen by pilot in the plane

Answer: C

(Watch Video Solution

206. The time of flight is the time taken to attain the maximum height .
A. thrice
B. same
C. twice
D. four times

Answer: C

D Watch Video Solution

207. When a bady undergoes an oblique projection, maximum range of it is :
A. $\frac{u^{2}}{g}$
B. $\frac{u}{g}$
C. $\frac{u^{2}}{g^{2}}$
D. $\frac{u^{2}}{2 g}$

Answer: A
208. The angle of projection for a projectile to cover maximum range is :
A. 30°
B. 60°
C. 0°
D. 45°

Answer: D

- Watch Video Solution

209. A particle is projected at such an angle that the horizontal range is three times the greates height attained.

For this situation which one of the following statements is
A. The angle of projection is $25^{\circ} 8^{\prime}$
B. The angle of projection is $54^{\circ} 1^{\prime}$
C. The angle of projection is $53^{\circ} 1^{\prime}$
D. The angle of projection is 32.7°

Answer: C

(D) Watch Video Solution

210. For a projectile, projected at an angle, the resultant velocity is :
A. $\sqrt{u^{2}+g^{2} t^{2}-2 u t g \sin \theta}$
B. $\sqrt{u^{2}+g^{2} t^{2}}$
C. $\sqrt{u^{2}-g^{2} t^{2}}$
D. $\sqrt{u^{2}+g^{2} t^{2}+2 u t g \sin \theta}$

Answer: B

D Watch Video Solution

211. At the top of the trajectory of a projectile the acceleration is :
A. maximum
B. minimum
C. zero
D. acceleration due to gravity

Answer: D
212. Which of the following is correct statement ragarding projectile motion?
A. horizontal velocity of projectile is constant
B. vertical velocity of projectile is constant
C. acceleration is not costant
D. momentum is constant

Answer: A

- Watch Video Solution

213. In the following question statement 1 represent Assertion and statement 2 represents Reason.

Statement 1: In a uniform circular motion the momentum of a particle does not change with time.

Statement 2 : The kinetic energy of the particle remains constnat.

Choose the correct statement of the following statements
A. Statement 1 is true and statement 2 is true and it explains statement 1.
B. Statement 1 is true and statement 2 is true and it does not explain statement 1.
C. Statement 1 is true and statement 2 is false.
D. Statement 1 is false and statement 2 is true.

Answer: D

214. When a projectile is projected in oblique motion expressions for time of flight and range of the projectile are given.

Which of the following pair is correct ?
A. $t_{f}=\frac{u \sin \theta}{2 g}: R=\frac{u^{2} \sin 2 \theta}{2 g}$
B. $t_{f}=\frac{2 u \sin \theta}{g}: R=\frac{u^{2} \sin 2 \theta}{g}$
C. $t_{f}=\frac{2 u \cos \theta}{g}: R=\frac{u^{2} \cos 2 \theta}{g}$
D. $t_{f}=\frac{2 u \sin \theta}{g}: R=\frac{u^{2} \sin 2 \theta}{2 g}$

Answer: B

D Watch Video Solution

215. The expression for horizontal range when a body is projected at an angle with the horizontal is $\mathrm{R}=$
A. $\frac{u \sin \theta}{g}$
B. $\frac{u^{2} \sin \theta}{g}$
C. $\frac{u^{2} \sin \theta}{g}$
D. $\frac{u^{2} \sin \theta}{2 g}$

Answer: B

- Watch Video Solution

216. Which one of the following statement is correct ?
the equation $\mathrm{y}=\frac{8}{2 u^{2}} x^{2}$ represents :
A. the path of a freely falling body
B. the path of a thrown bodies
C. the path of a projectile
D. hyperbola

Answer: C

D Watch Video Solution

217. Select the odd man out from the following :
A. Angular acceleration
B. Linear displacement
C. Angular velocity
D. Angular displacement

- Watch Video Solution

218. During a projectile motion if the maximum height equals the horizontal range,then the angle of projection with the horizontal is :
A. $\tan ^{-1}(1)$
B. $\tan ^{-1}(2)$
C. $\tan ^{-1}(3)$
D. $\tan ^{-1}(4)$

Answer: D

219. A ball is thrown upwards at a certain angle with the horizontal and it returns to the ground describing a parabolic path. Which of the following remains constant ?
A. Momentum of the ball
B. Kinetic energy of the ball
C. vertical component of the velocity
D. Horizontal component of the velocity

Answer: D

(D) Watch Video Solution

220. The expression for maximum height attained when the body is projected at an angle with the horizontal is :
A. $\frac{u \sin \theta}{2 g}$
B. $\frac{u \sin ^{2} \theta}{2 g}$
C. $\frac{u^{2} \sin ^{2} \theta}{g}$
D. $\frac{u^{2} \sin ^{2} \theta}{2 g}$

Answer: D

D Watch Video Solution

221. The angula speed of a fly-wheel making 120 revolutions
/minute is :
A. $\pi \mathrm{rad} / \mathrm{sec}$
B. $4 \pi \mathrm{rad} / \mathrm{sec}$
C. $2 \pi \mathrm{rad} / \mathrm{sec}$
D. $4 \pi^{2} \mathrm{rad} / \mathrm{sec}$

Answer: B

D Watch Video Solution

222. What is the ratio of the angular speeds of the minute hand second hand of a clock?
A. $1: 12$
B. 12: 1
C. 1: 60
D. $60: 1$

Answer: D
223. In the following situation which one of the following is a correct statement ?

When a body moves on circular path, the :
A. magnitude of velocity changes and its direction remain
constant
B. magnitude of velocity remains constant and its direction change continuously
C. magnitude of velocity remains constant and direction
remains constant
D. magnitude of velocity and direction change continuously

D Watch Video Solution

224. Dimension of angular velocity is :
A. $M L T^{-1}$
B. $M^{0} L^{0} T-1$
C. $M L T^{-2}$
D. $M^{0} L^{0} T^{-2}$

Answer: B

D Watch Video Solution
225. Choose the correct pair of the following pairs .
A. Angular velocity $\omega=v r$

Angular acceleration $\propto=r a$
B. Angular velocity $\omega=\frac{v}{r}$

Angular acceleration $\alpha=\frac{a}{r}$
C. Angular velocity $\omega=\frac{r}{v}$

Angular acceleration $\alpha=\frac{r}{a}$
D. Angular velocity $\omega=\frac{v^{2}}{r}$

Angular acceleration $\alpha=\frac{a}{r^{2}}$

Answer: B

- Watch Video Solution

226. Radial acceleration is :
A. $v \omega^{2}$
B. $r \omega$
C. $r^{2} \omega$
D. $r \omega^{2}$

Answer: D

(Watch Video Solution

227. A body moving with a constant speed v in a circle of radius r. its angular acceleration is :
A. 0
B. vr
C. $\frac{v}{r}$
D. $\frac{v^{2}}{r}$

Answer: A

(D) Watch Video Solution

228. If ω_{0}, ω are initial and final angular velocities θ is the angular displacement and α is the angular acceleration then, choose the correct statement .
A. omrga $^{2}=\omega_{0}^{2}-2 \alpha \theta$
B. $\omega_{0}^{2}=\omega^{2}-22 \alpha \theta$
C. $\omega_{0}^{2}+\omega^{2}+2 \alpha \theta$
D. $\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$

D Watch Video Solution

229. A particle moving in a circular path of certain radius, with uniform angular velocity ω has an angular acceleration equal to :
A. 0
B. unity
C. infinity
D. insufficient data to calculate

Answer: A

230. In which direction of the motion of the particle does centripetal force act ?
A. parallel
B. radial
C. tangential
D. right angle

Answer: B

D Watch Video Solution

231. A body is moving with a constant speed v in a circle of radius r. its angualr acceleration is:
A. vr
B. $\frac{v}{r}$
C. zero
D. $\frac{v}{r^{2}}$

Answer: C

(D) Watch Video Solution

232. For one complete revolution, the angle swept by the radius vector is :
A. 360°
B. 180°
C. 270°
D. 0°

Answer: A

- Watch Video Solution

233. Match the following :

Column I

1. Centripetal force
2. Relative velocity $\vec{V}_{A B}$
(ii) $u t+\frac{1}{2} a t^{2}$
3. Distance in linear motion s
(iii) $\frac{m r}{v^{2}}$
4. $h_{\text {Mas }}$ of a
(iv) $\nabla_{A}-\nabla_{B}$
(v) $\frac{m v^{2}}{r}$
A. 1 - (iv), 2 - (i), 3 - (iii), 4 - (v)
B. 1 - (i), 2 - (iii), 3 - (ii), 4 - (iv)
C. 1 - (ii), 2 - (v), 3 - (iv), 4 - (i)
D. 1-(v), 2-(iv), 3-(iii), 4-(i)

Answer: D

D Watch Video Solution

234. In non-uniform circular motion, particle will have

And tangential acceleration
A. centripetal
B. centrifugal
C. both (a) and (b)
D. neither (a) nor (b)

Answer: A
235. Select the correct statement of the following
A. 1 radian $=5.729^{\circ}$
B. 1 radian $=57^{\circ} 29{ }^{\prime}$
C. 1 randian $=57.295^{\circ}$
D. 1 randian $=572.9^{\circ}$

Answer: C

(Watch Video Solution

236. A butterfly and stone (mass of later is greater than earlier
) is moving with same velocity. Momentum of the stone is
.Than the momentum of butterfly .
A. equal
B. greater
C. lesser
D. lesser (or) equal to

Answer: B

D Watch Video Solution

Other Important Questions Answers li Very Short Answer
Questions

1. What is Kinematics?

Watch Video Solution
2. How does an object supposed to be at rest and in motion are considered to be relative ?

- Watch Video Solution

3. What is meant by Frame of reference?

- Watch Video Solution

4. What is meant by right-handed Cartesian coordinate
system ?

- Watch Video Solution

5. What is meant by point mass and give suitable example ?

- Watch Video Solution

6. Define linear motion. Give example.

Watch Video Solution
7. Define uniform circular motion . Give some examples.

- Watch Video Solution

8. Define rotational motion. Give example.

- Watch Video Solution

9. Define vibratory motion. Give example

D Watch Video Solution

10. What do you mean by motion in one, two and three dimensions?

- Watch Video Solution

11. What do you mean by motion in one, two and three dimensions?
12. What do you mean by motion in one, two and three dimensions?

D Watch Video Solution

13. State in the following cases, whether the motion is one ,two (or) three dimensional .

A kite flying on a windy day .

(Watch Video Solution

14. State in the following cases, whether the motion is one ,two (or) three dimensional .

A speeding bike on a highway
15. State in the following cases, whether the motion is one ,two (or) three dimensional .

A carom coin rebounding from the side of the board.

D Watch Video Solution

16. State in the following cases, whether the motion is one ,two (or) three dimensional .

A planet revolving around its star .

(Watch Video Solution

17. Define and illustrate the following terms.

Equal vectors.

(D) Watch Video Solution

18. What is meant by Collinear vector ? Explain them .

D Watch Video Solution

19. Define and illustrate the following terms.

Parallel vectors,

- Watch Video Solution

20. Define and illustrate the following terms.

Anti-parallel vectors,
21. Define unit vector .

- Watch Video Solution

22. Define Orthogonal unit vectors.

- Watch Video Solution

23. Does a scalar quantity depend upon the frame of reference chosen .

- Watch Video Solution

24. When the sum to two vectors is maximum?
25. using components methods, add the following vectors
$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
$\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$.

- Watch Video Solution

26. Unsing components method, sbtract the following vectors

$$
\begin{aligned}
& \bar{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \bar{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}
\end{aligned}
$$

(D) Watch Video Solution

27. What do you mean by multiplication of a vector by a real number?

- Watch Video Solution

28. Define position vector.

- Watch Video Solution

29. Calculate the displacement vector it
$\vec{r}_{1}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, \vec{r}_{2}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$

- Watch Video Solution

30. What is Calculus ? What are the types of Calculus ?

D Watch Video Solution

31. Write the relation between summation and integration.

D View Text Solution

32. Define velocity and speed.

- Watch Video Solution

33. What is the nature of velocity - time graph for uniform motion ?
34. Define momentum ? Give its unit .

D Watch Video Solution

35. Explain the physical significance of momentum with example.

(D) Watch Video Solution

36. When does a cyclist appear to be stationaly with respect to another moving cyclist ?
37. Define relative velocity.

(D) Watch Video Solution

38. Can a particle in one dimensional motion have zero speed and a non-zero velocity

- Watch Video Solution

39. Define Average acceleration .

(D) Watch Video Solution

40. Is it possible for a body to be accelerated without speeding up or slowing down?
41. What is free fall of a body?

- Watch Video Solution

42. Define projectile motion .

- Watch Video Solution

43. What is meant by trajectory .

- Watch Video Solution

44. What are the two types of projectile motion?

(D) Watch Video Solution

45. Can we use the equations of kinematics to find the height attained by a body projected upward with any velocity .

- Watch Video Solution

46. Define time of flight.

(Watch Video Solution

47. Define horizontal range.
48. Calculate the maximum horizontal range attained by the particle in the case of oblique projection.

- Watch Video Solution

49. Define a radian.

- Watch Video Solution

50. What is degree ? Express 1 radian in degree.

- Watch Video Solution

51. Define angular acceleration.

- Watch Video Solution

52. What is uniform motion?

- Watch Video Solution

53. What is non uniform circular motion?

- Watch Video Solution

54. Derive the expression for centripetal acceleration.
55. What furnishes the centripetal acceleration for the earth to go round the sun?

D Watch Video Solution

56. What is the angular velocity of the hour hand of a clock ?

- Watch Video Solution

57. What is Kinematics?

(Watch Video Solution

58. show that 'Rest' and 'Motion' are relative term.

- Watch Video Solution

59. What is meant by Frame of reference?

- Watch Video Solution

60. Draw the diangram for Right handed co-ordinate system and explain the same.

- Watch Video Solution

61. What is point mass ?
62. Define linear motion. Give example.

(D) Watch Video Solution

63. With suitable example, explain circular motion.

(D) Watch Video Solution

64. Define rotational motion. Give example.

- Watch Video Solution

65. Define vibratory motion. Give example

- Watch Video Solution

66. What do you mean by motion in one, two and three dimensions?

- Watch Video Solution

67. What do you mean by motion in one, two and three dimensions?

- Watch Video Solution

68. What do you mean by motion in one, two and three dimensions?
69. State in the following cases, whether the motion is one ,two (or) three dimensional .

A kite flying on a windy day .

- Watch Video Solution

70. State in the following cases, whether the motion is one ,two (or) three dimensional .

A speeding bike on a highway

- Watch Video Solution

71. State in the following cases, whether the motion is one ,two (or) three dimensional .

A carom coin rebounding from the side of the board .
72. State in the following cases, whether the motion is one ,two (or) three dimensional .

A planet revolving around its star .

Watch Video Solution

73. Define and illustrate the following terms.

Equal vectors.

- Watch Video Solution

74. What is meant by Collinear vector ? Explain them .
75. Define and illustrate the following terms. Parallel vectors,

(D) Watch Video Solution

76. Define and illustrate the following terms.

Anti-parallel vectors,

- Watch Video Solution

77. Define unit vector .

D Watch Video Solution

78. Define Orthogonal unit vectors.

(Watch Video Solution

79. Does a scalar quantity depend upon the frame of reference chosen .

(D) Watch Video Solution

80. When the sum to two vectors is maximum?
81. using components methods, add the following vectors
$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
$\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$.

D Watch Video Solution

82. Unsing components method, sbtract the following vectors

$$
\begin{aligned}
& \bar{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \bar{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}
\end{aligned}
$$

- Watch Video Solution

83. What do you mean by multiplication of a vector by a real number?

(D) Watch Video Solution

84. Define position vector.

D Watch Video Solution

85. Calculate the displacement vector it
$\vec{r}_{1}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, \vec{r}_{2}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$

(Watch Video Solution

86. What is Calculus ? What are the types of Calculus?
87. Write down the relation between g and G .

- Watch Video Solution

88. Define velocity and speed.

- Watch Video Solution

89. What is the nature of velocity - time graph for uniform motion ?

- Watch Video Solution

90. Define momentum ? Give its unit.
91. Explain the physical significance of momentum with example.

- Watch Video Solution

92. When does a cyclist appear to be stationaly with respect to another moving cyclist?

(D) Watch Video Solution

93. Define relative velocity.
94. Can a particle in one dimensional motion have zero speed and a non-zero velocity

Watch Video Solution

95. Define Average acceleration .

- Watch Video Solution

96. Is it possible for a body to be accelerated without speeding up or slowing down ?

- View Text Solution

97. What is free fall of a body ?

(b) Watch Video Solution

98. Define projectile motion .

- View Text Solution

99. What is meant by trajectory .

D View Text Solution

100. What ar the two types of projectile motion?
101. Can we use the equations of kinematics to find the height attained by a body projected upward with any velocity .

D View Text Solution

102. Define time of flight.

- View Text Solution

103. Define horizontal range.

D View Text Solution
104. Calculate the maximum horizontal range attained by the particle in the case of oblique projection.

D View Text Solution

105. Define unit radian.

- View Text Solution

106. Define degree.

D View Text Solution

107. Define angular acceleration.
108. Define uniform motion.

D View Text Solution

109. What is non uniform circular motion?

- Watch Video Solution

110. What is centripetal acceleration or radial acceleration or normal acceleration?
111. What furnishes the centripetal acceleration for the earth to go round the sun ?

(D) Watch Video Solution

112. What is the angular velocity of the hour hand of a clock?

- Watch Video Solution

Other Important Questions Answers lii Short Answer Questions

1. Write note on function with example.
2. Distinguish between average velocity and average speed .

(D) Watch Video Solution

3. A man moving in rain holds his umbrella inclined to the vertical even though the rain drops are falling vertically downwards. Why?

- Watch Video Solution

4. Distinguish between uniformly accelerated and nonuniformly accelerated motion.

D Watch Video Solution

5. What are the assumptions made in the projectile motion ?

- Watch Video Solution

6. Deduce the relation between angualr acceleration and linear acceleration.

(D) Watch Video Solution

7. Distinguish between kinetic equation for linear and angular motion .

- Watch Video Solution

8. Can the direction of velocity of an object change, when acceleration is constant ?

D Watch Video Solution

9. Is it possible that the brakes of a car are so parfect that car stops instantaneously. If not give reason.

(D) Watch Video Solution

10. A ball is thrown in a parabolic path. Is there any point at which the acceleration is perpendicular to the velocity .

(Watch Video Solution

11. Why does the direction of motion of a projectile become horizontal at the hightest point of its trajectory ?

- Watch Video Solution

12. During the motion of a projectile, the speed of the projectile is minimum at the top of its path. Is this statement true ? Give reason .

- Watch Video Solution

13. A ball is thrown straight up. What is its velocity and acceleration at the top ?
14. Write note on function with example.

(D) Watch Video Solution

15. Distinguish between average velocity and average speed.

D Watch Video Solution

16. What is a coplanar vector? Give an example.

D Watch Video Solution

17. Distinguish between uniformly accelerated and nonuniformly accelerated motion.
18. What do you mean by rectilinear motion ? Give examples.

- Watch Video Solution

19. What do you mean by relative motion ? Give an example.

- Watch Video Solution

20. Distinguish between kinetic equation for linear and angular motion.

- Watch Video Solution

21. Can the direction of velocity of an object change, when acceleration is constant ?

(D) Watch Video Solution

22. Is it possible that the brakes of a car are so parfect that car stops instantaneously. If not give reason.

- Watch Video Solution

23. A ball is thrown in a parabolic path. Is there any point at which the acceleration is perpendicular to the velocity .

- Watch Video Solution

24. Why does the direction of motion of a projectile become horizontal at the hightest point of its trajectory?

- Watch Video Solution

25. What do you mean by translatory motion ? Give an example.

- Watch Video Solution

26. The coordinates of a particle moving in a plane are given by $\mathrm{x}(\mathrm{t})=\mathrm{acos}(\mathrm{pt})$ and $\mathrm{y}(\mathrm{t})=\mathrm{b} \sin (\mathrm{pt})$ where $\mathrm{a}, \mathrm{b}(<\mathrm{a})$ and p are positive constants of appropriate dimensions.Then
A. the path of the particle is an ellipse
B. The velocity and acceleration of the particle are normal
to each other at $t=\frac{\pi}{2 p}$
C. The acceleration of the particle is always directed towards a focus
D. The distance travelled by the particle in a time interval t

$$
=0 \text { to } t=\frac{\pi}{2 p}
$$

Answer: (A,B,C)

(D) Watch Video Solution

Other Important Questions Answers Iv Long Answer Questions

1. Define and illustrate the following terms.

Equal vectors.
2. Define and illustrate the following terms.

Parallel vectors,

D Watch Video Solution

3. Define and illustrate the following terms.

Anti-parallel vectors,

- Watch Video Solution

4. Define unit vector .
5. Two bodies A and B are moving with velocities \vec{V}_{A} and \vec{V}_{B} making an ' θ ' with each other. Determine the relative velocity of A with respect to B. What will be the relative velocity .

When two bodies are moving in the same direction.

D Watch Video Solution

6. Two bodies A and B are moving with velocities \vec{V}_{A} and \vec{V}_{B} making an ' θ ' with each other. Determine the relative velocity of A with respect to B. What will be the relative velocity .

When two bodies are moving in the apposite direction.
7. Two bodies A and B are moving with velocities \vec{V}_{A} and \vec{V}_{B} making an ' θ ' with each other. Determine the relative velocity of A with respect to B. What will be the relative velocity .

When two bodies are moving at right angle to each other .

- Watch Video Solution

8. What is meant by subtraction of vectors?

- Watch Video Solution

9. Explain the resolution of vectors in three dimensional coordinates .
10. Explain how a vector can be resolved into its rectangular components components in two dimension.

- Watch Video Solution

11. Write note on integration.

- Watch Video Solution

12. A projectile is fired horizontally with a velocity u. obtain the expression for resultant velocity of the projectile at any instant.
13. A projectile is fired horizontally with a velocity u. Show that its trajectory is a parabola. Also obtain the expression for Time of flight .

- Watch Video Solution

14. A projectile is fired horizontally with a velocity u. Show that its trajectory is a parabola. Also obtain the expression for Horizontal range .

- Watch Video Solution

15. A projectile is fired horizontally with a velocityu . Obtain the expression for speed of theparticle when it hits the

- Watch Video Solution

16. A projectile is fired horizontally with a velocity u making an angle θ. Derive the expression for time of the flight .

(D) Watch Video Solution

17. The relation between linear velocity and angular velocity of a body moving in a circle is
18. Define and illustrate the following terms.

Equal vectors.

(D) Watch Video Solution

19. Define and illustrate the following terms.

Parallel vectors,

- Watch Video Solution

20. Define and illustrate the following terms.

Anti-parallel vectors,
21. Define unit vector .

D Watch Video Solution

22. What do you mean by uniform velocity and variable velocity?

- Watch Video Solution

23. Illustrate the velocity-time graph under different conditions.

- Watch Video Solution

24. Illustrate the acceleration-time graph under different conditions.

D Watch Video Solution

25. What do you mean by null vector ? Give it's examples.

- Watch Video Solution

26. Explain the resolution of vectors in three dimensional coordinates.
27. The stream of a river is flowing with a speed of $2 \mathrm{~km} / \mathrm{hr}$. A swimmer can swim at speed of $4 \mathrm{~km} / \mathrm{hr}$. What should be the direction of the swimmer with respect to the flow of the river to cross the river straight ?
A. 90°
B. 150°
C. 120°
D. 60°

Answer: C

- Watch Video Solution

28. A particle is moving with a velocity, $\vec{v}=K(y \hat{i}+x \hat{j})$, where K is a constant. The general equation for the path is:
A. $\mathrm{y}=x^{2}+\mathrm{constant}$
B. $y=x+$ constant
C. $y^{2}=x^{2}+$ constant
D. $x y=$ constant

Answer: C

(D) Watch Video Solution

29. A projectile is fired horizontally with a velocity u. obtain the expression for resultant velocity of the projectile at any instant.

(Watch Video Solution

30. A projectile is fired horizontally with a velocity u making an angle θ. Derive the expression for time of the flight .

- Watch Video Solution

31. A projectile is fired horizontally with a velocity u making an angle θ. Derive the expression for time of the flight .

(D) Watch Video Solution

32. A projectile is fired horizontally with a velocityu . Obtain the expression for speed of theparticle when it hits the ground.

- Watch Video Solution

33. A projectile is fired horizontally with a velocity u making an angle θ. Derive the expression for time of the flight .

- Watch Video Solution

34. The relation between linear velocity and angular velocity of a body moving in a circle is

- Watch Video Solution

Other Important Questions Answers V Numerical Problems

1. A crow is sitting on a branch of tree whose co-ordinates are $(1,2,3)$. A hunter is standing on the ground. Represent the position of the crow with respect to the hunter .

- Watch Video Solution

2. A boy is running on a circular track of radius 50 m . Calculate the displacement of the boy after completing 5 rounds of the track.

D Watch Video Solution

3. An animal is moving on circular path of radius 80 m .

Culculate the distance coered by the animal in one revolution

- Watch Video Solution

4. A bus 150 m long is moving with a speedof $90 \mathrm{~km} / \mathrm{h}$. In what time shall it cross 850 m long bridge ?

- Watch Video Solution

5. A girl travels along a straight road due east for the first half distance with speed v_{1} and the second half distance with speed v_{2}. What is the average speed of the girl?

(D) Watch Video Solution

6. Find the distance travelled by the particle during the time t
$=0$ to $t=3$ second from the figure.

- Watch Video Solution

7. If the speed of a particle is $v=10 t^{2} m / s$ then find out distance covered from $t=2 s$ to $t=5 s$.

- Watch Video Solution

8. The driver of a car travelling at 72 kmph observes the light 300 m ahead of him turning red. The traffic light is timed to
remain red for 20 s before it turns green. If the motorist wisher to pass the light without stopping to wait for it t turn green, determine.

The required uniform acceleration of the car

- Watch Video Solution

9. The driver of a car travelling at 72 kmph observes the light 300 m ahead of him turning red. The traffic light is timed to remain red for 20 s before it turns green. If the motorist wisher to pass the light without stopping to wait for it t turn green, determine .

The speed with which the motorist crosses the traffic light .

D Watch Video Solution

10. A car starting from rest covers a distance of 100 m in 5
second. Assuming his acceleration is uniform.
Calculate its velocity at the end of 5 sec .

- Watch Video Solution

11. A car starting from rest covers a distance of 100 m in 5
second. Assuming his acceleration is uniform.
How much distance would he cover in the last second ?

(D) Watch Video Solution

12. A body falling freely descends 0.3 m in 0.1 s and 0.398 m in the next 0.1 s in some other planet. Calculate the value of g in that planet?

- Watch Video Solution

13. A man walks on a straight road from his home to a market 2.5 km away with speed of $5 \frac{\mathrm{~km}}{\mathrm{hr}}$. Finding the market closed, he instantly turns and walks back home with a speed of 7.5 $\frac{k m}{h r}$. The average speed of the man over the interval of time 0 to 40 min is equal to

- Watch Video Solution

14. An woman walks on a straight road from her home to a market 2.5 km away with a speed of $5 \mathrm{~km} / \mathrm{h}$. Finding the market closed .he instantly turns and walks back with a speed of $7.5 \mathrm{~km} / \mathrm{hr}$. What is the
(a) magnitude of an average velocity,
(b) average speed of the man,over the interval of time . 0 to 50 min and

D View Text Solution

15. A man walks on a straight road from his home to a market 2.5 km away with speed of $5 \frac{\mathrm{~km}}{\mathrm{hr}}$. Finding the market closed, he instantly turns and walks back home with a speed of 7.5 $\frac{k m}{h r}$. The average speed of the man over the interval of time 0 to 40 min is equal to

- Watch Video Solution

16. A van is moving along x-axis. As shown in the figure, it moves from O to P in $18 s$ and returns from P to Q in $6 s$. What are the average velocity and average speed of the van in
going from.
From O to P and back to Q ?

- Watch Video Solution

17. A van is moving along x-axis. As shown in the figure, it moves from O to P in 18 s and returns from P to Q in 6 s . What are the average velocity and average speed of the van in going from .

From O to P and back to Q ?

18. The velocity of a particle is given by the equation,
$v=2 t^{2}+5 c m s^{-1}$. Find
the change in velocity of the particle during the time interval between $t_{1}=2 s$ and $t_{2}=4 s$.

(D) Watch Video Solution

19. The velocity of a particle is given by the equation, $v=2 t^{2}+5 c m s^{-1}$. Find
the average acceleration during the time interval between $t_{1}=2 s$ and $t_{2}=4 s$.
20. The velocity of a particle is given by the equation, $v=2 t^{2}+5 c m s^{-1}$. Find the instantaneous acceleration at $t_{2}=4 s$

- Watch Video Solution

21. A boy takes 2 second to reach the maximum speed of 18 km / h from rest. What is the magnitude of his average acceleration ?

- Watch Video Solution

22. The speed of a car as a function of time as shown figure.

Find the acceleration and distance travelled by the car in 8
seconds .

- Watch Video Solution

23. A ball is thrown upward with an initial velocity of $100 \mathrm{~ms}^{-1}$. After how much time will it return ? Draw velocity time graph for the ball and find the maximum height attained
by the ball.
[Assume, $g=-10 m s^{-2}$]

(D) Watch Video Solution

24. A ball is thrown upward with an initial velocity of $100 \mathrm{~ms}^{-1}$. After how much time will it return ? Draw velocity time graph for the ball and find the maximum height attained by the ball.
[Assume, $g=-10 m s^{-2}$]

- Watch Video Solution

25. The velocity -time graph for a vehicle is shown in the figure
. Draw acceleration-time graph from it

D Watch Video Solution

26. A bullet going with speed $350 \mathrm{~m} / \mathrm{s}$ enters in a concrete wall and penetrates a distance of 5 cm before coming to rest.

Find the deceleration ?

- Watch Video Solution

27. On a foggy day two drivers spot each other when they are just 80 mts apart. They are travelling at 72 $k m h^{-1}$ and $60 k m h^{-1}$, respectively. Both of them applied brakes retarding their cars at the rate of $5 m s^{-2}$. Determine whether they avert collision or not .

(D) Watch Video Solution

28. Given $\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+3 \hat{k}$ Determine
$\vec{a}+\vec{b}$

- Watch Video Solution

29. Given $\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+3 \hat{k}$ Determine $\vec{a}-\vec{b}$

- Watch Video Solution

30. A force is inclined at 60° to the horizontal. If the horizontal component of force is 40 N . Calculate the vertical component .

D Watch Video Solution

31. Two equal forces are acting at a point with an angle of 60° between them. If the resultant force is equal to $20 \sqrt{3} \mathrm{~N}$, find the magnitude of each force .

(D) Watch Video Solution

32. Given $\vec{B}=2 \hat{i}+2 \hat{j}$. Find out magnitude and direction of \vec{B}

D Watch Video Solution

33. Show that the resultant of two vectors \vec{A} and \vec{B} always lies between $A+B$ and

A-B

- Watch Video Solution

34. If the resultant of two equal forces is $\sqrt{3}$ times a single . force, find the angle between the forces .
35. Find out unit vector of vector $\vec{A}=3 \hat{i}-2 \hat{j}+4 \hat{k}$

(Watch Video Solution

36. If $\vec{A}=4 \hat{i}-3 \hat{j}$ and $\vec{B}=6 \hat{i}+8 \hat{j}$ then obtain the scalar magnitude and directions from x-axis of
$\vec{A}, \vec{B}, \vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$.

(D) Watch Video Solution

37. Two vectors $\vec{A}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{B}=\hat{i}+3 \hat{j}+6 \hat{k}$ find.
their dot products,
38. Two vectors $\vec{A}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{B}=\hat{i}+3 \hat{j}+6 \hat{k}$ find. angle between them .

- Watch Video Solution

39. Under what condition the sum and difference of two vectors will be equal in magnitude ?

- Watch Video Solution

40. There are two displacement vectors, one of magnitude 3 m and other of 4 m . How should the two vecotrs be added so that the resultant vector be

- Watch Video Solution

41. There are two displacement vectors, one of magnitude 3m and other of 4 m . How should the two vecotrs be added so that the resultant vector be 1 m and

- Watch Video Solution

42. There are two displacement vectors, one of magnitude 3 m and other of 4 m . How should the two vecotrs be added so that the resultant vector be 5 m .
43. Two forces equal to P and $2 P$ newton act on a particle. If the first be doubled and the second be increased by 20 newton, the direction of the resultant is unaltered. Find the value of P.

(Watch Video Solution

44. A bomb is dropped from a helicopter flying horizontal with a velocity of $720 \mathrm{~km} / \mathrm{h}$ at an altitude of 980 m . After what time, the bomb will hit the ground ?

(Watch Video Solution

45. A bomb is dropped from an aeroplane when it is directly above a target at an height of 1000 m . The aeroplane is
moving horizontally with a speed of $500 \mathrm{kmh}^{-1}$. By how much distance will the bomb miss the target ?

- Watch Video Solution

46. Represent the following vectors graphically :
$\vec{A}=3 \hat{i}+4 \hat{j}, \vec{B}=2 \hat{i}-3 \hat{j}: \vec{C}=-5 \hat{i}-4 \hat{j}: \vec{D}=-4 \hat{i}+3 \hat{j}$

- Watch Video Solution

47. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, then find a vector having the same magnitudes as \vec{B} and parallel to \vec{A}.

- Watch Video Solution

48.

$\vec{A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{B}=2 \hat{i}-\hat{j}$ are perpendicular to each other .

- Watch Video Solution

49. Find a vector whose length is 7 and that is perpendicular to each of the vectors
$\vec{A}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{B}=\hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

50. Find the resultant force of the following forces which act upon a particle . (a) 30 N due east, (b) 20 N due north, (c) 50

N due west, (d) 40 N due south .

- Watch Video Solution

51. A bus travels 6 km towards north at an angle of 45° to the east and then travels 4 km towards north at an angle of 135° to the east. How for is its final position, due east and due north ? How far is the point from the starting point ? What
angle does the straight line joining its initial and final position makes with the east ?

- Watch Video Solution

52. When the angle of elevation of a gun are 60° and 30° respectively. The heights it shoots are h_{2} and h_{2} respectively . Find the ration h_{2} / h_{2}.

- Watch Video Solution

53. A projectile has a range of 50 m and reaches a maximum height of 10 m . Calculate the angle at which the projectile is fired.
54. Prove that for a given velocity of projection, the horizontal range is same for two angles of projection α and $\left(90^{\circ}-\alpha\right)$.

D Watch Video Solution

55. A projectile is thrown with a speed of $98 m s^{-1}$ in a direction 30° above the horizontal. Find the time of flight, range and height to which it rises .

(Watch Video Solution

56. The pilot of an aeroplane flying horizontally at a height of 2000 m with a constant speed of 540 kmph wishes to hit a target on the ground. At what distance from the target should release the bomb to hit the target ?

- Watch Video Solution

57. A body is projected upwards with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal. Determine. the time of flight

D Watch Video Solution

58. A body is projected upwards with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal. Determine. the range of the body and

- Watch Video Solution

59. A body is projected upwards with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal. Determine. the maximu height attained by the dody .

- Watch Video Solution

60. On a certain day, rain was falling vertically with a speed of $35 m s^{-1}$. A wind started blowing after sometime with a speed of $12 \mathrm{~ms}^{-1}$ in east to west direction. In which direction should boy waiting at a bus stop hold his umbrella ?

- Watch Video Solution

61. Which is greater the angular velocity of hour hand of a watch or angular velocity of earth around its own axis ?

Calculate their ratio?

D Watch Video Solution

62. A body of mass 10 mg revolves in a circle of diameter 0.40 m . making 100 revolutions per minute. Calculate its linear velocity and centripetal acceleration.

(D) Watch Video Solution

63. A particle moves in a circle of radius 4.0 cm clockwise at constant speed of $2 \mathrm{cms} s^{-1}$, If \widehat{x} and \hat{y} are unit acceleration vectors along x-axis and y-axis respectively (in cms^{-2}), find the acceleration of the particle at the instant half way between P and Q .
64. Calculate the angular velocity in rad/sec. of a fly wheel making 300 rpm .

- Watch Video Solution

65. Calculate linear velocity of a body which moves in a circular path of radius 10 m with an angular velocity 2π radians/sec.

- Watch Video Solution

66. A fly wheel of an engine starting from rest attainsan an angular velocity of $100 \mathrm{rads}^{-1}$ in 10 s . Calculate
angular acceleration

- Watch Video Solution

67. A fly wheel of an engine starting from rest attainsan an angular velocity of $100 \mathrm{rads}^{-1}$ in 10 s . Calculate angular displacement in 10 s

- Watch Video Solution

68. A ball whose Kinetic Energy is E is projected at an angle of
45° to the horizontal. The kinetic energy of the ball at the highest point of its flight will be
69. A body moves along a circle of radius $\frac{20}{\pi} \mathrm{~m}$ with constant tangential acceleration. If the velocity of the body is $80 \mathrm{~m} / \mathrm{s}$ at the end of the second revolution after motion has begun . Then calculate the tangential acceleration .

D Watch Video Solution

70. Is pressure a vector? Give reason .

(D) Watch Video Solution

71. Can we add a velocity vector to a displacement vector ?

D Watch Video Solution

72. What is the maximum number of components into which a vector can be resolved?

- Watch Video Solution

73. Can a body have zero velocity and still be accelerating ?

- Watch Video Solution

74. Can an object have an eastward velocity while experiencing a westward acceleration?

- Watch Video Solution

75. Is the direction of acceleration same as the direction of velocity?

D Watch Video Solution

76. Can the relative velocities of two bodies be greater than the absolute velocity of either body?

- Watch Video Solution

77. When an observer is standing on earth, the trees and houses appear stationary to him. However, when he is sitting in a moving train, all these objects appear to move in backward direction. Why?
78. Can the position-time graph have a negative slope?

D Watch Video Solution

79. What is the nature of the displacement-time graph of a body moving with constant velocity?

- Watch Video Solution

80. Is it possible that your cycle has a northward velocity but southward acceleration ? If yes, how ?
81. Is the time variation of position, shown in the adjacent figure observed in nature ?

(Watch Video Solution

82. Why does a tennis ball bounce higher on hills than in plains ?

D Watch Video Solution

83. The magnitude and direction of the acceleration of a body are constant. Will the path of the body necessarily be a straight line?
84. A crow is sitting on a branch of tree whose co-ordinates are $(1,2,3)$. A hunter is standing on the ground . Represent the position of the crow with respect to the hunter .

(D) Watch Video Solution

85. A boy is running on a circular track of radius 50 m .

Calculate the displacement of the boy after completing 5 rounds of the track.

(D) Watch Video Solution

86. An animal is moving on circular path of radius 100 m . Culculate the distance coered by the animal in one revolution
87. A bus 150 m long is moving with a speedof $90 \mathrm{~km} / \mathrm{h}$. In what time shall it cross 850 m long bridge ?

- Watch Video Solution

88. A girl travels along a straight road due east for the first half distance with speed v_{1} and the second half distance with speed v_{2}. What is the average speed of the girl?

(Watch Video Solution

89. Find the distance travelled by the particle during the time
$t=0$ to $t=3$ second from the figure.

- Watch Video Solution

90. If the speed of a particle is $v=10 t^{2} m / s$ then find out distance covered from $t=2 s$ to $t=5 s$.

- Watch Video Solution

91. The driver of a car travelling at 72 kmph observes the light 300 m ahead of him turning red. The traffic light is timed to
remain red for 20 s before it turns green. If the motorist wisher to pass the light without stopping to wait for it t turn green, determine.

The required uniform acceleration of the car

- Watch Video Solution

92. The driver of a car travelling at 72 kmph observes the light 300 m ahead of him turning red. The traffic light is timed to remain red for 20 s before it turns green. If the motorist wisher to pass the light without stopping to wait for it t turn green, determine .

The speed with which the motorist crosses the traffic light .

D View Text Solution

93. A car starting from rest covers a distance of 100 m in 5
second. Assuming his acceleration is uniform.

Calculate its velocity at the end of 5 sec .

- Watch Video Solution

94. A car starting from rest covers a distance of 100 m in 5
second. Assuming his acceleration is uniform.

How much distance would he cover in the last second ?

(D) Watch Video Solution

95. A body falling freely descends 0.3 m in 0.1 s and 0.398 m in the next 0.1 s in some other planet. Calculate the value of g in that planet?

- Watch Video Solution

96. An woman walks on a straight road from her home to a market 2.5 km away with a speed of $5 \mathrm{~km} / \mathrm{h}$. Finding the market closed .he instantly turns and walks back with a speed of $7.5 \mathrm{~km} / \mathrm{hr}$. What is the
(a) magnitude of an average velocity,
(b) average speed of the man,over the interval of time .

0 to 30 min ,

- View Text Solution

97. A man walks on a straight road from his home to a market
2.5 km away with speed of $5 \frac{\mathrm{~km}}{\mathrm{hr}}$. Finding the market closed, he instantly turns and walks back home with a speed of 7.5
km
$\frac{k m}{h r}$. The average speed of the man over the interval of time 0 to 40 min is equal to
A. $5 \frac{k m}{h r}$
B. $\frac{25}{4} \frac{\mathrm{~km}}{\mathrm{hr}}$
C. $\frac{30}{4} \frac{\mathrm{~km}}{\mathrm{hr}}$
D. $\frac{45}{8} \frac{k m}{h r}$

Answer: D

(D) Watch Video Solution

98. What is meant by magnitude of Average velocity ?
99. A car is moving along a straight line (OP). It moves from $\mathrm{O} \rightarrow \mathrm{P}$ in 18 seconds amd retuns from $\mathrm{P} \rightarrow \mathrm{Q}$ in 6 seconds, where $O P=360 \mathrm{~m}$ and $\mathrm{OQ}=240 \mathrm{~m}$. What is the average velocity and average speed of the car going (a) from $O \rightarrow P$ and back to Q ?

- Watch Video Solution

100. A van is moving along x-axis. As shown in the figure, it moves from O to P in 18 s and returns from P to Q in 6 s . What are the average velocity and average speed of the van in going from .

From O to P and back to Q ?

101. The velocity of a particle is given by the equation,
$v=2 t^{2}+5 c m s^{-1}$. Find
the change in velocity of the particle during the time interval between $t_{1}=2 \mathrm{~s}$ and $t_{2}=4 \mathrm{~s}$.

- Watch Video Solution

102. The velocity of a particle is given by the equation, $v=2 t^{2}+5 c m s^{-1}$. Find
the average acceleration during the time interval between $t_{1}=2 s$ and $t_{2}=4 s$.
103. The velocity of a particle is given by the equation, $v=2 t^{2}+5 \mathrm{cms}^{-1}$. Find the instantaneous acceleration at $t_{2}=4 s$

- Watch Video Solution

104. A boy takes 2 second to reach the maximum speed of 18 km / h from rest. What is the magnitude of his average acceleration ?

D Watch Video Solution

105. The speed of a car as a function of time as shown figure.

Find the acceleration and distance travelled by the car in 8
seconds .

- Watch Video Solution

106. A ball is thrown upward with an initial velocity of $100 \mathrm{~ms}^{-1}$. After how much time will it return ? Draw velocity time graph for the ball and find the maximum height attained
by the ball.
[Assume, $g=-10 m s^{-2}$]

- Watch Video Solution

107. A ball is thrown upward with an initial velocity of $100 \mathrm{~ms}^{-1}$. After how much time will it return ? Draw velocity time graph for the ball and find the maximum height attained by the ball.
[Assume, $g=-10 m s^{-2}$]

(Watch Video Solution

108. The velocity -time graph for a vehicle is shown in the figure. Draw acceleration-time graph from it

- Watch Video Solution

109. A bullet going with speed $350 \mathrm{~m} / \mathrm{s}$ enters in a concrete wall and penetrates a distance of 5 cm before coming to rest .

Find the deceleration ?

- Watch Video Solution

110. On a foggy day two drivers spot each other when they are just 80 mts apart. They are travelling at 72 $k m h^{-1}$ and $60 k m h^{-1}$, respectively. Both of them applied brakes retarding their cars at the rate of $5 m s^{-2}$. Determine whether they avert collision or not .

(D) Watch Video Solution

111. Given $\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+3 \hat{k}$

Determine
$\vec{a}+\vec{b}$
112. Given

$$
\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k} \text { and } \vec{b}=\hat{i}+\hat{j}+3 \hat{k}
$$

Determine
$\vec{a}-\vec{b}$

- Watch Video Solution

113. A force is inclined at 60° to the horizontal. If the horizontal component of force is 40 N . Calculate the vertical component .

- Watch Video Solution

114. Two equal forces are acting at a point with an angle of 60° between them. If the resultant force is equal to $20 \sqrt{3} \mathrm{~N}$, find the magnitude of each force.

- Watch Video Solution

115. Given $\vec{B}=2 \hat{i}+2 \hat{j}$. Find out magnitude and direction of \vec{B}

- Watch Video Solution

116. Show that the resultant of two vectors \vec{A} and \vec{B} always lies between $A+B$ and

A-B

- Watch Video Solution

117. If the resultant of two equal forces is $\sqrt{3}$ times a single .
force, find the angle between the forces .

- Watch Video Solution

118. Find out unit vector of vector $\vec{A}=3 \hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

119. If $\vec{A}=4 \hat{i}-3 \hat{j}$ then obtain the scalar magnitude and direction of \vec{A}

- Watch Video Solution

120. Two vectors $\vec{A}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{B}=\hat{i}+3 \hat{j}+6 \hat{k}$ find.
their dot products,
121. Two vectors $\vec{A}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{B}=\hat{i}+3 \hat{j}+6 \hat{k}$ find.
angle between them .

- Watch Video Solution

122. Under what condition the sum and difference of two vectors will be equal in magnitude ?

- View Text Solution

123. There are two displacement vectors, one of magnitude $3 m$ and other of $4 m$. How should the two vecotrs be added so
that the resultant vector be 7 m,

- View Text Solution

124. There are two displacement vectors, one of magnitude 3 m and other of 4 m . How should the two vecotrs be added so that the resultant vector be 1 m and

- View Text Solution

125. There are two displacement vectors, one of magnitude 3 m and other of 4 m . How should the two vecotrs be added so that the resultant vector be 5 m .

- View Text Solution

126. Two forces equal to P and $2 P$ newton act on a particle . If the first be doubled and the second be increased by 20 newton, the direction of the resultant is unaltered. Find the value of P.

- View Text Solution

127. A bomb is dropped from a helicopter flying horizontal with a velocity of $720 \mathrm{~km} / \mathrm{h}$ at an altitude of 980 m . After what time, the bomb will hit the ground?
128. A bomb is dropped from an aeroplane when it is directly above a target at an height of 1000 m . The aeroplane is moving horizontally with a speed of $500 \mathrm{kmh}^{-1}$. By how much distance will the bomb miss the target ?

- View Text Solution

129. Represent the following vectors graphically :
$\vec{A}=3 \hat{i}+4 \hat{j}, \vec{B}=2 \hat{i}-3 \hat{j}: \vec{C}=-5 \hat{i}-4 \hat{j}: \vec{D}=-4 \hat{i}+3 \hat{j}$

(D) Watch Video Solution

130. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, then find a vector having the same magnitudes as \vec{B} and parallel to \vec{A}.
131. Prove that
$\vec{A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{B}=2 \hat{i}-\hat{j}$ are perpendicular to each other .

- Watch Video Solution

132. Find a vector whose length is 7 and that is perpendicular to each of the vectors
$\vec{A}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{B}=\hat{i}+\hat{j}-\hat{k}$

D Watch Video Solution

133. Find the resultant force of the following forces which act upon a particle . (a) 30 N due east, (b) 20 N due north , (c) 50

N due west, (d) 40 N due south .

- Watch Video Solution

134. A bus travels 6 km towards north at an angle of 45° to the east and then travels 4 km towards north at an angle of 135° to the east. How for is its final position, due east and due north ? How far is the point from the starting point ?

What angle does the straight line joining its initial and final position makes with the east ?

D Watch Video Solution

135. When the angle of elevation of a gun are 60° and 30° respectively. The heights it shoots are h_{2} and h_{2} respectively
. Find the ration h_{2} / h_{2}.

D Watch Video Solution

136. A projectile has a range of 50 m and reaches a maximum height of 10 m . Calculate the angle at which the projectile is fired.
137. Prove that for a given velocity of projection, the horizontal range is same for two angles of projection α and $\left(90^{\circ}-\alpha\right)$.

- Watch Video Solution

138. A projectile is thrown with a speed of $98 m s^{-1}$ in a direction 30° above the horizontal. Find the time of flight, range and height to which it rises .

- Watch Video Solution

139. The pilot of an aeroplane flying horizontally at a height of 2000m with a constant speed of 540 kmph wishes to hit a
target on the ground. At what distance from the target should release the bomb to hit the target ?

- Watch Video Solution

140. A body is projected upwards with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal . Determine . the time of flight

- Watch Video Solution

141. A body is projected upwards with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal . Determine .
the range of the body and
142. A body is projected upwards with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal . Determine. the maximu height attained by the dody .

- Watch Video Solution

143. On a certain day, rain was falling vertically with a speed of $35 m s^{-1}$. A wind started blowing after sometime with a speed of $12 \mathrm{~ms}^{-1}$ in east to west direction. In which direction should boy waiting at a bus stop hold his umbrella ?

- Watch Video Solution

144. Which is greater the angular velocity of hour hand of a watch or angular velocity of earth around its own axis ?

Calculate their ratio?

D Watch Video Solution

145. A body of mass 10 mg revolves in a circle of diameter 0.40 m . making 100 revolutions per minute. Calculate its linear velocity and centripetal acceleration.

- Watch Video Solution

146. A particle moves in a circle of radius 4.0 cm clockwise at constant speed of $2 \mathrm{cms} s^{-1}$, If \widehat{x} and \hat{y} are unit acceleration vectors along x -axis and y -axis respectively (in cms^{-2}), find the acceleration of the particle at the instant half way between P and Q .
147. Calculate the angular velocity in rad/sec. of a fly wheel making 300 rpm .

- Watch Video Solution

148. Calculate linear velocity of a body which moves in a circular path of radius 10 m with an angular velocity 2π radians/sec.

D Watch Video Solution

149. A fly wheel of an engine starting from rest attainsan an angular velocity of $100 \mathrm{rads}^{-1}$ in 10 s . Calculate

(D) Watch Video Solution

150. A fly wheel of an engine starting from rest attainsan an angular velocity of $100 \mathrm{rads}^{-1}$ in 10 s . Calculate angular displacement in 10 s

- Watch Video Solution

151. A cricket ball is hit at 45° to the horizontal with a kinetic energy E. Calculate the kinetic energy at the highest point.

- Watch Video Solution

152. A particle moves 2 m east then 4 m north then 5 m west.

The distance is
A. 10 m
B. 11 m
C. -11 m
D. 5 m

Answer: B

- Watch Video Solution

153. Is pressure a vector ? Give reason .
154. Can we add a velocity vector to a displacement vector ?

(Watch Video Solution

155. What is the maximum number of components into which a vector can be resolved?

(D) Watch Video Solution

156. Can a body have zero velocity and still be accelerating ?
157. Can an object have an eastward velocity while experiencing a westward acceleration ?

- Watch Video Solution

158. Is the direction of acceleration same as the direction of velocity?

- Watch Video Solution

159. Can the relative velocities of two bodies be greater than the absolute velocity of either body?

D Watch Video Solution

160. When an observer is standing on earth, the trees and houses appear stationary to him. However , when he is sitting in a moving train, all these objects appear to move in backward direction. Why ?

- Watch Video Solution

161. Can the position-time graph have a negative slope?

- Watch Video Solution

162. What is the nature of the displacement-time graph of a body moving with constant velocity?
163. Is it possible that your cycle has a northward velocity but southward acceleration ? If yes, how ?

- Watch Video Solution

164. Is the time variation of position, shown in the adjacent figure observed in nature ?

- Watch Video Solution

165. Why does a tennis ball bounce higher on hills than in plains ?
166. The magnitude and direction of the acceleration of a body are constant. Will the path of the body necessarily be a straight line?

- Watch Video Solution

