©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PREMIERS PUBLISHERS

MOTION OF SYSTEM OF PARTICLES

AND BODIES

Textbook Questions Answers Multiple Choice

 Questions1. The centre of mass of a system of particles does not depend upon
A. position of particles
B. relative distance between particles
C. masses of particles
D. force acting on particle

Answer: D

D Watch Video Solution

2. A couple produces motion.

A. pure rotation
B. pure translation
C. rotation and translation
D. no motion

Answer: A

D Watch Video Solution
3. A particle is moving with a contant velocity along a line parallel to positive X -axis. The magnitude of its angular momentum with respect of the origin is
A. zero
B. increasing with x
C. decreasing with x
D. remaining constant

Answer: D

4. A rope is wound round a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N .
A. $0.25 \mathrm{rad} s^{-2}$
B. $25 \mathrm{rad} s^{-2}$
C. $5 m s^{-2}$
D. $25 m s^{-2}$

Answer: B

- Watch Video Solution

5. A closed cylindrical container is partially
filled with water. As the container rotates in a
horizontal plane about a perpendicular bisector, its moment of inertia.
A. increases
B. decreases
C. remains constant

D. depends on direction of rotation

Answer: A

D Watch Video Solution

6. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,
A. L
B. L/2
C. 2 L

$$
\text { D. } L / \sqrt{2}
$$

Answer: D

- Watch Video Solution

7. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. the centre point of the circle
B. the point on the circumference of the circle
C. any point inside the circle
D. any point outside the cicle

Answer: A

D Watch Video Solution

8. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along
A. a line perpendicular to the plane of rotation
B. the line making an angle of 45° to the plane of rotation
C. the radius
D. tangent to the path

Answer: A

D Watch Video Solution

9. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}.

They are brought in to contanct face to face coinciding the axis of rotation. The expression for loss of energy during this process is

$$
\begin{aligned}
& \text { A. } \frac{1}{4}\left(\omega_{1}-\omega_{2}\right)^{2} \\
& \text { B. } 1\left(\omega_{1}-\omega_{2}\right)^{2} \\
& \text { C. } \frac{1}{8}\left(\omega_{1}-\omega_{2}\right)^{2}
\end{aligned}
$$

$$
\text { D. } \frac{1}{2}\left(\omega_{1}-\omega_{2}\right)^{2}
$$

Answer: A

D Watch Video Solution

10. From a disc of radius R a mass M, a circular
hole of diameter R, whose rim passes through
the centre is cut. What is the moment of inertia of the remaining part of the disc about a perpendicular axis passing through it

$$
\text { A. } 15 M R^{2} / 32
$$

B. $13 M \frac{R^{2}}{32}$
C. $11 M \frac{R^{2}}{32}$
D. $9 M R^{2} / 32$

Answer: B

- Watch Video Solution

11. The speed of a solid sphere after rolling down from rest without sliding on an inclined plane of vertical height h is
A. $\sqrt{\frac{4}{3} g h}$
B. $\sqrt{\frac{10}{7} g h}$
C. $\sqrt{2 g h}$
D. $\sqrt{\frac{1}{2} g h}$

Answer: B

D Watch Video Solution

12. The speed of the centre of a wheel rolling on a horizontal horizontal surface is v_{0}. A
point on the rim in level with the centre will be moving at a speed of speed of:
A. zero
B. v_{0}
C. $\sqrt{2} v_{0}$
D. $2 v_{0}$

Answer: C
(Watch Video Solution

13. A round object of mass M and radius R rolls

 down without slipping along an inclined plane.The fractional force:
A. dissipates kinetic energy as heat
B. decreases the rotational motion
C. decreases the rotational and
transnational motion
D. converts transnational energy into
rotational energy

Answer: D

D View Text Solution

14. The centre of mass of a system of particles
does not depend upon
A. position of particles
B. relative distance between particles
C. masses of particles
D. force acting on particle

Answer: D

- Watch Video Solution

15. A couple produces motion.
A. pure rotation
B. pure translation
C. rotation and translation
D. no motion
16. A particle is moving with a contant velocity along a line parallel to positive X -axis. The magnitude of its angular momentum with respect of the origin is
A. zero
B. increasing with x
C. decreasing with x
D. remaining constant

Answer: D

D Watch Video Solution

17. A rope is wound round a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N .
A. $0.25 \mathrm{rad} s^{-2}$
B. $25 \mathrm{rad} s^{-2}$
C. $5 m s^{-2}$

D. $25 m s^{-2}$

Answer: B

D Watch Video Solution

18. A closed cylindrical container is partially
filled with water. As the container rotates in a
horizontal plane about a perpendicular bisector, its moment of inertia.
A. increases
B. decreases
C. remains constant
D. depends on direction of rotation

Answer: A

D Watch Video Solution
19. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,
A. L
B. L/2
C. 2 L
D. $L / \sqrt{2}$

Answer: D

D Watch Video Solution
20. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. the centre point of the circle
B. the point on the circumference of the circle
C. any point inside the circle
D. any point outside the cicle

Answer: A

D Watch Video Solution
21. When a mass is rotating in a plane about a
fixed point, its angular momentum is directed along
A. a line perpendicular to the plane of rotation
B. the line making an angle of 45° to the
plane of rotation
C. the radius
D. tangent to the path

Answer: A

- Watch Video Solution

22. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}.

They are brought in to contanct face to face coinciding the axis of rotation. The expression for loss of energy during this process is

> A. $\frac{1}{4}\left(\omega_{1}-\omega_{2}\right)^{2}$
> B. $1\left(\omega_{1}-\omega_{2}\right)^{2}$
> C. $\frac{1}{8}\left(\omega_{1}-\omega_{2}\right)^{2}$
> D. $\frac{1}{2}\left(\omega_{1}-\omega_{2}\right)^{2}$

Answer: A

D Watch Video Solution

23. From a disc of radius R a mass M, a circular hole of diameter R , whose rim passes through
the centre is cut. What is the moment of
inertia of the remaining part of the disc about
a perpendicular axis passing through it
A. $15 M R^{2} / 32$
B. $13 M \frac{R^{2}}{32}$
C. $11 M \frac{R^{2}}{32}$
D. $9 M R^{2} / 32$

Answer: B

- Watch Video Solution

24. The speed of a solid sphere after rolling down from rest without sliding on an inclined plane of vertical height h is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{4}{3} g h} \\
& \text { B. } \sqrt{\frac{10}{7} g h} \\
& \text { C. } \sqrt{2 g h} \\
& \text { D. } \sqrt{\frac{1}{2} g h}
\end{aligned}
$$

Answer: B
25. The speed of the centre of a wheel rolling on a horizontal horizontal surface is v_{0}. A point on the rim in level with the centre will be moving at a speed of speed of:
A. zero
B. v_{0}
C. $\sqrt{2} v_{0}$
D. $2 v_{0}$

Answer: C

26. A drum of radius R and mass M, rolls down without slipping along an inclined plane of angle θ. The frictional force-
A. dissipates kinetic energy as heat
B. decreases the rotational motion
C. decreases the rotational and
transnational motion
D. converts transnational energy into
rotational energy

Answer: D

(D) Watch Video Solution

Textbook Questions Answers Short Answer Questions

1. Define the center of mass of a body.

D Watch Video Solution
2. Find out the center of mass for the given geometrical structures.
(a) Equilateral triangle
(b) Cylinder
(c) Square

D Watch Video Solution
3. Define torque and mention its unit.
4. What are the conditions in which force can not produce torque ?

- Watch Video Solution

5. Give any two examples of torque in day-today life.

- Watch Video Solution

6. What is the relation between torque and angular momentum?

- Watch Video Solution

7. What is equilibrium ? (or) Define mechanical equilibrium of a rigid body.

- Watch Video Solution

8. How do you distinguish between stable and unstable equilibrium?

D Watch Video Solution
9. Define couple.

D Watch Video Solution

10. State the principle of moments.
11. Define centre of gravity.

D Watch Video Solution
12. Mention any two physical significance of moment of inertia.

D Watch Video Solution
13. What is the radius of gyration?

- Watch Video Solution

14. State conservation of angular momentum.

- Watch Video Solution

15. What are the rotational equivalents for the physical quantities (i) mass and (ii) force?

- Watch Video Solution

16. What is the condition for perfect inelastic collision?

D Watch Video Solution
17. What is the difference between sliding and slipping ?

- Watch Video Solution

18. Define the center of mass of a body.

- Watch Video Solution

19. Find out the center of mass for the given geometrical structures.
(a) Equilateral triangle
(b) Cylinder
(c) Square

- Watch Video Solution

20. Define torque and mention its unit.
21. What are the conditions in which force can not produce torque ?

- Watch Video Solution

22. Give any two examples of torque in day-today life.
23. What is the relation between torque and angular momentum?

D Watch Video Solution

24. What is equilibrium ? (or) Define mechanical equilibrium of a rigid body.

- Watch Video Solution

25. How do you distinguish between stable and unstable equilibrium?

- Watch Video Solution

26. Define moment of a couple.

D Watch Video Solution

27. State the principle of moments .

D Watch Video Solution
28. Define centre of gravity.
29. Mention any two physical significance of moment of inertia.

- Watch Video Solution

30. What is the radius of gyration?

- Watch Video Solution

31. State conservation of angular momentum.

D Watch Video Solution

32. What are the rotational equivalents for the physical quantities (i) mass and (ii) force?

- Watch Video Solution

33. What is the condition for pure rolling ?
34. What is the difference between sliding and slipping ?

D Watch Video Solution

Textbook Questions Answers Long Answer Questions

1. Explain the types of equilibrium with
suitable examples

2. Explain the method to find the centre of

 gravity of irregularly shaped lamina.- Watch Video Solution

3. Explain why a cyclist bends while negotiating a curve road?

- Watch Video Solution

4. The moment of inertia of a Thin rod about and axis passing through the centre and perpendicular to the length is \qquad .

- Watch Video Solution

5. Derive the expression for moment of inertia of a uniform ring about an axis passing thorugh the centre and perpendicular to the plane.
6. Derive the expression for moment of inerita of a uniform disc about an axis passing through the centre and perpendicular to the plane.

- Watch Video Solution

7. State conservation of angular momentum.

- Watch Video Solution

8. State and prove parallel axis theorem

D Watch Video Solution

9. State and prove perpendicular axis theorem.

D Watch Video Solution

10. Discuss the effect of rolling on inclined plane and derive the expression for the acceleration.
11. Explain the types of equilibrium with suitable examples

D Watch Video Solution

12. Explain the method to find the centre of gravity of irregularly shaped lamina.

D Watch Video Solution
13. Explain why a cyclist bends while negotiating a curve road?

D Watch Video Solution
14. Derive the expresssion for moment of inertia of a rod about its centre and perpendicular to the rod.

D Watch Video Solution
15. Derive the expression for moment of inertia of a uniform ring about an axis passing thorugh the centre and perpendicular to the plane.

D Watch Video Solution

16. Derive the expression for moment of inerita of a uniform disc about an axis passing through the centre and perpendicular to the plane.
17. State conservation of angular momentum.

- Watch Video Solution

18. State and prove parallel axis theorem
19. State and prove perpendicular axis
theorem.

D Watch Video Solution
20. Discuss the effect of rolling on inclined
plane and derive the expression for the acceleration.

D Watch Video Solution

Textbook
 Questions
 Conceptual

 Questions1. When a tree is cut, the cut is made on the side facing the direction in which the tree is required to fall. Why?

D Watch Video Solution
2. Why does a porter bend forward while carrying a sack of rice on his back ?
3. Why is it much easier to balance a meter scale on your finger tip than balancing on a match stick ?

- Watch Video Solution

4. Two identical water bottles one empty and the other filled with water are allowed to roll down an inclined plane. Which one of them reaches the bottom first ? Explain your answer.
5. Write the relation between angular momentum and rotational kinetic energy. Draw a graph for the same. For two objects of same angular momentum, compare the moment of inertia using the graph.

D View Text Solution

6. A rectangle block rests on a horizontal table.

A horizontal force is applied on the block at a
height h above the table to move the block.
Does the line of action of the normal force N exerted by the table on block depend on h ?

- Watch Video Solution

7. Three identical solid spheres move doen
through three inclined planes A, B and C all
same dimensions. A is without friction B is undergoing pure rolling and C is rolling with
slipping. Compare the kinetic energies E_{A}, E_{B}
and E_{C} at the bottom.
8. Give an example to show that the following statement is false. Any two forces acting on a body can be combined into single force that would have same effect.

- Watch Video Solution

9. When a tree is cut, the cut is made on the side facing the direction in which the tree is required to fall. Why?
10. Why does a porter bend forward while carrying a sack of rice on his back ?

- Watch Video Solution

11. Why is it much easier to balance a meter scale on your finger tip than balancing on a match stick ?

D Watch Video Solution
12. Two identical water bottles one empty and the other filled with water are allowed to roll down an inclined plane. Which one of them reaches the bottom first ? Explain your answer.

- Watch Video Solution

13. Write the relation between angular momentum and rotational kinetic energy. For two objects of same angular momentum,
compare the moment of inertia using the graph.

D Watch Video Solution

14. A rectangle block rests on a horizontal table. A horizontal force is applied on the block at a height h above the table to move the block. Does the line of action of the normal force N exerted by the table on block depend on h ?

D Watch Video Solution

15. Three identical solid spheres move doen through three inclined planes A, B and C all same dimensions. A is without friction B is undergoing pure rolling and C is rolling with slipping. Compare the kinetic energies E_{A}, E_{B} and E_{C} at the bottom.

D Watch Video Solution

16. Give an example to show that the following
statement is false. Any two forces acting on a
body can be combined into single force that would have same effect.

D Watch Video Solution

Textbook Questions Answers Numerical
 Problems

1. A uniform disc of mass 100 g has a diameter
of 10 cm . Calculate the total energy of the disc
when rolling along a horizontal table with a
velocity of $20 \mathrm{~cm} \mathrm{~s} s^{-1}$. (take the surface of table as reference).

D Watch Video Solution

2. A particle of mass 5 units is moving with a uniform speed of $v=3 \sqrt{2}$ units in the XOY plane along the line $y=x+4$. Find the magnitude of angular momentum.
3. A fly wheel rotates with a uniform angular acceleration. If its angular velocity increases form $20 \pi \mathrm{rad} / \mathrm{s}$ to $40 \pi \mathrm{rad} / \mathrm{s}$ in 10 seconds.

Find the number of rotations in that period.

D Watch Video Solution

4. A uniform rod of mass m and lengh I makes
a constant angle θ with an axis of rotation which passes through one end of therod. Find the moment of inertia about this axis.
5. Two particles P and Q of mass 1 kg and 3 kg respectively start moving towards each other form rest under mutual attraction. What is the velocity of their center of mass ?

D Watch Video Solution

6. Find the moment of inertia of a hydrogen
molecule about an axis passing through its
center of mass and perpendicular to the
interatomic axis. Given : mass of hydrogen
atom $1.7 \times 10^{-27} \mathrm{~kg}$ and inter atomic distance is equal to $4 \times 10^{-10} \mathrm{~m}$.

D Watch Video Solution

7. A uniform disc of mass 100 g has a diameter of 10 cm . Calculate the total energy of the disc when rolling along a horizontal table with a velocity of $20 \mathrm{~cm} s^{-1}$. (take the surface of table as reference).
8. A particle of mass 5 units is moving with a uniform speed of $v=3 \sqrt{2}$ units in the XOY plane along the line $y=x+4$. Find the magnitude of angular momentum.

D Watch Video Solution

9. A fly wheel rotates with a uniform angular acceleration. If its angular velocity increases form $20 \pi \mathrm{rad} / \mathrm{s}$ to $40 \pi \mathrm{rad} / \mathrm{s}$ in 10 seconds.

Find the number of rotations in that period.

- Watch Video Solution

10. A uniform rod of mass m and lengh I makes
a constant angle θ with an axis of rotation which passes through one end of therod. Find the moment of inertia about this axis.

- Watch Video Solution

11. Two particles P and Q of mass 1 kg and 3 kg respectively start moving towards each other
form rest under mutual attraction. What is the velocity of their center of mass ?

D Watch Video Solution

12. Find the moment of inertia of a hydrogen molecule about an axis passing through its center of mass and perpendicular to the interatomic axis. Given : mass of hydrogen atom $1.7 \times 10^{-27} \mathrm{~kg}$ and inter atomic distance is equal to $4 \times 10^{-10} \mathrm{~m}$.

Other Important Questions Answer Multiple Choice Questions

1. Centre of mass of the earth-moon system
lies
A. closer to the earth
B. closer to the moon
C. at the mid point of line joining the earth
and the moon
D. cannot be predicted

Answer: C

- Watch Video Solution

2. Three masses 2 kg , 4 kg and 6 kg are placed in
the XY plane with respective coordinates (0,0),
$(0,2)$ and (2,2). The coordinate of their centre of mass is
A. $(1,2)$
B. $(1,1.67)$
C. $(2,1.67)$

D. $(1.67,3)$

Answer: B

D Watch Video Solution

3. The Centre of mass of a solid cone along the

line from the centre of the base to the vertex is at
A. one fourth of the height
B. one -third of the height

C. one-fifth of the height

D. none of these

Answer: A

D Watch Video Solution

4. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. inside the circle

B. outside the circie

C. centre of the circle

D. one the circumference of the circle

Answer: C

D Watch Video Solution

5. The reduced mass of two particles having masses m and $2 m$ is
A. $2 m$
B. 3 m
C. $2 \mathrm{~m} / 3$
D. $m / 2$

Answer: C

- Watch Video Solution

6. A couple produces motion.
A. linear and rotational motion
B. no motion

C. purely linear motion

D. purely rotational motion

Answer: D

D Watch Video Solution

7. A circular disc is to be made by using iron and aluminium so that it acquires maximum moment of inertia about geometrical axis. It is possible with
A. aluminium at interior and iron surround to it
B. iron at interior and aluminium surround
to it
C. using iron and aluminiuml layers in
alternate order
D. sheet of iron is used at both external
surfaces and aluminium sheet as
internal layers.
8. A fly wheel is attached to an engine on order to
A. increase its speed
B. decrease its speed
C. help in overcoming the dead point
D. decrease its energy

Answer: C
9. Which of the following statements is incorrect with reference to angular momentum?

Angular momentum of the particle rotating with a central force is constant due to:
A. constant force
B. constant linear momentum
C. constant torque
D. zero torque

Answer: D

D Watch Video Solution

10. Moment of inertia of a circular wire of mass
M and radius R about is its diameter is
A. $1 / 2 M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $2 M R^{2}$
D. $M R^{2}$

D Watch Video Solution

11. Moment of inertia depends upon. and it does not depend upon...............
A. torque applied and axis of rotation.
B. axis of rotation and point of application of force.

C. angular velocity and point of application

 of force.D. angular momentum and distribution of

mass

Answer: B::D

D Watch Video Solution

12. Two discs of same material have the same
mass. If their thickness are in the ratio $1: 3$,
then their moment of inertia are in the ratio
A. $1: \sqrt{3}$
B. 1:3
C. 3:1
D. 1:9

Answer: C

- Watch Video Solution

13. M.I. of an object does not depend upon
A. mass of object

B. mass distribution

C. angular velocity
D. axis of rotation

Answer: C

- Watch Video Solution

14. If a solid sphere and solid cylinder of same mass and radius rotate about their own axis
the M.I. will be greater for
A. solid sphere
B. solid cylinder
C. both a and b
D. equal both

Answer: B

D Watch Video Solution

15. A rod $P Q$ of mass M and length L is hinged at end P. The rod is kept horizontal by a mass
less than string tied at a point Q as shown in
figure. When string is cut, the initial acceleration rod is:

A. $\frac{3 g}{2 L}$
B. $\frac{g}{L}$
C. $\frac{2 g}{L}$
D. $\frac{2 g}{3 L}$

Answer: A
16. Radius of gyration of a body depends upon:
A. axis of rotation
B. translational motion
C. shape of the body
D. area of the body

Answer: A

17. If the external forces acting on a system
have zero resultant, the centre of mass
A. may move but not accelerate
B. may not move
C. must not move
D. none of these

Answer: A

- Watch Video Solution

18. If a street light of mass M is suspended
from the end of a uniform rod of length L in different possible patterns as shown in figure,
then:

A. pattern A is more sturdy
B. pattern B is more sturdy
C. pattern C is more sturdy

D. all will have same sturdiness

Answer: A

- Watch Video Solution

19. The centre of mass of a system of particles
does not depend upon
A. position of the particles
B. relative distance between the particles
C. masseses of the particles
D. forces acting on the particles

Answer: D

D Watch Video Solution

20. Assertion : If there is no external torque on
a body about its centre of mass, then the velocity of the centre of mass remains constant.

Reason : The linear momentum of an isolated
system remains constant.
A. Assertion and Reason are true and

Reason is a correct explanation for

Assertion.
B. Assertion and Reason are true and

Reason is not a correct explanation for

Assertion.
C. Assertion is true and Reason is false.
D. Assertion is false and Reason is true.

Answer: D

21. A point in the system at which whole mass
of the body is supposed to be concentrated is
called:
A. centre of gravity
B. centre of mass
C. centre of energy
D. centre of buoycancy

Answer: B

D Watch Video Solution
22. The location of the centre of mass of a sphere is at:
A. its top
B. its bottom
C. geometric centre
D. all the above

Answer: C
23. when a child sits stationary at one end of a
long trolley moving uniformly with some speed on a smooth horizontal plane. The speed of the centre of mass of system (child and trolley),
A. increases
B. decreases
C. remains same
D. changes

Answer: C

D Watch Video Solution

24. Centre of mass of the body practically coincides with:
A. its centre of gravity
B. its centre of buoyancy
C. orthocentre
D. metacentre

Answer: A

D Watch Video Solution

25. A fly wheel of moment of inertia
$4 \times 10^{-3} \mathrm{kgm}^{2}$ is makign 10 revolution per
second. The torque required to stop it in 5 second is:
A. $4 \pi \times 10^{-3} N m$
B. $2 \pi \times 10^{-4} \mathrm{Nm}$
C. $8 \pi \times 10^{-4} N M$
D. $16 \pi \times 10^{-3} \mathrm{Nm}$

Answer: D

D Watch Video Solution

26. The mass of a body measures:
A. density
B. centre of mass
C. moment of inertia
D. inertia

Answer: D

D Watch Video Solution

27. Identify the vector quantity among the

following:

A. distance
B. angular momentum
C. heat
D. energy

Answer: B

- Watch Video Solution

28. Angular momentum is Vector.
A. axial
B. polar
C. unit

D. unlike

29. A diver in a swimming pool bends his head before diving. It
A. increases his linear velocity
B. decreases his angular velocity
C. increases his moments of inertia
D. decreases his moment of inertia

Answer: D
30. Which one of the following statement is not correct?
A. Net torque produces turning motion in
rigid object
B. when external torque is acting on a rigid
body, the angular momentum remains
constant.
C. Torque, is equal to rate of change of
angular momentum.
D. Torque is the product of moment of
inertia and angular acceleration of a
body.

Answer: B

D Watch Video Solution

31. When a steady torque is acting on a body, the body:
A. continues in its state of rest or uniform motion along a straight line
B. gets linear acceleration
C. gets angular acceleration
D. rotates at a constant speed

Answer:

32. A circular turn table has a block of ice placed at its centre. The system rotates with an angular speed ω about an axis passing through the centre of the table. If the ice melts on its own without any evaporation, the speed of rotation of the system:
A. becomes zero
B. remains constant at the same value ω
C. increases to a value greater than ω
D. decreases to a value less than ω

Answer: D

D View Text Solution

33. The curve betwee $\log _{e} L$ and $\log _{e} P$ is (L is
the angular momentum and P is the linear momentum):

B.

Answer: B

- View Text Solution

34. A couple produces
motion.
A. pure linear motion
B. pure rotational motion
C. no motion
D. both linear and rotational motion

Answer: B

D Watch Video Solution

35. A wheel is rotating at the rate of 10 revolutions per second about an axis about which the radius of gyration is 0.2 m . If the
mass of the wheel is 5 kg then its rotational kinetic energy is
A. 395 J
B. 295 J
C. 195 J
D. 250 J

Answer: A
(Watch Video Solution
36. A particle is moving with a contant velocity along a line parallel to positive X -axis. The magnitude of its angular momentum with respect of the origin is
A. zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer: B
37. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. centre of the circle
B. one the circumference of the circle
C. inside the circle
D. outside the circle

Answer: A
38. A particle is confined to rotate in a circular path with decreasing linear speed. Then which of the following is correct?
A. \vec{L} (angular momentum) is conserved
about the centre
B. only direction of angular momentum \vec{L}
is conserved
C. it spirals towards the centre
D. its acceleration is towards the centre

Answer: B

D Watch Video Solution

39. A solid sphere is rotationg in free space. If
the radius of the sphere is increased keeping mass same, which one of the following will not be affected?
A. Moment of inertia

B. Angular momentum

C. Angular velocity
D. Rotational kinetic energy

Answer: B

- Watch Video Solution

40. A couple is acting on a two particle system.

The resultant motion will be:
A. Purely rotational motion
B. purely linear motion
C. both a and b
D. neither a nor b

Answer: A

D Watch Video Solution
41. Different types of equilibrium are given in
column I. Match the types given in column I
with conditions given in column II.

Column I	Column II
1. Translational	(i) Net torque and force are zero.
2. Rotational	(ii) Linear momentum is zero
3. Dynamic	(iii) Potential energy is minimum
4. Stable	(iv) Angular momentum is zero
	(v) Net torque is zero
	(vi) Net force is zero

A. i-iii, 2-I, 3-v, 4-vi
B. 1-vi,2-v,3-I,4-iii
C. 1-I,2-ii,3-iii,4-iv
D. 1-v,2-iii,3-I,4-ii

- Watch Video Solution

42. Angular momentum is
A. moment of momentum
B. product of mass and angular velocity
C. product of M.I and velocity
D. moment of angular motion
43. Which of the following is a vector quantity?
A. Angular momentum
B. Work
C. Potential energy
D. Electric current

Answer: A

44. The dimensions of angular momentum are:

A. $\left[M L T^{-2}\right]$
B. $\left[M L^{2} T^{-1}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{2} T\right]$

Answer: B
45. Analogue of mass in rotational motion is
A. gyration
B. angular momentum
C. moment of inertia
D. none of the above

Answer: C
46. Identify the incorrect odd man out from
the following expressions for moment of inertia,
A. Moment of inertia $I=M k^{2}$
B. As per parallel axis theorem Moment of inertia $I=I_{c}+M d^{2}$
C. As per perpendicular axis theorem
moment of inertia $I_{Z}=I_{X}+I_{Y}$
D. Moment of ine
Force/acceleration $=\frac{F}{a}$

Answer: D

D Watch Video Solution

47. The angular momentum of a system of particles is conserved:
A. When no external force acts upon the
system
B. When no external torque acts upon the
system
C. When no external impulse acts upon the
system
D. When axis of rotation remains the same

Answer: B

D Watch Video Solution
48. If a person standing on a rotating disc stretches out his hands, the angular speed will
A. increases
B. decreases
C. remain same
D. none of these

Answer: B

- Watch Video Solution

49. What quantities are conserved in this collision?
A. linear and angular momentum, but not kinetic energy
B. linear momentum only
C. angular momentum only
D. linear and angular momentum and

linear but not rotational kinetic energy

Answer: B

D Watch Video Solution

50. A uniform circular disc of radius 50 cm at is
free to turn about an axis which is perpendicular to its plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of $2 \mathrm{rad} s^{-2}$. Its net acceleration is $m s^{-2}$ at the end of 2.0 s is approximately.
A. 6
B. 6
C. 8
D. 7

Answer: C

D Watch Video Solution

51. In an orbital motion, the angular momentum vector is
A. along the radius vector
B. parallel to the linear momentum
C. in the orbital plane

D. perpendicular to the orbital plane

Answer: D

D Watch Video Solution

52. Statement 1: The angular momentum of a body moving in a circle with constant velocity remains conserved about any point on the circumference of the circle.

Statement 2: If the torque acting on the body is zero than its angular momentum is

conserved.

Which one of thefollowing options is correct?
A. Statement 1 and 2 are true and
statement 2 is a correct explanation for
statement 1.
B. Statements 1 and 2 are true and
statement 2 is not a correct explanation
for statement 1.
C. Statement 1 is true and statement 2 is
false.

D. Statement 1 is false and statement 2 is

 true.
Answer: D

- Watch Video Solution

53. The direction of angular velocity vector is along:
A. the tagent to the circular path

B. the inward radius

C. the outward radius

D. the axis of rotation

Answer: D

D Watch Video Solution

54. The angular momentum of a moving body remains constant if
A. net external force is applied
B. net pressure is applied

C. net external torque is applied

D. net external torqu is not applied

Answer: D

- Watch Video Solution

55. Assertion: Friction is necessary for abody to roll on a surface.

Reason:Friction provides the necessary
tangential force and torque.

Which one of the following statement is

correct?

A. Assertion and reason are treu and reason explains assertion correctly.
B. Assertion and reason are true. But reason does not explain assertion correctly.
C. Assertion is true but reason is false.
D. Assertion is false but reason is true.
56. A body is projected from the ground with some angle to the horizontal. What happens
to the angular momentum about the initial position in tis motion?
A. decreases
B. increases
C. remains the same
D. first increases and then decreases

Answer: B

- Watch Video Solution

57. Kgm^{2} is the unit of Of a body.
A. momentum
B. mass distribution
C. moment of inertia
D. torque

Answer: C

D Watch Video Solution

58. Select the correct expression from the following:

Moment of inertia of a solid cylinder having radius R_{0} is:
A. $M R_{0}^{2}$
B. $M R_{0}^{\frac{2}{3}}$
C. $M R_{0}^{\frac{2}{4}}$

D. $\frac{1}{2} M R_{0}^{2}$

Answer: D

D Watch Video Solution

59. Moment of inertia of solid sphere of radius
r_{0} is
A. $M r_{0}^{2}$
B. $\frac{1}{5} M r_{0}^{2}$
C. $\frac{2}{5} M r_{0}^{2}$
D. $\frac{3}{5} M r_{0}^{2}$

Answer: C

D Watch Video Solution

60. Select the odd man out from the following
conditions for a body to be in stable equilibrium.
A. Linear Momentum is zero.
B. Angular momentum is zero.

C. Potential energy of the body is maximum

D. The body tries to come back to equilibrium.

Answer: C

D View Text Solution

61. If I, α and τ are MI, angular acceleration and torque respectively of a body rotating about any axis with angular velocity ω, then

> A. $\tau=\frac{1}{\alpha}$
> B. $\tau=I \alpha$
> C. $\tau=\frac{\alpha}{1}$
> D. $\tau u=\frac{1}{\alpha^{2}}$

Answer: B

D Watch Video Solution
62. Statement 1 refers assertion and statement

2 referes reason in the following question.

Statement 1: A stone is tied to a string is
whirled in a circle with uniform velocity. If the string suddely breaks, the angular momentum of the stone becomes zero.

Statement 2: The torque acting on the stone equals the rate of change of angular momentum.

Which one of the following statements is correct?
A. Statement 1 and 2 are true and
statement 2 is a correct explanation for
statement 1.
B. Statements 1 and 2 are true and
statement 2 is not a correct explanation
for statement 1.
C. Statement 1 is true and statement 2 is
false.
D. Statement 1 is false and statement 2 is
true.

Answer: D

63. The dimension of torque is

A. $M L^{2} T^{-2}$
B. $M^{2} L^{2} T^{-2}$
C. $M L^{2} T^{-1}$
D. $M L T^{-2}$

Answer: B
(Watch Video Solution
64. If τ is the torque and θ is the angular
displacement then work done is given by
A. $\frac{\tau}{\theta}$
B. $\tau \theta$
C. $\frac{\theta}{\tau}$
D. $\frac{\tau}{\theta^{2}}$

Answer: B
(D) Watch Video Solution
65. If a gymnast sitting on a rotating stool, with his arms out stretched, suddenly lowers his hands, what will happen?
A. the angular velocity decreases
B. his moment of inertia decreases
C. the angular velocity stays constant
D. the angular momentum increases

Answer: B

66. The physical quantities related to linear motion and the physical quantities related to angular motioin are given in column I and column II respectively.

Match the physical quantities in both column.

Column I	Column II
1. Force (F)	(i) Work done $\mathrm{W}=\vec{r} \times \bar{\tau}$
2. Linear momentum	(ii) $\tau=\mathrm{I} \alpha$
3. Mass	(iii) Angular momentum $\mathrm{L}=\mathrm{I} \omega$
4. Work done $\mathrm{W}=\mathrm{F} \cdot \mathrm{S}$	(iv) Moment of inertia I
	(v) Torque τ

A. 1-I,2-v,3-iv,4-ii
B. $1-\mathrm{v}, 2-\mathrm{iv}, 3-\mathrm{I}, 4-\mathrm{ii}$

C. 1-v,2-iii,3-iv,4-i

D. 1,ii,2-iv,3-I,4-v

Answer: C

- Watch Video Solution

67. If the moment of inertia of a body is I and
its mass be M the, its radius of gyration would
be
A. $\frac{I}{M}$
B. $\sqrt{\frac{I}{M}}$
C. $\frac{M}{I}$
D. $\sqrt{\frac{M}{I}}$

Answer: B

D Watch Video Solution

68. Which one of the following is correct?

According to perpendicular axes theorem:

$$
\text { A. } I_{x}=I_{y}+I_{z}
$$

$$
\text { B. } I_{z}=I_{x}+I_{y}
$$

C. $I_{z}=I_{x}-I_{y}$

$$
\text { D. } I_{y}=I_{x}+I_{z}
$$

Answer: C

D Watch Video Solution

69. If a disc is given a linear velocity on a rough
horizontal surface, then its angular
momentum is
A. conserved about COM only
B. conserved about the point of contact only
C. conserved about all the points.
D. not conserved about any point.

Answer: B

D View Text Solution
70. For the following situation select the correct statement.

Abody is pojected from ground with some angle to the horizontal. The angualr momentum about the initial position will:
A. decreases
B. increases
C. remains same
D. first increases and then decreases

Answer: B
71. A body cannot roll without slipping on a
A. rough horizontal surface
B. smooth horizontal surface
C. rough inclined surface
D. smooth inclined surface

Answer: D

- Watch Video Solution

72. Select the correct statement from the following
A. The angular momentum of a comet revolving around a star remains conserved.

B. A stone is tied to a string is whirled in a

circle with a uniform sped. If the string is
suddenly cut, its angular momentum will not change from its initial value.
C. The centre of mass of a solid may be outside the body of the solid.

D. In sliding the translational motion is less

than rotational motion.

Answer: B

D View Text Solution

73. A cylinder rolls up an inclined plane, reaches some height, and then rolls done (without slipping throughout these motions)
the direction of the frictional force acting on the cylinder are:
A.a) up the incline, while ascending and down the icline, while descending.
B. b) up the incline, while ascending as well
as descending
C. c) down the incline, while ascending and
up the incine,while descending
D. d) down the incine, while ascending as
well as descending.

Answer: B

- Watch Video Solution

74. A solid sphere of mass m and radius r is released from rest at the top of smooth inclined plane of inclination θ.

The ratio of acceleration when it rolls down
the plane without slipping and when it slipping down the plane is
A. $\frac{7}{5}$
B. $\frac{5}{7}$
C. $\frac{3}{7}$
D. $\frac{8}{7}$

Answer: B

- Watch Video Solution

75. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along
the diameter of the disc to reach its other end.

During the journey of the insect.
The angular speed of the disc:
A. remains unchanged
B. continuously decreases
C. continuously increases
D. first increased

Answer: D

D Watch Video Solution
76. The motion of planets in the solar system is an exmaple of the conservation of
A. conservation of kinetic energy
B. conservation of linear momentum
C. conservation of angular momentum
D. none

Answer: C

- Watch Video Solution

77. As disc is rotating with angular speed ω. If a child sits on it, what is conserved?
A. Linear Momentum is zero.
B. Angular momentum
C. Kinetic energy
D. Potential energy

Answer: B
(D) Watch Video Solution
78. If a sphere is rolling, the ratio of translational energy to total kinetic energy is given by:
A. $7: 10$
B. 2:5
C. 10: 7
D. 5:7

Answer: D

79. For a hollow cylinder and a solid cylinder rolling without slipping on a inclined plane, then which of these reaches earlier:
A. solid cylinder
B. hollow cylinder
C. both simultaneously
D. can't say anything

Answer: A

D Watch Video Solution
80. Statement-1: Friction is necessary for a body to roll purely on a level horizontal ground.

Statement-2: When the body is rolling purely,
the velocity of the point of contact should be zero relative to the surface in contact.
A. Statement 1 and 2 are true and
statement 2 is a correct explanation for
statement 1.
B. Statements 1 and 2 are true and
statement 2 is not a correct explanation
for statement 1.
C. Statement 1 is true and statement 2 is
false.
D. Statement 1 is false and statement 2 is
true.

Answer: A

- Watch Video Solution

81. A solid sphere, disc solid cylinder all of the
same mass and made of the same material are allowdd to roll down (from rest) on the inclined plane, then:
A. solid spher reaches the bottom first
B. solid sphere reaches the bottom last
C. disc will reach the bottom first
D. all reach the bottom at the same time

Answer: A

82. A drum of radius R and mass M, rolls down without slipping along an inclined plane of angle θ. The frictional force:
A. a) dissipates energy as heat
B. b) decreases the rotational motion
C.c) decreases the rotational and
translational motion
D.d) converts translational energy into
rotational energy

Answer: D

D Watch Video Solution

83. A disc is rolling the velocity of its centre of mass is $V_{C M}$. Which one will be correct?
A. The velocity of highest point is $2 V_{C M}$
and point of contact is zero.
B. The velocity of highest point in $V_{C M}$ and point of contact is $V_{C M}$.
C. The velocity of highest point is $2 V_{C M}$
and point of contact is $V_{C M}$.
D. The velocity of highest point is $2 V_{C M}$
and point of contact is $2 V_{C M}$

Answer: A

D Watch Video Solution
84. In pure rolling, the velocity at the point of contact:
A. ωr
B. $>\omega r$
C. $<\omega r$
D. zero

Answer: D

D Watch Video Solution

85. If a body moves through a distance greater
than $2 \pi R$ in one full rotation then
A. $V_{C M}>R \omega$
B. $V_{C M}<R \omega$
C. $V_{C M}=R \omega$
D. $R \omega<V_{C M}$

Answer: A

D Watch Video Solution
86. Select the incorrect statement from the
following
A. Rolling motion is the combination of translational and rotation motions.
B. In pure rolling the total kinetic energy is
the sum of kinetic energies of translational and rotational motion.
C. In sliding translational motion is less
than rotational motion.
D. In slipping the rotational motion is more
than translation motion.
87. Select odd man out (incorrect) from the following expressions for kinetic energy in pure rolling.
A. In
pure
rolling
K.E.
$=(K . E .)_{\text {Trans }}+(K . E .)_{\text {Rot }}$
B. In
pure
rolling
K.E.

$$
=\frac{1}{2} m v_{C M}^{2}+\frac{1}{2} I_{C M} \omega^{2}
$$

C. In pure rolling K. $E .=\frac{1}{2} m v^{2}$
D. In pure rolling kinetic energy with reference to centre of mass is K.E.

$$
=\frac{1}{2} m v_{C M}^{2}\left(1+K^{2} / R^{2}\right)
$$

Answer: C

D View Text Solution

88. For a hollow cylinder and a solid cylinder rolling without slipping on a inclined plane, then which of these reaches earlier:
A. Hollow cylinder
B. solid cylinder
C. Same for both
D. One whose density is more

Answer: A

D Watch Video Solution
89. A body is rolling down in inclined plane. Its translational and rotational kinetic energies are equal. The body is a
A. solid sphere
B. hollow sphere
C. solid cylinder
D. hollow cylinder

Answer: D

D Watch Video Solution
90. Centre of mass of the earth-moon system
lies
A. closer to the earth
B. closer to the moon
C. at the mid point of line joining the earth and the moon

D. cannot be predicted

Answer: C

- Watch Video Solution

91. Three masses 2 kg , 4 kg and 6 kg are placed
in the XY plane with respective coordinates
$(0,0),(0,2)$ and $(2,2)$. The coordinate of their centre of mass is
A. $(1,2)$
B. $(1,1.67)$
C. $(2,1.67)$
D. $(1.67,3)$

Answer: B
92. The Centre of mass of a solid cone along
the line from the centre of the base to the
vertex is at
A. one fourth of the height
B. one -third of the height
C. one-fifth of the height
D. none of these

Answer: A
93. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. inside the circle
B. outside the circie
C. centre of the circle
D. one the circumference of the circle

- Watch Video Solution

94. The reduced mass of two particles having

 masses m and $2 m$ isA. 2 m
B. 3 m
C. $2 \mathrm{~m} / 3$
D. $m / 2$

Answer: C

D Watch Video Solution

95. A couple produces motion.

A. linear and rotational motion
B. no motion
C. purely linear motion
D. purely rotational motion

Answer: D

- Watch Video Solution

96. A circular disc is to be made by using iron and aluminium so that it acquires maximum moment of inertia about geometrical axis. It is possible with
A. aluminium at interior and iron surround
to it
B. iron at interior and aluminium surround
to it
C. using iron and aluminiuml layers in
D. sheet of iron is used at both external
surfaces and aluminium sheet as internal layers.

Answer: A

- Watch Video Solution

97. A fly wheel is attached to an engine on order to
A. increase its speed
B. decrease its speed
C. help in overcoming the dead point
D. decrease its energy

Answer: C

D Watch Video Solution

98. Angular momentum of the particle rotating with a central force is constant due to
A. constant force
B. constant linear momentum
C. constant torque
D. zero torque

Answer: D

D Watch Video Solution

99. Moment of inertia of a circular wire of mass M and radius R about is its diameter is
A. $1 / 2 M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $2 M R^{2}$
D. $M R^{2}$

Answer: B

D Watch Video Solution
100. Moment of inertia depends upon.
and it does not depend upon.
A. torque applied and axis of rotation.
B. axis of rotation and point of application of force.
C. angular velocity and point of application
of force.

D. angular momentum and distribution of

mass

Answer: B::D

101. Two discs of same material have the same mass. If their thickness are in the ratio $1: 3$, then their moment of inertia are in the ratio
A. $1: \sqrt{3}$
B. $1: 3$
C. $3: 1$
D. 1:9

Answer: C

102. M.I. of an object does not depend upon
A. mass of object
B. mass distribution
C. angular velocity

D. axis of rotation

Answer: C

103. If a solid sphere and solid cylinder of same

mass and radius rotate about their own axis
the M.I. will be greater for
A. solid sphere
B. solid cylinder
C. both a and b
D. equal both

Answer: B

D Watch Video Solution
104. A rod $P Q$ of mass M and length L is hinged
at end P. The rod is kept horizontal by a mass
less than string tied at a point Q as shown in
figure. When string is cut, the initial acceleration rod is:

A. $\frac{3 g}{2 L}$
B. $\frac{g}{L}$
c. $\frac{2 g}{L}$
D. $\frac{2 g}{3 L}$

Answer: A

- Watch Video Solution

105. Radius of gyration of a body depends

upon:

A. axis of rotation
B. translational motion

C. shape of the bdoy

D. area of the body

Answer: A

D Watch Video Solution

106. If the external forces acting on a system
have zero resultant, the centre of mass
A. may move but not accelerate
B. may not move

C. must not move

D. none of these

Answer: A

D Watch Video Solution

107. If a street light of mass M is suspended
from the end of a uniform rod of length L in
different possible patterns as shown in figure,
then:

A. pattern A is more sturyd
B. pattern B is more sturdy
C. pattern C is more sturdy
D. all will have same sturdiness

Answer: A
108. The centre of mass of a system of particles does not depend upon
A. position of the particles
B. relative distance between the particles
C. masseses of the particles
D. forces acting on the particles

Answer: D
109. In the following question, statement 1 refers assertion and statement 2 refers reason.

Statement 1: If there is no external torque on a body about its centre of mass, then the velocity of the centre of mass remains constant.

Statement 2: The linear momentum of an isolated system remains constant.

Which one of the following statement is correct?
A. Statement 1 and 2 are true and
statement 2 is a correct explanation for
statement 1.
B. Statements 1 and 2 are true and
statement 2 is not a correct explanation
for statement 1.
C. Statement 1 is true and statement 2 is
false.
D. Statement 1 is false and statement 2 is
true.

Answer: D

D Watch Video Solution

110. A point in the system at which whole mass
of the body is supposed to be concentrated is
called:
A. centre of gravity
B. centre of mass
C. centre of energy
D. centre of buoycancy

Answer: B

D Watch Video Solution

111. The location of the centre of mass of a sphere is at:
A. its top
B. its bottom
C. geometric centre
D. all the above

Answer: C

- Watch Video Solution

112. A child sits stationary at one end of a long trolley moving uniformly with a speed V on a smooth horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the speed of the CM of the (trolley + child) system ?
A. increases
B. decreases
C. remains same
D. changes

Answer: C

D Watch Video Solution
113. Centre of mass of the body practically coincides with:
A. its centre of gravity
B. its centre of buoyancy
C. orthocentre
D. metacentre

Answer: A

D Watch Video Solution

114. A fly wheel of moment of inertia
$4 \times 10^{-3} \mathrm{kgm}^{2}$ is makign 10 revolution per
second. The torque required to stop it in 5
second is:
A. $4 \pi \times 10^{-3} N m$
B. $2 \pi \times 10^{-4} \mathrm{Nm}$
C. $8 \pi \times 10^{-4} N M$
D. $16 \pi \times 10^{-3} \mathrm{Nm}$

Answer: D

D Watch Video Solution
115. The mass of a body measures:
A. density
B. centre of mass
C. moment of inertia
D. coefficient of inertia

Answer: D

- Watch Video Solution

116. Identify the vector quantity among the following:
A. distance

B. angular momentum

C. heat
D. energy

Answer: B

- Watch Video Solution

117. Angular momentum is

Vector.
A. axial
B. polar

C. unit

D. unlike

Answer: A

- Watch Video Solution

118. A diver in a swimming pool bends his head before diving. It
A. increases his linear velocity
B. decreases his angular velocity
C. increases his moments of inertia
D. decreases his moment of inertia

Answer: D

D Watch Video Solution

119. Which one of the following statement is not correct?
A. Net torque produces turning motion in rigid object
B. when external torque is acting on a rigid
body, the angular momentum remains
constant.
C. Torque, is equal to rate of change of angular momentum.
D. Torque is the product of moment of inertia and angular acceleration of a body.

Answer: B

120. When a steady torque is acting on a body, the body:
A. continues in its state of rest or uniform motion along a straight line
B. gets linear acceleration
C. gets angular acceleration
D. rotates at a constant speed

Answer: C
121. A circular turn table has a block of ice placed at its centre. The system rotates with an angular speed w about an axis passing through the centre of the table. If the ice melts on its own without any evaporation, the speed of rotation of the system
A. becomes zero
B. remains constant at the same value ω
C. increases to a value greater than ω

D. decreases to a value less than ω

Answer: D

D Watch Video Solution

122. The curve between $\log _{e} \mathrm{~L}$ and $\log _{e} \mathrm{P}$ is (L is
the angular momentum and P is the linear momentum).

C.
(c) $\underbrace{\square}_{\log _{c} P}$
D.

Answer: B
(D) Watch Video Solution
123. A couple produces ___ motion.
A. pure linear motion
B. pure rotational motion
C. no motion
D. both linear and rotational motion

Answer: B
124. A wheel is rotating at the rate of 10 revolutions per second about an axis about which the radius of gyration is 0.2 m . If the mass of the wheel is 5 kg then its rotational kinetic energy is
A. 395 J
B. 295 J
C. 195 J
D. 250 J
125. A particle is moving with a contant velocity along a line parallel to positive X -axis.

The magnitude of its angular momentum with respect of the origin is
A. zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer: B

- Watch Video Solution

126. A particle undergoes uniform circular motion. The angular momentum of the particle remain conserved about:
A. centre of the circle
B. one the circumference of the circle
C. inside the circle
D. outside the circle

Answer: A

D Watch Video Solution

127. A particle is confined to rotate in a circular
path decreasing linear speed, then which of the following is correct?
A. \vec{L} (angular momentum) is conserved
about the centre
B. only direction of angular momentum \vec{L}
is conserved
C. it spirals towards the centre
D. its acceleration is towards the centre

Answer: B

- Watch Video Solution

128. A solid sphere is rotationg in free space. If
the radius of the sphere is increased keeping mass same, which one of the following will not be affected?
A. Moment of inertia
B. Angular momentum
C. Angular velocity
D. Rotational kinetic energy

Answer: B

D Watch Video Solution

129. A couple is acting on a two particle system. The resultant motion will be:
A. Purely rotational motion
B. purely linear motion
C. both a and b
D. neither a nor b

Answer: A

D Watch Video Solution
130. Different types of equilibrium are given in
column I. Match the types given in column I
with conditions given in column II.

Column I	Column II
1. Translational	(i) Net torque and force are zero.
2. Rotational	(ii) Linear momentum is zero
3. Dynamic	(iii) Potential energy is minimum
4. Stable	(iv) Angular momentum is zero
	(v) Net torque is zero
	(vi) Net force is zero

A. i-iii, 2-I, 3-v, 4-vi
B. 1-vi,2-v,3-I,4-iii
C. 1-I,2-ii,3-iii,4-iv
D. 1-v,2-iii,3-I,4-ii

- Watch Video Solution

131. Angular momentum is Vector.
A. moment of momentum
B. product of mass and angular velocity
C. product of M.I and velocity
D. moment of angular motion
132. Which of the following is a vector quantity?
A. Angular momentum
B. Work
C. Potential energy
D. Electric current

Answer: A
133. The dimensions of angular momentum are:
A. $\left[M L T^{-2}\right]$
B. $\left[M L^{2} T^{-1}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{2} T\right]$

Answer: B

- Watch Video Solution

134. Analogue of mass in rotational motion is
A. gyration
B. angular momentum
C. moment of inertia
D. none of the above

Answer: C

D Watch Video Solution
135. Identify the incorrect odd man out from
the following expressions for moment of inertia,
A. Moment of inertia $I=M k^{2}$
B. As per parallel axis theorem Moment of
inertia $I=I_{c}+M d^{2}$
C. As per perpendicular axis theorem
moment of inertia $I_{Z}=I_{X}+I_{Y}$
D. Moment
of
Force/acceleration $=\frac{F}{a}$
inertia

Answer: D

D Watch Video Solution

136. The angular momentum of a system of particles is conserved:
A. When no external force acts upon the
system
B. When no external torque acts upon the
system
C. When no external impulse acts upon the
system
D. When axis of rotation remains the same

Answer: B

- Watch Video Solution

137. If a person standing on a rotating disc stretches out his hands, the angular speed will
A. increases
B. decreases
C. remain same
D. none of these

Answer: B

D Watch Video Solution
138. What quantities are conserved in this collision?
A. linear and angular momentum, but not kinetic energy
B. linear momentum only
C. angular momentum only
D. linear and angular momentum and

linear but not rotational kinetic energy

Answer: B

D Watch Video Solution

139. A uniform circular disc of radius 50 cm at
is free to turn about an axis which is perpendicular to its plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of $2 \mathrm{rad} s^{-2}$. Its net acceleration is $m s^{-2}$ at the end of 2.0 s is approximately.
A. 6
B. 5
C. 8
D. 7

Answer: C

D Watch Video Solution

140. In an orbital motion, the angular momentum vector is
A. along the radius vector
B. parallel to the linear momentum
C. in the orbital plane

D. perpendicular to the orbital plane

Answer: D

D Watch Video Solution

141. The angular momentum of a moving body remains constant if
A. Assertion and Reason are true and

Reason is a correct explanation for

Assertion
B. Assertion and Reason are true and Reason is not a correct explanation for Assertion.
C. Assertion is true and Reason is false.
D. Assertion is false and Reason is true.

Answer: D

- Watch Video Solution

142. The direction of angular velocity vector is along:
A. the tagent to the circular path
B. the inward radius
C. the outward radius
D. the axis of rotation

Answer: D

- Watch Video Solution

143. The angular momentum of a moving body remains constant if
A. net external force is applied
B. net pressure is applied
C. net external torque is applied
D. net external torqu is not applied

Answer: D

D Watch Video Solution
144. Assertion: Friction is necessary for abody to roll on a surface.

Reason:Friction provides the necessary tangential force and torque.

Which one of the following statement is correct?
A. Assertion and reason are treu and
reason explains assertion correctly.
B. Assertion and reason are true. But
reason does not explain assertion
correctly.
C. Assertion is true but reason is false.
D. Assertion is false but reason is true.

Answer: A

D Watch Video Solution

145. A body is projected from the ground with some angle to the horizontal. What happens
to the angular momentum about the initial position in tis motion?
A. decreases
B. increases
C. remains the same
D. first increases and then decreases

Answer: B

D Watch Video Solution

146. $K g m^{2}$ is the unit of Of a
A. momentum
B. mass distribution
C. moment of inertia
D. Energy

Answer: C

D Watch Video Solution
147. Select the correct expression from the following:

Moment of inertia of a solid cylinder having radius R_{0} is:
A. $M R_{0}^{2}$
B. $M R_{0}^{\frac{2}{3}}$
C. $M R_{0}^{\frac{2}{4}}$
D. $M R_{0}^{\frac{2}{2}}$

Answer: D
(Watch Video Solution
148. Moment of inertia of solid sphere of radius r_{0} is
A. $M r_{0}^{2}$
B. $\frac{1}{5} M r_{0}^{2}$
C. $\frac{2}{3} M r_{0}^{2}$
D. $\frac{3}{5} M r_{0}^{2}$

Answer: C

D Watch Video Solution
149. Choose the odd man out from the following :
A. Linear Momentum is zero.
B. Angular momentum is zero.
C. Potential energy of the body is maximum
D. The body tries to come back to equilibrium.

Answer: C

D Watch Video Solution
150. If I is the moment of ienrtia, α is the angular acceleration and τ is torque then they are related by:

$$
\begin{aligned}
& \text { A. } \tau=\frac{1}{\alpha} \\
& \text { B. } \tau=I \alpha \\
& \text { C. } \tau=\frac{\alpha}{1} \\
& \text { D. } \tau u=\frac{1}{\alpha^{2}}
\end{aligned}
$$

Answer: B

151. A stone is tied to the end of a string of length 1 and whirled in a horizental circle. When the string breaks then stone
A. Assertion and Reason are true and

Reason is a correct explanation for

Assertion.
B. Assertion and Reason are true and

Reason is not a correct explanation for

Assertion.
C. Assertion is true and Reason is false.

D. Assertion is false and Reason is true.

Answer: D

D Watch Video Solution

152. The dimension of torque is
A. $M L^{2} T^{-2}$
B. $M^{2} L^{2} T^{-2}$
C. $M L^{2} T^{-1}$
D. $M L T^{-2}$

Answer: B

- Watch Video Solution

153. If τ is the torque and θ is the angular
displacement then work done is given by
A. $\frac{\tau}{\theta}$
B. $\tau \theta$
C. $\frac{\theta}{\tau}$
D. $\frac{\tau}{\theta^{2}}$

Answer: B

- Watch Video Solution

154. If a gymnast sitting on a rotating stool,
with his arms out stretched, suddenly lowers
his hands, what will happen?
A. the angular velocity decreases
B. his moment of inertia decreases
C. the angular velocity stays constant
D. the angular momentum increases

Answer: B

D Watch Video Solution

155. The physical quantities related to linear motion and the physical quantities related to
angular motioin are given in column I and column II respectively.

Match the physical quantities in both column.

Column I	Column II
1. Force (F)	(i) Work done $\mathrm{W}=\vec{r} \times \vec{\tau}$
2. Linear momentum	(ii) $\tau=\mathrm{I} \alpha$
3. Mass	(iii) Angular momentum $\mathrm{L}=\mathrm{I} \omega$
4. Work done $\mathrm{W}=\mathrm{F} \cdot \mathrm{S}$	(iv) Moment of inertia I
	(v) Torque τ

A. 1-I,2-v,3-iv,4-ii
B. 1-v,2-iv,3-I,4-ii
C. 1-v,2-iii,3-iv,4-i
D. 1,ii,2-iv,3-I,4-v
156. If the moment of inertia of a body is I and
its mass be M the, its radius of gyration would
be

$$
\begin{aligned}
& \text { A. } \frac{I}{M} \\
& \text { B. } \sqrt{\frac{I}{M}} \\
& \text { C. } \frac{M}{I} \\
& \text { D. } \sqrt{\frac{M}{I}}
\end{aligned}
$$

157. Which one of the following is correct?

According to perpendicular axes theorem:
A. $I_{x}=I_{y}+I_{z}$
B. $I_{z}=I_{x}+I_{y}$
C. $I_{z}=I_{x}-I_{y}$
D. $I_{y}=I_{x}+I_{z}$

Answer: C
158. A disc rotates with angular velocity ω and kinetic energy E. Then its angular momentum
A. conserved about COM only
B. conserved about the point of contact only
C. conserved about all the points.
D. not conserved about any point.

- Watch Video Solution

159. A body is projected from the ground with
some angle to the horizontal. What happens
to the angular momentum about the initial position in tis motion?
A. decreases
B. increases
C. remains same
D. first increases and then decreases

D Watch Video Solution

160. A body cannot roll without slipping on a
A. rough horizontal surface
B. smooth horizontal surface
C. rough inclined surface
D. smooth inclined surface
161. Select the correct statement from the following .
A. The angular momentum iof a comet revolving around a star remains conserved.

B. A stone is tied to a string is whirled in a

circle with a uniform sped. If the string is
suddenly cut, its angular momentum will not change from its initial value.
C. The centre of mass of a solid may me outside the body of the solid.
D. In sliding the translational motion is less
than rotational motion.

Answer: B

D Watch Video Solution

162. A cylinder rolls up an inclined plane, reaches some height, and then rolls done (without slipping throughout these motions)
the direction of the frictional force acting on the cylinder are:
A. up the incline, while ascending and down the icline, while descending.
B. up the incline, while ascending as well as
descending
C. down the incline, while ascending and
up the incine,while descending

D. down the incine, while ascending as well

as descending.

Answer: B

D Watch Video Solution

163. A solid sphere of mass m and radius r is released from rest at the top of smooth inclined plane of inclination θ.

The ratio of acceleration when it rolls down
the plane without slipping and when it
slipping down the plane is
A. $\frac{7}{5}$
B. $\frac{5}{7}$
C. $\frac{3}{7}$
D. $\frac{8}{7}$

Answer: B

D Watch Video Solution
164. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along the diameter of the disc to reach its other end.

During the journey of the insect.
The angular speed of the disc:
A. remains unchanged
B. continuously decreases
C. continuously increases
D. first increased

Answer: D

D Watch Video Solution

165. Planetary motion in the solar system is
based on
A. conservation of kinetic energy
B. conservation of linear momentum
C. conservation of angular momentum
D. none

- Watch Video Solution

166. As disc is rotating with angular speed ω. If
a child sits on it, what is conserved?
A. Linear Momentum is zero.
B. Angular momentum
C. Kinetic energy
D. Potential energy

Answer: B

- Watch Video Solution

167. If a sphere is rolling, the ratio of translational energy to total kinetic energy is given by:
A. $7: 10$
B. $2: 5$
C. 10:7
D. 5:7

Answer: D

D Watch Video Solution

168. For a hollow cylinder and a solid cylinder rolling without slipping on a inclined plane, then which of these reaches earlier:
A. solid cylinder
B. hollow cylinder
C. both simultaneously
D. can't say anything

Answer: A

D Watch Video Solution

169. In the following question, statement 1 refers assertion and statement 2 refers reason.

Statement 1: During perfect rolling, the frictional force is zero.

Statement 2: The velocity at the point of contact becomes zero.

Select the correct option.
A. Statement 1 and 2 are true and
statement 2 is a correct explanation for
statement 1.
B. Statements 1 and 2 are true and
statement 2 is not a correct explanation
for statement 1.
C. Statement 1 is true and statement 2 is
false.
D. Statement 1 is false and statement 2 is
true.

Answer: A

D View Text Solution

170. A solid sphere, disc solid cylinder all of the
same mass and made of the same material are
allowdd to roll down (from rest) on the inclined plane, then:
A. solid spher reaches the bottom first
B. solid sphere reaches the bottom last
C. disc will reach the bottom first

D. all reach the bottom at the same time

Answer: A

- Watch Video Solution

171. A drum of radius R and mass M, rolls down
without slipping along an inclined plane of angle θ. The frictional force-
A. dissipartes energy as heat
B. decreases the rotational motion

C. decreases the rotational and

transnational motion

D. converts transnational energy into

rotational energy

Answer: D

D Watch Video Solution

172. A disc is rolling the velocity of its centre of mass is $V_{C M}$. Which one will be correct?
A. The velocity of highest point is $2 V_{C M}$
and point of contact is zero.
B. The velocity of highest point in $V_{C M}$ and point of contact is $V_{C M}$.
C. The velocity of highest point is $2 V_{C M}$ and point of contact is $V_{C M}$.
D. The velocity of highest point is $2 V_{C M}$
and point of contact is $2 V_{C M}$

Answer: A

173. In pure rolling, the velocity at the point of

contact:

A. ωr
B. $>\omega r$
C. $<\omega r$
D. zero

Answer: D
174. If a body moves through a distance

greater than $2 \pi R$ in one full rotation then

A. $V_{C M}>R_{\omega}$
B. $V_{C M}<R_{\omega}$
C. $V_{C M}=R_{\omega}$
D. $R_{\omega}<V_{C M}$

Answer: A

- Watch Video Solution

175. Select the incorrect statement from the following
A. Rolling motion is the combination of translational and rotation motion.
B. In pure rolling the total kinetic energy is
the sum of kinetic energies of
translational and rotational motion.
C. In sliding translational motion is less
than rotational motion.

D. In slipping the rotational motion is more

 than translation motion.
Answer: C

D Watch Video Solution

176. Select odd man out (incorrect) from the following expressions for kinetic energy in pure rolling.
A. In
pure
rolling
K.E.

$$
=(K . E .)_{\mathrm{Trans}}+(K . E .)_{\mathrm{Rot}}
$$

B. In
pure
rolling
K.E.

$$
=\frac{1}{2} m v_{C M}^{2}+\frac{1}{2} I_{C M} \omega^{2}
$$

C. In pure rolling $K . E .=\frac{1}{2} m v^{2}$
D. In pure rolling kinetic energy with
reference to centre of mass is K.E.

$$
=\frac{1}{2} m v_{C M}^{2}\left(1+K^{2} / R^{2}\right)
$$

Answer: C

177. For a hollow cylinder and a solid cylinder rolling without slipping on a inclined plane, then which of these reaches earlier:
A. Hollow cylinder
B. solid cylinder
C. Same for both
D. One whose density is more

Answer: A

D Watch Video Solution
178. A body is rolling down in inclined plane. Its translational and rotational kinetic energies are equal. The body is a
A. solid sphere
B. hollow sphere
C. solid cylinder
D. hollow cylinder

Answer: D

Watch Video Solution

Other Important Questions Answer Very Short Answer Questions

1. What do you mean by Rigid body?

- Watch Video Solution

2. Should the centre of mass of a body necessarily lie inside the body?
3. State the factors on which the position of the CM of a rigid body depends.

- Watch Video Solution

4. When an equation for velocity and acceleration of CM.
5. Does moment of inertia of a body change with the change of the axis of rotation?

D Watch Video Solution

6. If a body is rotating, is it necessarily being acted upon by an external torque ?
(Watch Video Solution
7. On what factors does the turning effect of a force depend?

- Watch Video Solution

8. A system is in stable equilibrium. What can we say about its potential energy?

- Watch Video Solution

9. What effect does couple have on a body?

- Watch Video Solution

10. Write an expression for mechanical advantage.

- Watch Video Solution

11. Factors on which radius of gyration of the body depends.
12. What is rolling motion?

- Watch Video Solution

13. What do you mean by Rigid body?

D Watch Video Solution

14. Should the centre of mass of a body necessarily lie inside the body?
15. On what factors does the position of cm of a rigid body depend ?

- Watch Video Solution

16. When an equation for velocity and acceleration of CM.

- Watch Video Solution

17. Does the moment of inertia of a body change with the speed of rotation ?

D Watch Video Solution
18. If a body is rotating, is it necessarily being acted by an external torque?

D Watch Video Solution
19. On what factors does the turning effect of a force depend?

- Watch Video Solution

20. A system is in stable equilibrium. What can we say about its potential energy?
(Watch Video Solution
21. What effect does couple have on a body?

- Watch Video Solution

22. Write an expression for mechanical advantage.

- Watch Video Solution

23. Factors on which radius of gyration of the body depends.

24. What is rolling motion?

D Watch Video Solution

Other Important Questions Answer Short Answer Questions

1. Distinguish between internal and external forces.

D Watch Video Solution
2. Write the Cartesian co -ordinate (x, y, z) of the centre of mass for these distributed point masses.

D View Text Solution

3. Write the equation for the $C M$ of two point masses when (i) Masses are on positive x-axis,
(ii) Origin coincides with any one of the masses, (iii) origin coincides with CM itself.
4. Distinguish between centre of mass and centre of gravity.

- Watch Video Solution

5. Write an expression for Cartesian coordinates of the CM for uniform distribution of mass.

- View Text Solution

6. Show that in the absence of any external force, the velocity of CM remains constant.

- Watch Video Solution

7. Does the radius of gyration depend upon the speed of rotation of the body?

- Watch Video Solution

8. Explain Right hand rule to find the direction of Torque.
9. Why a force is applied at right angles to the
heavy door at the outer edge while closing or opening it?

- Watch Video Solution

10. List the points to be considered while calculating the torques on rigid bodies.

- Watch Video Solution

11. Deduce the relation between torque and angular acceleration.

D Watch Video Solution

12. Can the couple acting on a rigid body produce translatory motion?
13. Define angular momentum.

D Watch Video Solution

14. Which physical quantities are expressed by the following?
(i) moment of linear momentum.
(ii) rate of change of angular momentum.

D Watch Video Solution
15. List of condition on which angular momentum is zero.

D Watch Video Solution
16. Distinguish between translational and rotatinal equilibrium.

- Watch Video Solution

17. Inertia of the body depends on

- Watch Video Solution

18. Find the relation between power and torque.

D Watch Video Solution

19. What do you understand by the term precession?

20. Distinguish between internal and external

 forces.
- Watch Video Solution

21. Write the Cartesian co -ordinate (x, y, z) of
the centre of mass for these distributed point masses.

D View Text Solution
22. Write the equation for the CM of two point masses when (i) Masses are on positive x-axis,
(ii) Origin coincides with any one of the masses, (iii) origin coincides with CM itself.

- Watch Video Solution

23. Distinguish between centre of mass and centre of gravity.

- Watch Video Solution

24. Write an expression for Cartesian coordinates of the CM for uniform distribution of mass.

D View Text Solution

25. Show that in the absence of any external
force, the velocity of CM remains constant.

D Watch Video Solution
26. Does the radius of gyration depend upon
the speed of rotation of the body?

- Watch Video Solution

27. Explain Right hand rule to find the direction of Torque.

- Watch Video Solution

28. Why a force is applied at right angles to
the heavy door at the outer edge while closing or opening it?

D Watch Video Solution

29. List the points to be considered while calculating the torques on rigid bodies.

D Watch Video Solution
30. Deduce the relation between torque and angular acceleration.

D Watch Video Solution
31. Can the couple acting on a rigid body produce translatory motion?

D Watch Video Solution

32. Define angular momentum.

- Watch Video Solution

33. Which physical quantities are expressed by the following?
(i) moment of linear momentum.
(ii) rate of change of angular momentum.

- Watch Video Solution

34. List of condition on which angular momentum is zero.
35. Distinguish between translational and rotatinal equilibrium.

- Watch Video Solution

36. Inertia of the body depends on

- Watch Video Solution

37. Find the relation between power and torque.
(Watch Video Solution
38. What do you understand by the term precession?

D Watch Video Solution

Other Important Questions Answer Long Answer
Questions

1. Explain the principle of moments of rotational equilibrium? Hence define mechanical advantage?

D Watch Video Solution

2. Determine the centre of gravity of plane
lamina by pivoting method.

D Watch Video Solution
3. Calculate the work done by the torque.

D Watch Video Solution

4. Find the expression of KE of the rigid body in rotational motion.

D Watch Video Solution

5. Derive the relation between rotational KE
and angular momentum.

- Watch Video Solution

6. Deduce the relation between angular momentum and angular velocity.

- Watch Video Solution

7. List the six point difference between translational and rotational quantities.

- Watch Video Solution

8. Discuss the motion of a disc rolling without slipping on a level surface. Hence find the condition for rolling without slipping?

- Watch Video Solution

9. Write an expression for the KE of a body rolling without slipping with centre of mass as reference.
10. Write an expression for the KE of a body rolling without slipping with point of contact as reference.

- Watch Video Solution

11. Explain the principle of moments of rotational equilibrium? Hence define mechanical advantage?

D Watch Video Solution
12. Determine the centre of gravity of plane lamina by pivoting method.

D Watch Video Solution
13. Calculate the work done by the torque.

D Watch Video Solution

14. Find the expression of KE of the rigid body
in rotational motion.

- Watch Video Solution

15. The relation between Rotation Kinetic

Energy and angular momentum is

- Watch Video Solution

16. Deduce the relation between angular momentum and angular velocity.
17. Distinguish between translational and rotatinal equilibrium.

D Watch Video Solution

18. Discuss the motion of a disc rolling without slipping on a level surface. Hence find the condition for rolling without slipping?

D Watch Video Solution

19. Write an expression for the KE of a body rolling without slipping with centre of mass as reference.

D Watch Video Solution

20. Write an expression for the KE of a body rolling without slipping with point of contact as reference.

Other Important Questions Answer Conceptual Questions

1. Should the centre of mass of a body necessarily lie inside the body?

- Watch Video Solution

2. Is centre of mass a reality?

- View Text Solution

3. Why in hand driven grinding machine, handle is put near the circumference of the stone or wheel?
(Watch Video Solution
4. Is a body in circular motion in equilibrium?

D Watch Video Solution

5. A labourer standing near the top of an old

 wooden step ladder feels unstable. Why?
- Watch Video Solution

6. Can a body in equilibrium while in motion? If yes state an example.
7. If no external torque acts on a body will its angular velocity remain conserved?

- Watch Video Solution

8. The bottom of a ship is made heavy. Why?

- Watch Video Solution

9. Why does a boy lean towards right hand side while carrying a bag in his left hand?

- Watch Video Solution

10. Some heavy boxes are to be loaded along with some empty boxes on a cart. Which boxes should be put on the cart first and why?

D Watch Video Solution

11. About which axis, the moment of inertia of a body is minimum?
12. A disc is recast into a thin walled cylinder of
same radius. Which will have large moment of inertia?

- Watch Video Solution

13. A cat is able to land on its feet after a fall.

Why?

- Watch Video Solution

14. Give examples where the centre of mass coincides with the geometrical centre of the body.

D Watch Video Solution

15. Why spokes are provided in a bicycle wheel?

D Watch Video Solution
16. Two boys of the same weight sit at the opposite ends of a diameter of a rotating circular table. What happens to the speed of rotation if they move nearer to axis of rotation?

D Watch Video Solution
17. What is the power needed to maintain uniform circular motion?
18. A particle moves in a circular path with decreasing speed. What happens to its angular momentum?

D Watch Video Solution

19. Why centripetal force cannot do work?
(D) Watch Video Solution
20. Should the centre of mass of a body necessarily lie inside the body?

D Watch Video Solution

21. Is centre of mass of reality?

- Watch Video Solution

22. Why in hand driven grinding machine,
handle is put near the circumference of the

stone or wheel?

D Watch Video Solution

23. Is a body in circular motion in equilibrium?

D Watch Video Solution
24. A ladders is more likely to slip when a person is near the top than when he is near the bottom.

The friction between the ladder and floor decreases as he climbs up.

D Watch Video Solution

25. Can a body in equilibrium while in motion?

If yes state an example.

D Watch Video Solution

26. If no external torque acts on a body will its angular velocity remain conserved?
27. The bottom of a ship is made heavy. Why?

- Watch Video Solution

28. Why does a boy lean towards right hand side while carrying a bag in his left hand?
29. Some heavy boxes are to be loaded along with some empty boxes on a cart. Which boxes should be put on the cart first and why?

D Watch Video Solution

30. About which axis, the moment of inertia of
a body is minimum?

D Watch Video Solution
31. A disc is recast into a thin walled cylinder of same radius. Which will have large moment of inertia?

- Watch Video Solution

32. A cat is able to land on its feet after a fall.

Why?

- Watch Video Solution

33. Give examples where the centre of mass
coincides with the geometrical centre of the body.

D Watch Video Solution

34. Why spokes are provided in a bicycle wheel?

D Watch Video Solution
35. Two boys of the same weight sit at the opposite ends of a diameter of a rotating circular table. What happens to the speed of rotation if they move nearer to axis of rotation?

D Watch Video Solution
36. What is the power needed to maintain uniform circular motion?
37. A particle moves in a circular path with decreasing speed. What happens to its angular momentum?

D Watch Video Solution

38. Why centripetal force cannot do work?

D Watch Video Solution

Other Important Questions Answer Numerical Problems

1. The distance between the centres of carbon
and oxyen atoms in the carbonmonoxid gas
molecule is $1.13 \AA$. Locate the centre of amss
of the gas molecule relative to the carbon atom.
2. Three blocks of uniform thickness and masses m, m and $2 m$ placed at three corners of
a triangle having co-ordinates (2.5,1.5),(3.5,1.5)
and $(3,3)$ respectively.

Find the centre of mass of the system.

D Watch Video Solution

3. Two identical particles move towards each other with velocity 2 v and v respectively. The velocity of centre of mass is
4. Three mass points $m_{1} m_{2}$ amd m_{3} are located at the vertices of an equilateral triangle of length a. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

D Watch Video Solution

5. Calculate the moment of inertia of a cylinder of length 1.5 m , radius 0.05 m and density
$8 \times 10^{3} \mathrm{kgm}^{-3}$ about the axis of the cylinder.

D Watch Video Solution

6. A uniform circular disc of mass m is set rolling on a smooth horizontal table with a uniform linear velocity v. Find the total K.E., of the disc.

D Watch Video Solution
7. The diameter of a solid solid disc is 0.5 m and its mass is 16 kg . What torque will increase its angular velocity from zero to 120 rotations/ minute in 8 seconds?

- Watch Video Solution

8. Calculate moment of inertia with respect to rotational axis $x x^{\prime}$ in following figures a and b.

- Watch Video Solution

9. Four bodies of masses $5 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4
kg are respectively placed at position ($0,0,0$),
$(2,0,0),(0,3,0)$ and (-2,-2,0). Calculate the moment of inertia about x-axis, y-axis and z axis.
(D) Watch Video Solution
10. Adjoining diagram has three disc, inwhcih each has mass M and radius R. Find the moment of inertia of this system about axis $x x^{\prime}$.

D View Text Solution

11. Two rings have their moemnts of inertia in
the ratio of 4:1 and their diameters are in the ratio of 4:1. Find the ratio of their masses.

D Watch Video Solution

12. The power out put of an automobile engine
is advertised to be 200 ap at 6000rpm. What is
the corresponding torque?

D Watch Video Solution
13. In the following figure radii r_{1} and r_{2} are 10
cm and 20 cm respectively. If the moment of inertia of the wheel is $1500 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$, then determine its angular acceleration.

- Watch Video Solution

14. Find the torque of a corce $7 \hat{i}-3 \hat{j}-5 \hat{k}$ about the origin which acts on a particle whose position vector is $\hat{i}+\hat{j}-\hat{k}$

Given: $\vec{F}=7 \hat{i}-3 \hat{j}-5 \hat{k}$

- Watch Video Solution

15. A wheel of mass 8 kg and radius of gyration

25 cm is rotating at 300 rpm what is its moment of inertia.
16. Calculate the moment of inertia of the earth about its diameter taking it to be a sphere of $10^{25} \mathrm{~kg}$ and diameter 12800 km

D Watch Video Solution

17. A body of mass 50 g is revolvig about an axis in a circular path. The distance of the centre of mass of the body from the axis of rotation is 50 cm . Find the moment of inertia of the body.
18. A thin metal hoop of radius 0.25 m and mass 2 kg starts from test and rolls down an inclined plane. If its linear velocity on reachign
the foot of the plane is $2 m s^{-1}$, what is its rotational K.E. at that instant?

D Watch Video Solution

19. A torque of $2.0 \times 10^{-4} \mathrm{Nm}$ is applied to produce an angular acceleration of $4 \mathrm{rad} s^{-2}$ in a rotating body. What is the moment of inertia of the body?

D Watch Video Solution

20. The maximum and minimum distances of a
comet from the sun are $1.4 \times 10^{12} m$ and
$7 \times 10^{10} \mathrm{~m}$. If its velocity nearst to the sun is
$6 \times 10^{4} \mathrm{~ms}^{-1}$, what is the velocity in the
farthest position? Assume that path of the comet in both the instantaneous positions is circular.

D Watch Video Solution

21. A rod of length L and mass M is hinged at point O. A small bullet of mass m ihits the rod with velocity v as shown in the figure. The bullet gets embedded in the rod. Calculate the angular velocity of the system just after the

- Watch Video Solution

22. A bal tied to a sting takes 4 s to complete revolution along a horizontal circle. If by pulling the cord, the radius of the circle is
reduced to half of the previous value, then
how much time the ball will take in one revolution.

D Watch Video Solution

23. If angular momentum is conserved in a
system whose moment of inertia is decreased
will its rotational kinetic energy be conserved?

D Watch Video Solution
24. A star of mass twice the solar mass and radius $10^{6} \mathrm{~km}$ rotates about its axis with an angular speed of $10^{-6} \mathrm{rad} \mathrm{s}^{-1}$. What is the angular speed of the star when it collapses (due to inward gravitational) force) to a radius of $10^{4} \mathrm{~km}$?

D Watch Video Solution

25. A particle performing uniform circular motion has angular momentum L. What will be
the new angular momentum, if its angular frequencey is doubled and its kinetic energy halved?

D Watch Video Solution

26. A solid cylinder of mass 20 kg rotates
about its axis with angular speed $100 \mathrm{rad} / \mathrm{s}$.

The radius of the cylinder is 0.25 m . What is
the kinetic energy associated with the rotation
of the cylinder ? What is the magnitude of
angular momentum of the cylinder about its axis?

D Watch Video Solution

27. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 \mathrm{rad} / \mathrm{s}$.

The radius of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder ? What is the magnitude of angular momentum of the cylinder about its axis?
28. A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm .

What is angular acceleration of the cylinder if the rope is pulled with a force of 30 N ? What is the linear acceleration of the rope? Assume that there is no slipping.

- Watch Video Solution

29. Keeping the mass of earth constant, if its radius is halved then what will be the duration of the day?

D Watch Video Solution

30. Explain with reason why if ice melts at pole
then moment of inertia of earth increases, angular velocity ω decreases and day night will be longer?
31. The distance between the centres of carbon and oxyen atoms in the carbonmonoxid gas molecule is $1.13 \AA \AA$. Locate the centre of amss of the gas molecule relative to the carbon atom.

D Watch Video Solution

32. Three blocks of uniform thickness and masses m, m and $2 m$ placed at three corners of a triangle having co-ordinates (2.5,1.5),(3.5,1.5)
and $(3,3)$ respectively.

Find the centre of mass of the system.

- Watch Video Solution

33. Two identical particles move towards each other with velocity 2 v and v respectively. The velocity of centre of mass is

D Watch Video Solution
34. Three mass points $m_{1} m_{2}$ amd m_{3} are located at the vertices of an equilateral triangle of length a. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

D Watch Video Solution

35. Calculate the moment of inertia of a cylinder of length 1.5 m , radius 0.05 m and
density $8 \times 10^{3} \mathrm{kgm}^{-3}$ about the axis of the cylinder.

- Watch Video Solution

36. A uniform circular disc of mass m is set rolling on a smooth horizontal table with a uniform linear velocity v . Find the total K.E., of the disc.
37. The diameter of a solid solid disc is 0.5 m and its mass is 16 kg . What torque will increase its angular velocity from zero to 120 rotations/ minute in 8 seconds?

- Watch Video Solution

38. Calculate moment of inertia with respect to rotational axis xx^{\prime} in following figures a and
b.

D Watch Video Solution

39. Four bodies of masses $5 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{kgg}$ and

4 kg are respectively placed at position (0,0,0),
$(2,0,0),(0,3,0)$ and (-2,-2,0). Calculate the moment of inertia about x-axis, y-axis and z axis.
40. Adjoining diagram has three disc, inwhcih each has mass M and radius R. Find the moment of inertia of this system about axis
xx'.

D Watch Video Solution
41. Two rings have their moemnts of inertia in
the ratio of 4:1 and their diameters are in the ratio of 4:1. Find the ratio of their masses.

- Watch Video Solution

42. The power out put of an automobile engine is advertised to be 200 ap at 6000rpm.

What is the corresponding torque?

- Watch Video Solution

43. In the following figure radii r_{1} and r_{2} are 10 cm and 20 cm respectively. If the moment of inertia of the wheel is $1500 \mathrm{~kg} \mathrm{~m}^{2}$, then determine its angular acceleration.

D Watch Video Solution
44. Find the torque of a corce $7 \hat{i}-3 \hat{j}-5 \hat{k}$ about the origin which acts on a particle whose position vector is $\hat{i}+\hat{j}-\hat{k}$

Given: $\vec{F}=7 \hat{i}-3 \hat{j}-5 \hat{k}$

- Watch Video Solution

45. A wheel of mass 8 kg and radius of gyration 25 cm is rotating at 300 rpm what is its moment of inertia.
46. Calculate the moment of inertia of the earth about its diameter taking it to be a sphere of $10^{25} \mathrm{~kg}$ and diameter 12800 km

- Watch Video Solution

47. A body of mass 50 g is revolvig about an axis in a circular path. The distance of the centre of mass of the body from the axis of rotation is 50 cm . Find the moment of inertia of the body.
48. A thin metal hoop of radius 0.25 m and mass 2 kg starts from test and rolls down an inclined plane. If its linear velocity on reachign
the foot of the plane is $2 m s^{-1}$, what is its rotational K.E. at that instant?

- Watch Video Solution

49. A torque of $2.0 \times 10^{-4} \mathrm{Nm}$ is applied to produce an angular acceleration of $4 \mathrm{rad} s^{-2}$ in a rotating body. What is the moment of inertia of the body?

- Watch Video Solution

50. The maximum and minimum distances of a comet from the sun are $1.4 \times 10^{12} m$ and
$7 \times 10^{10} \mathrm{~m}$. If its velocity nearst to the sun is
$6 \times 10^{4} \mathrm{~ms}^{-1}$, what is the velocity in the
farthest position? Assume that path of the comet in both the instantaneous positions is circular.

D Watch Video Solution

51. A rod of length L and mass M is hinged at point O. A small bullet of mass m ihits the rod with velocity v as shown in the figure. The bullet gets embedded in the rod. Calculate the angular velocity of the system just after the

- Watch Video Solution

52. A bal tied to a sting takes 4 s to complete
revolution along a horizontal circle. If by pulling the cord, the radius of the circle is
reduced to half of the previous value, then
how much time the ball will take in one revolution.

D Watch Video Solution

53. If angular momentum is conserved in a system whose moment of inertia is decreased will its rotational kinetic energy be conserved?
54. A star of mass twice the solar mass and radius $10^{6} \mathrm{~km}$ rotates about its axis with an angular speed of $10^{-6} \mathrm{rad} \mathrm{s}^{-1}$. What is the angular speed of the star when it collapses (due to inward gravitational) force) to a radius of $10^{4} \mathrm{~km}$?

D Watch Video Solution

55. A particle performing uniform circular motion has angular momentum L. What will be
the new angular momentum, if its angular frequencey is doubled and its kinetic energy halved?

D Watch Video Solution

56. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 \mathrm{rad} / \mathrm{s}$.

The radius of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder ? What is the magnitude of
angular momentum of the cylinder about its axis?

D Watch Video Solution

57. A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad/s.

The radius of the cylinder is 0.25 m . What is
the kinetic energy associated with the rotation
of the cylinder ? What is the magnitude of angular momentum of the cylinder about its axis?
58. A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm . What is angular acceleration of the cylinder if the rope is pulled with a force of 30 N ? What is the linear acceleration of the rope? Assume that there is no slipping.

- Watch Video Solution

59. Keeping the mass of earth constant, if its radius is halved then what will be the duration of the day?

D Watch Video Solution

60. Explain with reason why if ice melts at pole
then moment of inertia of earth increases, angular velocity ω decreases and day night will be longer?
