© 'doubtnut

PHYSICS

BOOKS - PREMIERS PUBLISHERS

NATURE OF PHYSICAL WORLD AND

MEASUREMENT

Textbook Questions Answers I Multiple Choice Questions

1. One of the combinations from the fundamental
physical constants is $\frac{h c}{G}$. The unit of this expression is
A. $k g^{2}$
B. m^{3}
C. S^{-1}
D. m

Answer: A

D Watch Video Solution

2. If the error in the measurement of radius is 2%, then the error in the determination of volume of the pshere will be
A. 8%
B. 2%
C. 4%
D. 6%

Answer: D

D Watch Video Solution

3. If the length and tiome period of an oscillating pendulum have errors of 1% and 3% respectgively then the error in measurement of acceleratinon due to gravity is
A. 4%
B. 5%
C. 6%
D. 7%

Answer: D

D Watch Video Solution

4. The length of a body is measured as 3.51 m , if the acuracy is 0.01 m , then the percentage errof in the measurement is
A. 351%
B. 1%

C. 0.28%

D. 0.035%

Answer: C

- Watch Video Solution

5. Which of the following has the highest number of significant figures?
A. $0.007 m^{2}$
B. $2.64 \times 10^{24} \mathrm{~kg}$
C. $0.0006032 m^{2}$

Answer: D

- Watch Video Solution

6. If $\pi=3.14$, then the value of π^{2} is

A. 9.8596
B. 9.860
C. 9.86
D. 9.9

- Watch Video Solution

7. Which of the following pairs of physical quantities have same dimension?
A. force and power
B. torque and energy
C. torque and power
D. force and torque

Answer: B

8. The dimensional formula of Planck's constand h is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L^{2} T^{-3}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{3} T^{-3}\right]$

Answer: A

D Watch Video Solution

9. The velocity of a particle v at a instant t is given by
$v=a t+b t^{2}$. The dimension of b is
A. $[L]$
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

D Watch Video Solution

10. The dimensional formual for gravitational constnat

G is
A. $\left[M L^{3} T^{-2}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{-1} L^{-3} T^{-2}\right]$
D. $\left[M L^{-3} T^{2}\right]$

Answer: B

D Watch Video Solution

11. The density of material in CGS system of units is
$4 \mathrm{gcm}^{-3}$. In a system of units in which unit of length is
10 cm and unit of mass is 100 gm , then the value of density of material will be
A. 0.04
B. 0.4
C. 40
D. 400

Answer: C

D Watch Video Solution

12. If the force is proportional to square of velocity,
the the dimensional of proportionality constant is
A. $\left[M L T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-2} T\right]$
D. $\left[M L^{-1} T^{0}\right]$

Answer: D

D Watch Video Solution

13. The dimension of $\left(\mu(\circ) E_{\circ}\right)^{-\frac{1}{2}}$ is
A. length
B. time
C. velocity
D. force

Answer: C

D Watch Video Solution

14. Plank's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are taken as three fundamental constants.

Which of the following combinations of these has the dimensions of length?
A. $\frac{\sqrt{h G}}{c^{\frac{3}{2}}}$
B. $\sqrt{\frac{h G}{c^{\frac{5}{2}}}}$
C. $\sqrt{\frac{h c}{G}}$
D. $\sqrt{\frac{G c}{h^{\frac{3}{2}}}}$

Answer: A

D Watch Video Solution

15. A length -scale (I) depends on the permittivity (ε) of a dielectric material, Boltzmann constant $\left(k_{B}\right)$, the absolute temperature (T), the number pr unit volume
(n) of certain charged paticles, and the charge (q) carried by each of the particles. Which of the following expression for I is dimensionally correct?

$$
\text { A. } l=\sqrt{\frac{n q^{2}}{\varepsilon k_{B} T}}
$$

B. $l=\sqrt{\frac{\varepsilon k_{0} T}{n q^{2}}}$
C. $l=\sqrt{\frac{q^{2}}{\varepsilon n^{\frac{2}{3} k_{B} T}}}$
D. $l=\sqrt{\frac{q^{2}}{\varepsilon n k_{B} T}}$

Answer: B

D Watch Video Solution

16. One of the combinations from the fundamental physical constants is $\frac{h c}{G}$. The unit of this expression is
A. $k g^{2}$
B. m^{3}
C. S^{-1}
D. m

Answer: A

D Watch Video Solution

17. If the error in the measurement of radius is 2%,
then the error in the determination of volume of the pshere will be
A. 8%
B. 2%
C. 4%
D. 6%

Answer: D

- Watch Video Solution

18. If the length and tiome period of an oscillating pendulum have errors of 1% and 3% respectgively then the error in measurement of acceleratinon due to gravity is
A. 4%
B. 5%
C. 6%
D. 7%

Answer: D

D Watch Video Solution

19. The length of a body is measured as 3.51 m , if the acuracy is 0.01 m , then the percentage errof in the measurement is
A. 351%
B. 1%
C. 0.28%

Answer: C

D Watch Video Solution

20. Which of the following has the highest number of
significant figures?
A. $0.007 m^{2}$
B. $2.64 \times 10^{24} \mathrm{~kg}$
C. $0.0006032 m^{2}$
D. 6.3200 J

Answer: D

- Watch Video Solution

21. If $\pi=3.14$, then the value of π^{2} is
A. 9.8596
B. 9.860
C. 9.86
D. 9.9

Answer: C
22. Which of the following pairs of physical quantities have same dimension?
A. force and power
B. torque and energy
C. torque and power
D. force and torque

Answer: B

D Watch Video Solution
23. The dimensional formula of Planck's constand h is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L^{2} T^{-3}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{3} T^{-3}\right]$

Answer: A

D Watch Video Solution

24. The velocity of a particle v at a instant t is given by $v=a t+b t^{2}$. The dimension of b is
A. $[L]$
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

D Watch Video Solution

25. The dimensional formual for gravitational constnat G is
A. $\left[M L^{3} T^{-2}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{-1} L^{-3} T^{-2}\right]$
D. $\left[M L^{-3} T^{2}\right]$

Answer: B

Watch Video Solution

26. The density of material in CGS system of units is
$4 \mathrm{gcm}^{-3}$. In a system of units in which unit of length is
10 cm and unit of mass is 100 gm , then the value of density of material will be
A. 0.04
B. 0.4
C. 40
D. 400

Answer: C

- Watch Video Solution

27. If the force is proportional to square of velocity,
the the dimensional of proportionality constant is
A. $\left[M L T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-2} T\right]$
D. $\left[M L^{-1} T^{0}\right]$

Answer: A

- Watch Video Solution

28. The dimension of $\frac{1}{\mu_{0} \varepsilon_{0}}$ is
A. length
B. time
C. velocity
D. force

Answer: C

Watch Video Solution

29. Plank's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are taken as three fundamental constants.

Which of the following combinations of these has the dimensions of length?
A. $\frac{\sqrt{h G}}{c^{\frac{1}{2}}}$
B. $\sqrt{\frac{h G}{c^{\frac{5}{2}}}}$
C. $\sqrt{\frac{h G}{G}}$
D. $\sqrt{\frac{G c}{\frac{h^{3}}{2}}}$

Answer: A

D Watch Video Solution

30. A length -scale (I) depends on the permittivity (ε) of a dielectric material, Boltzmann constant $\left(k_{B}\right)$, the absolute temperature (T), the number pr unit volume
(n) of certain charged paticles, and the charge (q)
carried by each of the particles. Which of the following expression for I is dimensionally correct?
A. $l=\sqrt{\frac{n q^{2}}{\varepsilon k_{B} T}}$
B. $l=\sqrt{\frac{\varepsilon k_{0} T}{n q^{2}}}$
C. $l=\sqrt{\frac{q^{2}}{\varepsilon n^{\frac{2}{3}} k_{B} T}}$
D. $l=\sqrt{\frac{q^{2}}{\varepsilon n k_{B} T}}$

Answer: B

D Watch Video Solution

Textbook Questions Answers li Short Answer Questions

1. Briefly explain the types of physical quantities.

D Watch Video Solution

2. How will you measure the diameter of the Moon

 using parallax method?D Watch Video Solution
3. Write the rules for determining significant figures.

D Watch Video Solution

4. What are the limitations of dimensional analysis?
5. Define precision and accuracy. Exp,ain with one example.

- Watch Video Solution

6. Briefly explain the types of physical quantities.

- Watch Video Solution

7. How will measure the diameter of the Moon using parallax method?
8. Write the rules for determining significant figures.

- Watch Video Solution

9. What are the limitations of dimensional analysis?

D Watch Video Solution

10. Define precision and accuracy. Exp,ain with one example.

-
 Watch Video Solution

1. (i) Explain the use of screw gauge and vernier caliper in measuring smaller distances.
(ii) Write a note on triangultion method and radar method to measure larger distances.

- Watch Video Solution

2. Write a note on triangulation method and radar method to measure larger distances.
3. Explain in detail the various types of errors.

D Watch Video Solution

4. What do you mean by propagation of errors?

Explain the propagation of errors in addition and multiplication.

D Watch Video Solution

5. Write short notes on the following.
(i) Unit
6. Write short notes on the following.
(ii) Rounding - off

- Watch Video Solution

7. Write short notes on the following.
(iii) Dimensionless quantities.

D Watch Video Solution
8. Explain the principle of homogeneity of dimensions.

What are its uses? Given example.

- Watch Video Solution

9. (i) Explain the use of screw gauge and vernier caliper in measuring smaller distances.
(ii) Write a note on triangultion method and radar method to measure larger distances.

- Watch Video Solution

10. (i) Explain the use of screw gauge and vernier caliper in measuring smaller distances.
(ii) Write a note on triangultion method and radar method to measure larger distances.
11. Explain in detail the various types of errors.

- Watch Video Solution

12. What do you mean by propagation of errors?

Explain the propagation of errors in addition and multiplication.
13. Write short notes on the following:
a. Unit
b. Rounding -off
c. Dimensionless quantities

- Watch Video Solution

14. Write short notes on the following:
a. Unit
b. Rounding -off
c. Dimensionless quantities
15. Write short notes on the following.
(iii) Dimensionless quantities.

(D) Watch Video Solution

16. Explain the principle of homogeneity of dimensions. What are its uses? Given example.

D Watch Video Solution

Textbook Questions Answers Iv Numerical Problems

1. In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an eneny submarine is observed to be 80 sec . If the speed of sound in water is $1460 \mathrm{~ms}^{-1}$. What is the distance of enemy submarine?

- Watch Video Solution

2. The radius of the circle is 3.12 m . Calculate the area of the circkle with regard to significant figures.
3. Assuming that the frequency γ of a vibrating string may depend upon (i) applied force (F) (ii) length (I) (iii) mass per unit lengt (m), prove that $\gamma \propto \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.

- Watch Video Solution

4. Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72".

Calculate the diameter of Jupiter.
5. The measurement value of length of a simple pendulum is 20 cm known with 2 mm accuracy. The time for 50 oscillations was measured to be 40 s within 1s resolution. Calculate the percentage accuracy in the determination of acceleration due to gravity g from the above measurement.

Watch Video Solution

6. In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an eneny submarine is observed to be

80 sec . If the speed of sound in water is $1460 \mathrm{~ms}^{-1}$.
What is the distance of enemy submarine?

Watch Video Solution

7. The radius of the circle is 3.12 m . Calculate the area of the circkle with regard to significant figures.

- Watch Video Solution

8. Assuming that the frequency γ of a vibrating string may depend upon (i) applied force (F) (ii) length (I) (iii) mass per unit lengt (m), prove that $\gamma \propto \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.
9. Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72".

Calculate the diameter of Jupiter.

- Watch Video Solution

10. The measurement value of length of a simple pendulum is 20 cm known with 2 mm accuracy. The time for 50 oscillations was measured to be 40 s within 1s resolution. Calculate the percentage
accuracy in the determination of acceleration due to gravity g from the above measurement.

- Watch Video Solution

Textbook Questions Answers V Conceptual Questions

1. Why is it convenient to express the distance of stars in terms of light year (or) parsec rather than in km?

D Watch Video Solution

2. Show that a screw gauge of pitch I mm and 100
divisions is more precise than a vernier caliper with 20
divisions on the sliding scale.

- Watch Video Solution

3. If humans were to settle on other planets, which of the fundamental quantities will be in trouble? Why?

D Watch Video Solution

4. Having all units in atomic standards in more useful.

Expalin.

O
Watch Video Solution
5. Why dimensional methods are applicable only up to three quantities?

- Watch Video Solution

6. Why is it convenient to express the distance of stars in terms of light year (or) parsec rather than in km?

- Watch Video Solution

7. Show that a screw gauge of pitch I mm and 100 divisions is more precise than a vernier caliper with 20 divisions on the sliding scale.
8. If humans were to settle on other planets, which of the fundamental quantities will be in trouble? Why?

- Watch Video Solution

9. Having all units in atomic standards in more useful.

Expalin.

D Watch Video Solution
10. Why dimensional methods are applicable only up to three quantities?

- Watch Video Solution

Other Important Questions Answers I Multiple Choice

Questions

1. Any scientific method involves:
(i) controlled experimentation
(ii) calculation of values with least accuracy
(iii) systematic observation
(iv) mathematical modeling

Which of the following statements are correct?
A. (i), (ii) and (iii) are correct
B. (i), (ii) and (iv) are correct
C. (i), (iii) and (iv) are correct
D. (i) and (ii) are correct

Answer: C

D Watch Video Solution
2. The word physics is derived from Meaning nature.
A. to know
B. fusis
C. knowing the truth
D. prediction

Answer: B

D Watch Video Solution

3. Which of the following is true?
A. dealing with non-living things
B. dealing with living things

C. study with atomic level

D. both (a) and (b)

Answer: A

D Watch Video Solution

4. An attemp to explain a Macroscopic system in terms of its Microscopic constituents is \qquad .
A. unification
B. macrocosm
C. reductionism
D. microcosm

Answer: C

D Watch Video Solution

5. Special theory of relativity is a branch of Physics. It does not deal with:
A. space
B. motion of plantes
C. mass
D. time

D Watch Video Solution

6. The fraction of $\frac{1}{273.16}$ of temperature of the triple point of water is expressed in Scale of temperature.
A. celsius
B. fahrenheit
C. centigrade
D. kelvin
7. Which one of the following statement correct
A. Time and mass
B. Length and time
C. Area and volume
D. Mass and time

Answer: C

8. Which of the following is wrong matched?

A. Chemistry - arrange elements in periodic table
B. Geology - crystal structure of various rocks
C. Oceanography - movements of neurotramitters
D. Biology - electron microscope

Answer: C

- Watch Video Solution

9. System of units was accepted by the scientists
of the general conference on weights and measures.
A. FPS
B. CGS
C. MKS
D. SI

Answer: D

D Watch Video Solution

10. A source having luminous intensity of one candela emits monochromatic radiation of frequency is :
A. $5.4 \times 10^{14} \mathrm{~Hz}$
B. $54 \times 10^{14} \mathrm{~Hz}$
C. $4.5 \times 10^{14} \mathrm{~Hz}$
D. $\frac{1}{683} H z$

Answer: A

D Watch Video Solution

11. When a current of 1 ampere flowing through two parallel straight conductors : What amount of force per unit length acts between the conductors?
A. $1 \times 10^{-7} N$
B. $2 \times 10^{-7} N$
C. $3 \times 10^{7} N$
D. $4 \times 10^{-7} N$

Answer: B

- Watch Video Solution

12. Match the following physical quantities with respect to relative units:

Column I	Column II
1. Magnetic flux	(i) joule
2. Resistance	(ii) weber

3. Time	(iii) watt
4. Energy	(iv) second
	(v) ohm
	(vi) ohm-metre

$$
\begin{aligned}
& \text { A. } 1 \text { - (iv), } 2 \text { - (v), } 3 \text { - (iv), } 4 \text { - (ii) } \\
& \text { B. } 1 \text { - (ii), } 2 \text {-(v), } 3 \text {-(vi), } 4 \text { - (i) } \\
& \text { C. 1-(v), 2-(i), } 3 \text {-(iv), 4-(vi) } \\
& \text { D. } 1 \text { - (ii), } 2 \text { - (v), } 3 \text { - (iv), } 4 \text { - (i) }
\end{aligned}
$$

Answer: D

D Watch Video Solution

13. One pico farad is equal to Farad.
A. 10^{-18}
B. 10^{-12}
C. 10^{-6}
D. 10^{-24}

Answer: B

- Watch Video Solution

14. Match the following :

Column I	Column II
1. Atto	(i) 10^{-15}
2. Fermi	(ii) 10^{18}
3. Femto	(iii) 10^{6}
4. Micro	(iv) 10^{-13}
	(v) 10^{-18}
	(vi) 10^{-6}

A. 1 - (vi), 2 - (iii), 3 - (ii), 4 - (v)

$$
\begin{aligned}
& \text { B. } 1 \text { - (iv), } 2-(\mathrm{i}), 3-(\mathrm{vi}), 4-(\mathrm{v}) \\
& \text { C. } 1-(\mathrm{v}), 2-(\mathrm{iv}), 3-(\mathrm{i}), 4-(\mathrm{vi}) \\
& \text { D. } 1-(\mathrm{v}), 2-(\mathrm{ii}), 3-(\mathrm{i}), 4-(\mathrm{iii})
\end{aligned}
$$

Answer: C

D Watch Video Solution

15. The value of Planck's constant is
A. jouble per second
B. joule second
C. metre per second

D. watt second

Answer: B

D Watch Video Solution

16. Universal time is based on :
A. rotation of the earth on its own axis
B. earth's orbital motion around the sun
C. vibration of cesium atom
D. oscillation of quartz clock

Watch Video Solution

17. 1 pascal is equal to :
A. $1 N m^{-2}$
B. $1 \mathrm{Jm}^{-2}$
C. $1 \mathrm{Nm}^{-1}$
D. $1 \mathrm{Jm}^{-1}$

Answer: A
18. Choose the correct statement from the following statements:
A. S.I. unit of gravitational potential is J sec
B. S.I. unit of gravitational potential is J kg
C. S.I. unit of gravitational potential is Watt metre
D. S.I. unit of gravitation potential is $\mathrm{J} \mathrm{kg}^{-1}$

Answer: D

19. Which one of the following doesn't has the same unit as others?
A. J-sec
B. watt - sec
C. kWh
D. eV

Answer: A

D Watch Video Solution
20. Which of the following statements are correct?
(i) A physical quantity cannot be measured
(ii) A physical quantity can be measured
(iii) The units of physical quantity can be derived
(iv) A physical quantity can neither be a scalar nor a vector
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iv)
D. (ii) and (iv)

Answer: B

21. Inertia has the same unit as:

A. weight
B. force
C. mass
D. acceleration

Answer: C
22. Which of the following pairs of quantities and their units is a proper match?
A. Electric charge - C
B. Pressure - Pa
C. Power - $J S^{-1}$
D. Moment of inertia $-\mathrm{kgm}^{-2}$

Answer: D

23. Choose the odd man out from the following physical quantities:
A. Mass
B. Length
C. Velocity
D. Time

Answer: C

D Watch Video Solution
24. Which one of the following relations is wrong?
A. 1 fermi $=10^{-14} m$
B. 1 nanometer $=10^{-9} \mathrm{~m}$
C. $1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$
D. 1 parsec $=3.26$ light year

Answer: A

D Watch Video Solution

25.1 CSL is the largest practical unit of :
A. time and length
B. mass only

C. temperature and mass

D. intensity of radiation and length

Answer: B

- Watch Video Solution

26. Match the physical quantities in column I with their S.I. units in column II.

Column I	Column II
1. Magnetic permeability	(i) watt $/$ metre 2 $/(\text { kelvin })^{4}$
2. Power	(ii) newton metre $/(\mathrm{kg})^{2}$
3. Stefan's constant	(iii) watt metre ${ }^{2}$
4. Gravitational constant	(iv) henry metre
	(v) henry/metre
	(vi) watt

A. 1 - (i), $2-(\mathrm{vi}), 3-(\mathrm{v}), 4-(\mathrm{ii})$
B. 1 - (ii), 2-(v), 3-(vi), 4-(i)
C. 1 - (v), 2 - (vi), 3 -(i), 4 - (ii)
D. 1-(v), 2-(i), 3-(ii), 4-(iii)

Answer: C

27.1 minute $=. r a d . ~$
A. 1.745×10^{-2}
B. 4.85×10^{-6}
C. 1.91×10^{-4}
D. 2.91×10^{-4}

Answer: D

D Watch Video Solution
28. (I) Least count of screw gauge is 0.01 mm
(II) Least count of vernier calliper is 0.1 mm

Which one is correct?
A. 0.01 mm
B. 0.01 cm
C. 0.1 mm
D. 1 cm

Answer: A
29. From the following statements, choose the incorrect statement:
A. Sonar emits ultra sound waves
B. The size of galaxy is 10^{-2} metre.
C. Sonar emits radio waves
D. The length of a typical virus is $10^{-8} \mathrm{~m}$

Answer: C

D Watch Video Solution
30. Least cound of metre scale is :
A. 1 cm

B. 0.1 cm

C. 1 mm
D. 0.1 mm

Answer: C

D Watch Video Solution

31. The ratio of the dimension of planck constant and that of moment of inertia is the dimension of
A. time

B. frequency

C. velocity
D. angular momentum

Answer: B

D Watch Video Solution

32. Select the incorrect statement from the following
statements :
(i) The radius of a rain drop is $10^{-6} \mathrm{~m}$
(ii) The mass of a neutron is $10^{27} \mathrm{~kg}$
(iii) The average distance of Pluto's orbit is $10^{12} \mathrm{~m}$
(iv) The diameter of the hydrogen atom is $10^{-10} \mathrm{~m}$
A. Statements (i) and (ii) are incorrect
B. Statements (ii) and (iii) are incorrect
C. Statement (ii) only incorrect
D. Statements (ii) and (iv) are incorrect

Answer: C

D Watch Video Solution

33. The angle subtended by a coin of radius 1 cm held at a distance of 80 cm from your eyes is :
A. 1.25 rad
B. 0.125 rad
C. 0.0125°
D. 0.025°

Answer: B

- Watch Video Solution

34. The density of a liquid in CGS system is $0.625 \mathrm{~g} / \mathrm{cm}^{3}$. What is its magnitude in SI system?
A. $625 \mathrm{~kg} / \mathrm{m}^{3}$
B. $0.0625 \mathrm{~kg} / \mathrm{m}^{3}$
C. $0.0625 \mathrm{~kg} / \mathrm{m}^{3}$
D. $0.00625 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: A

D Watch Video Solution

35. From the following units, select the odd man out.
A. Light year
B. Astronomical unit
C. Parsec
D. CSI (Chandrasekar's limit)

Answer: D

D Watch Video Solution

36. If $1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}=x$ newton- second, then the number x is equal to:
A. 10^{5}
B. 10^{10}
C. 10^{15}
D. 10^{-5}

Answer: D
37. Which one of the following is not the unit of energy ?
A. Light year
B. Astronomical unit
C. Parsec
D. all of the above

Answer: D
38. The respective number of significant figures for the number $13.013,0.0003$ and 9.1×10^{-3} are respectively:
A. $5,1,2$
B. 5, 4, 5
C. $5,5,2$
D. 5, 1, 3

Answer: A
39. A student measured the length of a wire and wrote it as 2.50 can which instrument did he/she use to measure it?
A. a screw gauge having 50 division in the circular scale and pitch as 1 mm .
B. a meter scale
C. a vernier caliper where the 10 division in vernier matches with a division in main scale.
D. a screw gauge having 100 division in the circular scale and pitch as 1 mm .
40. If the error in the measurement of radius of a sphere is 3% then the error in the measurement of volume of the sphere will be:
A. 4%
B. 6%
C. 2%
D. 9%

Answer: D

41. The diameter of the steel ball is measured using a vernier caliper which has divisions of 0.1 cm on its main scale nad 10 division of its vernier scale match 9 division on the main scale. Three such measurements for a ball are as follows.

S.No	MS (cm)	VS (divisions)
1	0.5	8
2	0.5	4
3	0.5	6

If the zero error is 0.03 cm , then mean corrected diameter is cm.
A. 0.56
B. 0.53

C. 0.59

D. 0.52

Answer: C

- Watch Video Solution

42. If $A=2.331 \mathrm{~cm}$ and $C=2.1 \mathrm{~cm}$, then
$A+C=\ldots \ldots . . \mathrm{cm}$.
A. 4.4
B. 4
C. 4.43
D. 4.431

Answer: A

- Watch Video Solution

43. Match the following units given in the column I with dimesnions in the column II.

Column'I	Column II
1. joule	(i) $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
2. watt	(ii) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$
3. pascal	(iii) $\mathrm{M}^{0} \mathrm{LT}^{-2}$
4. hertz	(iv) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}$
	(v) $\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}$
	(vi) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$

A. I-(vi), 2 - (iv), 3 - (i), 4 - (ii)

$$
\begin{aligned}
& \text { B. } 1 \text { - (v), } 2 \text { - (iv), } 3 \text { - (ii), } 4 \text { - (vi) } \\
& \text { C. } 1 \text { - (vi), } 2 \text { - (i), } 3-(\mathrm{v}), 4 \text { - (ii) } \\
& \text { D. } 1-\text { (iv), } 2 \text { - (iii), } 3-(\mathrm{vi}), 4 \text { - (i) }
\end{aligned}
$$

Answer: A

D Watch Video Solution

44. The least count of stop watch is 0.5 s . The time of 40 oscillation of the pendulum is found to be 40 s. The percentage error in the measurement of time period is \%
A. 0.75
B. 0.5
C. 1.25
D. 0.25

Answer: C

D Watch Video Solution

45. Assertion : SI system of units is a coherent system of units.

Reason: In this system, all the derived units can be easily obtained from basic and supplementary units.
A. Assertion is true and reason is false

B. Assertion is false and reason is true.

C. Assertion is true and reason is the correct
explanation of assertion
D. Assertion is true and reason is true but not the
correct explanation of assertion.

Answer: C

Watch Video Solution

46. The sum of the numbers $436.32,227.2$ and 0.301 in appropriate significant figure is :
A. 663.82
B. 663.8
C. 664
D. 6663.82

Answer: C

D Watch Video Solution

47. Gross error can be eliminated by :
A. careful observation and mental alert
B. eliminating the cause

C. taking mean

D. measuring with more than one instrument

Answer: A

- Watch Video Solution

48. The unit of permittivity of free space, ε_{0} is
A. Coulumb ${ }^{2} /(\text { Newton - metre })^{2}$
B. Coulumb / Newton - metre
C. Newton - metre ${ }^{2}$ / Coulumb ${ }^{2}$
D. Coulumb ${ }^{2}$ / Newton - metre ${ }^{2}$

Answer: D

D Watch Video Solution

49. High precision instruments are used to eliminate Error.
A. personal
B. random
C. chance
D. least count

Answer: D
50. Assertion : The length of a cylinder is 23.8 cm . In this measurement there are three significant figures.

Reason : The same length when expressed in millimeter as 23800 mm has four significant figures.

Which of the following is correct?
A. Assertion is true and reason is true.
B. Assertion is true and reason is false
C. Assertion is true and reason is correct explanation for assertion.
D. Assertion is true and reason is true but it is not correct explanation for assertion.

Answer: B

- Watch Video Solution

51. Round off to the number 12.653 upto 3 digits:
A. 12.5
B. 12.0
C. 12.7
D. 12.6

Answer: C

- Watch Video Solution

52. If $f=x^{2}$, then the relative error in f is :
A. $\frac{2 \Delta x}{x}$
B. $\frac{(\Delta x)^{2}}{x}$
C. $\frac{\Delta x}{x}$
D. $(\Delta x)^{2}$

Answer: A
53. The length and breadth of a rectangle are 6.01 m
and 12 m . Taking the significant figure into account the area of the rectangle is :
A. $72.00 m^{2}$
B. $72.1 m^{2}$
C. $72 m^{2}$
D. $72.12 m^{2}$

Answer: B
(D) Watch Video Solution
54. Which of the following digits are significant?
A. zero digits
B. zeros at the end without a decimal point
C. all zeros between two non - zeros digits, irrespective of the decimal point

D. all the above

Answer: C

55. Column I gives three physical quantities. Select the appropriate units for the choices given in column II.

Some of the physical quantities may have more than one choice correct.

Column I

1. Inductance
2. Magnetic induction
3. Capacitance

Column II

(i) Ohm (second)
(ii) Coulomb 2 (joule) ${ }^{-1}$
(iii) Coulomb (volt) $)^{-1}$
(iv) Newton (ampere metre) ${ }^{-1}$ (v) Volt second (ampere) ${ }^{-1}$
A. 1 - (iv), 2 - (iii), 3 - (ii) and (i)
B. 1-(i) and (v), 2 - (iv), 3 - (ii) and (iii)
C. 1 - (ii) and (v), 2 - (i) and (ii), 3 - (i) and (v)
D. 1 - (iv) and (v), 2 - (ii), 3 - (iii) and (iv)

- Watch Video Solution

56. The dimensional formula for relative density is :
A. $M L^{-3}$
B. $M^{0} L^{-3}$
C. $M^{0} L^{0} T^{0}$
D. $M^{0} L^{0} T^{-1}$

Answer: C

57. The dimensions of Hubble's constant are :
A. $\left[M^{0} L^{0} T\right]$
B. $\left[M^{0} L^{0} T^{-1}\right]$
C. $\left[M L T^{2}\right]$
D. $\left[M L T^{-1}\right]$

Answer: B

D Watch Video Solution

58. The dimensional formula of Planck's constand h is
A. energy
B. power
C. angular momentum
D. momentum

Answer: C

D Watch Video Solution

59. Match the physical quantities given in column I with dimensions given in column II. (Dimension of
charge is Q)

Column I	Column II
1. Torque	(i) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
2. Resistivity	(ii) $\mathrm{L}^{2} \mathrm{~T}^{-2}$
3. Angular momentum	(iii) $\mathrm{ML}^{2} \mathrm{Q}^{1}$
4. Latent heat	(iv) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
	(v) $\mathrm{ML}^{3} \mathrm{~T}^{-1} \mathrm{Q}^{-2}$
	(vi) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$

A. 1 - (iv), 2 - (iv), $3-(\mathrm{v}), 4$ - (ii)
B. 1 - (v), 2 - (iv), 3 - (ii), 4 - (i)
C. 1 - (vi), 2 - (v), 3 - (i), 4 - (ii)
D. 1-(v), 2-(i), 3 - (ii), 4 - (iii)

Answer: C
60. Select the odd man out from the following parameters.
A. Velocity gradient
B. Wave number
C. Decay constant
D. Linear frequency

Answer: B
61. Dimensions of impulse are :
A. $\left[M L^{-2} T^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-1} T^{-3}\right]$
D. $\left[M L^{-1} T^{-2}\right]$

Answer: B

- Watch Video Solution

62. Of the following Has dimensions.
A. strain
B. angle
C. gravitational constant
D. refractive index

Answer: C

D Watch Video Solution
63. Have the same dimensional formula.
A. Force and momentum
B. Density and linear density
C. Light year and wavelength
D. Stress and strain

Answer: C

D Watch Video Solution

64. Which of the following is dimensional constant?
A. Refractive index
B. Poisson's ratio
C. Strain
D. Gravitational constant

Watch Video Solution

65. A wire has a mass $0.3 \pm 0.003 g$ radius
$0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The maximum percentage error in the measurement of its density is :
A. 3
B. 4
C. 5
D. 2

Answer: B
66. The dimension of a quantity $\frac{h \gamma}{c}$ where h is the planck's constants, γ is the frequency and c is the velocity of light are :
A. $M T^{-1}$
B. $M L T^{-1}$
C. $M L T^{-2}$
D. $M L^{2} T^{2}$

Answer: B
67. In a particular system, the unit of length, mass and time are chosen to be $10 \mathrm{~cm}, 10 \mathrm{~g}$ and 0.1 s respectively. The unit of force in this system will be equivalent to
A. $0.1 N$
B. $1 N$
C. 10 N
D. 100 N

Answer: A
68. The dimensional formula of the constant "a" in

Vanderwaals gas eqaution is
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T:$
A. $M L^{-5} T^{2}$
B. $M L^{3} T^{-2}$
C. $M L^{2} T^{-1}$
D. $M L^{5} T^{-3}$

Answer: A
69. Force F is given by $F=a t+b t^{2}$. Where " t " is time.

What are the dimensions of "a" and "cb"?
A. $M L T^{-1}$ and $M L T^{0}$
B. $M L T^{-3}$ and $M L T^{-4}$
C. $M L T^{-3}$ and $M L T^{4}$
D. $M L T^{3}$ and $M L T^{-4}$

Answer: B
70. The radius of a sphere is measured as $(2.1 \pm 0.5) \mathrm{cm}$. Its surface area with error limits is :
A. $(55.4 \pm 23.4) \mathrm{cm}^{3}$
B. $(55.4 \pm 26.4) \mathrm{cm}^{2}$
C. $(55.4 \pm 22.4) \mathrm{cm}^{2}$
D. $(55.5 \pm 22.6) \mathrm{cm}^{2}$

Answer: B
71. In an experiment four quantities, a, b, c and d are measured with $\%$ error $1 \%, 2 \%, 3 \%$ and 4% respectively. If the quantity A is calculated as $A=\frac{a^{3} b^{2}}{c d}$ the $\%$ error in A is :
A. 4%
B. 28%
C. 14%
D. 7%

Answer: C

72. The frequency of vibration v of mass m suspended from a spring of spring constant k is given by $f=c m^{x} k^{y}$ where c is a dimensional constant. The volumes of x and y are:
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=\frac{1}{2}, y=-\frac{1}{2}$
C. $x=-\frac{1}{2}, y=\frac{1}{2}$
D. $x=-\frac{1}{2}, y=-\frac{1}{2}$

Answer: C
73. The dimensions of $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$ are the same as those of:
A. force

B. acceleration

C. velocity
D. energy

Answer: C

D Watch Video Solution
74. The dimensions of the quantities is one of the following pairs are the same. Identify the correct pair:
A. Energy and Young's modulus
B. Angular momentum and work
C. Time period and frequency
D. Torque and work

Answer: D

75. The voltage across a lamp is (6.0 ± 0.2) volt and current that passes through it is (2.0 ± 0.1) ampere.

The power of the lamp in watt is :
A. (6 ± 0.1)
B. (12 ± 0.1)
C. (24 ± 0.1)
D. (4 ± 0.1)

Answer: B
76. Which of the following will be the same dimension as that of time?

> A. $\frac{L}{R}$
> B. $\frac{C}{L}$
C. LC
D. $\frac{R}{L}$

Answer: A

D Watch Video Solution

77. The dimensional formula for area is
A. $\left[M^{2} L^{2} T^{2}\right]$
B. $\left[M L T^{2}\right]$
C. $\left[M^{0} L^{2} T^{2}\right]$
D. $\left[M^{0} L^{2} T^{0}\right]$

Answer: D

D Watch Video Solution

78. The dimensional formula for energy density is
A. $\left[M L T^{-1}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L^{2} T^{-1}\right]$

Answer: C

D Watch Video Solution

79. The dimensional formula for work is
A. $\left[M L T^{-2}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M L T^{2}\right]$
D. $\left[M L^{2} T^{-2}\right]$

- Watch Video Solution

80. The dimensional formula for pressure is
A. $\left[M L T^{-2}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M L T^{2}\right]$
D. $\left[M L^{2} T^{-2}\right]$

Answer: B
81. Special theory of relativity is a branch of Physics. It does not deal with:
A. space
B. motion of plantes
C. mass
D. time

Answer: B

D Watch Video Solution
82. The fraction of $\frac{1}{273.16}$ of temperature of the triple point of water is expressed in Scale of temperature.
A. celsius
B. fahrenheit
C. centigrade
D. kelvin

Answer: D
(D) Watch Video Solution
83. Which one of the following sets cannot enter into the list of fundamental quantities?
A. Time and mass
B. Length and time
C. Area and volume
D. Mass and time

Answer: C

D Watch Video Solution
84. The dimensional formula for linear momentum is
A. $\left[M L T^{-2}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{-2} T^{-3}\right]$

Answer: C

D Watch Video Solution

85. The dimensional formula for tension is
A. $[M L T]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L T^{-2}\right]$
D. $\left[M L T^{-3}\right]$

Answer: C

- Watch Video Solution

86. The dimensional formula for surface tension is
A. $\left[M L^{0} T^{-1}\right]$
B. $\left[M L^{0} T^{-2}\right]$
C. $\left[M L^{0} T^{-3}\right]$
D. $\left[M L T^{-2}\right]$

D Watch Video Solution

87. When a current of 1 ampere flowing through two parallel straight conductors: What amount of force per unit length acts between the conductors?
A. $1 \times 10^{-7} N$
B. $2 \times 10^{-7} N$
C. $3 \times 10^{7} N$
D. $4 \times 10^{-7} N$

- Watch Video Solution

88. Match the following physical quantities with respect to relative units:

Column I	Column II
1. Magnetic flux	(i) joule
2. Resistance	(ii) weber

3. Time	(iii) watt
4. Energy	(iv) second
	(v) ohm
	(vi) ohm-metre

A. 1-(iv), 2-(v), 3 - (iv), 4 - (ii)
B. 1 - (ii), 2 - (v), 3 - (vi), 4 - (i)
C. 1-(v), 2-(i), 3-(iv), 4-(vi)
D. 1 - (ii), 2 - (v), 3 - (iv), 4 - (i)

Answer: D

- Watch Video Solution

89. The dimensional formula for stress is
A. $\left[M L T^{-2}\right]$
B. $\left[M L^{-1} T^{-1}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L^{-2} T^{-3}\right]$

- Watch Video Solution

90. The dimensions of Pressure are same as

A. Force
B. Work
C. Surface tension
D. Stress

Answer: D

D Watch Video Solution
91. The value of Planck's constant is \qquad .
A. jouble per second
B. joule second
C. metre per second
D. watt second

Answer: B

D Watch Video Solution
92. Light year is a unit of
A. Time
B. Mass
C. Distance
D. Energy

Answer: C

- Watch Video Solution

93. 1 pascal is equal to :
A. $1 N m^{-2}$
B. $1 J m^{-2}$
C. $1 N m^{-1}$
D. $1 J m^{-1}$

Answer: A

D Watch Video Solution

94. Choose the correct statement from the following
statements :
A. S.I. unit of gravitational potential is J sec
B. S.I. unit of gravitational potential is Jkg
C. S.I. unit of gravitational potential is Watt metre
D. S.I. unit of gravitation potential is $\mathrm{J} \mathrm{kg}^{-1}$

- Watch Video Solution

95. Newton-second is the unit of
A. Velocity
B. Angular momentum
C. Momentum
D. Energy

Answer: C
(D) Watch Video Solution

96. Which of the following statements are correct?

(i) A physical quantity cannot be measured
(ii) A physical quantity can be measured
(iii) The units of physical quantity can be derived
(iv) A physical quantity can neither be a scalar nor a vector
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iv)
D. (ii) and (iv)

Answer: B
97. One nanometre is equal to
A. $10^{9} \mathrm{~mm}$
B. $10^{-6} \mathrm{~cm}$
C. $10^{-7} \mathrm{~cm}$
D. $10^{-9} \mathrm{~cm}$

Answer: C
(D) Watch Video Solution
98. A micron is related to centimetre as
A. 1 micron $=10^{-8} \mathrm{~cm}$
B. 1 micron $=10^{-6} \mathrm{~cm}$
C. 1 micron $=10^{-5} \mathrm{~cm}$
D. 1 micron $=10^{-4} \mathrm{~cm}$

Answer: D

D Watch Video Solution

99. Choose the odd man out from the following physical quantities:
A. Mass
B. Length
C. Velocity
D. Time

Answer: C

D Watch Video Solution

100. Which one of the following relations is wrong?
A. 1 fermi $=10^{-14} m$
B. 1 nanometer $=10^{-9} \mathrm{~m}$
C. $1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$

D. 1 parsec $=3.26$ light year

Answer: A

- View Text Solution

101. 1 CSL is the largest practical unit of :
A. time and length
B. mass only
C. temperature and mass
D. intensity of radiation and length
102. One exametre is equal to
A. $10^{18} m$
B. $10^{19} \mathrm{~m}$
C. $10^{21} \mathrm{~m}$
D. $10^{23} \mathrm{~m}$

Answer: A
103. One petametre is equal to
A. $10^{15} m$
B. $10^{18} \mathrm{~m}$
C. $10^{21} m$
D. $10^{24} \mathrm{~m}$

Answer: A
(D) Watch Video Solution
104. One petametre related to centimetre as
A. $10^{15} \mathrm{~cm}$
B. $10^{17} \mathrm{~cm}$
C. $10^{19} \mathrm{~cm}$
D. $10^{21} \mathrm{~cm}$

Answer: B

- Watch Video Solution

105. 10 petametre is equal to
A. $10^{15} m$
B. $10^{16} \mathrm{~m}$
C. $10^{17} \mathrm{~m}$
D. $10^{18} \mathrm{~m}$

Answer: B
(D) Watch Video Solution
106. Least cound of metre scale is :
A. 1 cm
B. 0.1 cm
C. 1 mm
D. 0.1 mm

Answer: C
107. The ratio of the dimension of planck constant and
that of moment of inertia is the dimension of
A. time
B. frequency
C. velocity
D. angular momentum

Answer: B

D View Text Solution
108. Select the incorrect statement from the following statements:
(i) The radius of a rain drop is $10^{-6} \mathrm{~m}$
(ii) The mass of a neutron is $10^{27} \mathrm{~kg}$
(iii) The average distance of Pluto's orbit is $10^{12} \mathrm{~m}$
(iv) The diameter of the hydrogen atom is $10^{-10} \mathrm{~m}$
A. Statements (i) and (ii) are incorrect
B. Statements (ii) and (iii) are incorrect
C. Statement (ii) only incorrect
D. Statements (ii) and (iv) are incorrect

Answer: C

109. The angle subtended by a coin of radius 1 cm held at a distance of 80 cm from your eyes is :
A. 1.25 rad
B. 0.125 rad
C. 0.0125°
D. 0.025°

Answer: B

110. The density of a liquid in CGS system is $0.625 \mathrm{~g} / \mathrm{cm}^{3}$. What is its magnitude in SI system?
A. $625 \mathrm{~kg} / \mathrm{m}^{3}$
B. $0.0625 \mathrm{~kg} / \mathrm{m}^{3}$
C. $0.0625 \mathrm{~kg} / \mathrm{m}^{3}$
D. $0.00625 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: A

D Watch Video Solution

111. From the following units, select the odd man out.
A. Light year
B. Astronomical unit
C. Parsec
D. CSI (Chandrasekar's limit)

Answer: D

D Watch Video Solution

112. If $1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-1}=x$ newton- second, then the number x is equal to:
A. 10^{5}
B. 10^{10}
C. 10^{15}
D. 10^{-5}

Answer: D

D Watch Video Solution
113. Which of the following is not the unit of time?
a) Light year b) Astronomical unit c) Parsec d) all of
the above
A. Light year
B. Astronomical unit

C. Parsec

D. all of the above

Answer: D

- Watch Video Solution

114. The respective number of significant figures for the number $13.013,0.0003$ and 9.1×10^{-3} are respectively:
A. $5,1,2$
B. 5, 4, 5
C. 5, 5, 2
D. 5, 1, 3

Answer: A

- Watch Video Solution

115. A student measured the length of a wire and wrote it as 2.50 can which instrument did he/she use to measure it?
A. a screw gauge having 50 division in the circular
scale and pitch as 1 mm .
B. a meter scale

C. a vernier caliper where the 10 division in vernier

 matches with a division in main scale.D. a screw gauge having 100 division in the circular scale and pitch as 1 mm .

Answer: B

- Watch Video Solution

116. If the error in the measurement of radius of a sphere is 3% then the error in the measurement of volume of the sphere will be :
A. 4%
B. 6%
C. 2%
D. 9%

Answer: D

- View Text Solution

117. The diameter of the steel ball is measured using a vernier caliper which has divisions of 0.1 cm on its main scale nad 10 division of its vernier scale match 9 division on the main scale. Three such measurements for a ball are as follows.

S.No	MS (cm)	VS (divisions)
1	0.5	8
2	0.5	4
3	0.5	6

If the zero error is 0.03 cm , then mean corrected diameter is cm.
A. 0.56
B. 0.53
C. 0.59
D. 0.52

Answer: C
118. If $A=2.331 \mathrm{~cm}$ and $C=2.1 \mathrm{~cm}$, then $A+C=\ldots \ldots . \mathrm{cm}$.
A. 4.4
B. 4
C. 4.43
D. 4.431

Answer: A

D Watch Video Solution
119. Match the following units given in the column I with dimesnions in the column II.

Column I	Column II
1. joule	(i) $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
2. watt	(ii) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$
3. pascal	(iii) $\mathrm{M}^{0} \mathrm{LT}^{-2}$
4. hertz	(iv) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}$
	(v) $\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}$
	(vi) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$

A. I-(vi), 2 - (iv), 3 - (i), 4-(ii)
B. 1 - (v), 2 - (iv), 3 - (ii), 4 - (vi)
C. 1 - (vi), 2-(i), 3-(v), 4-(ii)
D. 1 - (iv), 2 - (iii), 3 - (vi), 4 - (i)

Answer: A

D Watch Video Solution

120. The least count of stop watch is 0.5 s . The time of

40 oscillation of the pendulum is found to be 40 s . The percentage error in the measurement of time period is \%
A. 0.75
B. 0.5
C. 1.25
D. 0.25

Answer: C

121. Assertion : SI system of units is a coherent system of units.

Reason: In this system, all the derived units can be easily obtained from basic and supplementary units.
A. Assertion is true and reason is false
B. Assertion is false and reason is true.
C. Assertion is true and reason is the correct explanation of assertion
D. Assertion is true and reason is true but not the correct explanation of assertion.

Answer: C
122. The sum of the numbers $436.32,227.2$ and 0.301 in appropriate significant figure is :
A. 663.82
B. 663.8
C. 664
D. 6663.82

Answer: C
123. Gross error can be eliminated by :
A. careful observation and mental alert
B. eliminating the cause
C. taking mean
D. measuring with more than one instrument

Answer: A

- Watch Video Solution

124. A box is pulled with a force of 25 N to produce a displacement of 15 m . If the angle between the force
and displacement is 30°. Find the work done by the

force ?

A. Assertion is true, reason is true but it is not the correct explanation.
B. Assertion is true, reason is true and it is the correct explanation for assertion.
C. Assertion is true and reason is false.
D. Assertion is false and reason is true.

Answer: B

125. High precision instruments are used to eliminate

Error.

A. personal
B. random
C. chance
D. least count

Answer: D

- Watch Video Solution

126. Assertion : The length of a cylinder is 23.8 cm . In
this measurement there are three significant figures.

Reason : The same length when expressed in millimeter as 23800 mm has four significant figures. Which of the following is correct?
A. Assertion is true and reason is true.
B. Assertion is true and reason is false
C. Assertion is true and reason is correct explanation for assertion.
D. Assertion is true and reason is true but it is not correct explanation for assertion.

Answer: B

127. Round off to the number 12.653 upto 3 digits:
A. 12.5
B. 12.0
C. 12.7
D. 12.6

Answer: C
(Watch Video Solution
128. If $f=x^{2}$, then the relative error in f is :

$$
\text { A. } \frac{2 \Delta x}{x}
$$

B. $\frac{(\Delta x)^{2}}{x}$
C. $\frac{\Delta x}{x}$
D. $(\Delta x)^{2}$

Answer: A

- Watch Video Solution

129. The length and breadth of a rectangle are 6.01 m
and 12 m . Taking the significant figure into account the area of the rectangle is :
A. $72.00 m^{2}$
B. $72.1 m^{2}$
C. $72 m^{2}$
D. $72.12 m^{2}$

Answer: B

- Watch Video Solution

130. Which of the following digits are significant?
A. zero digits
B. zeros at the end without a decimal point
C.all zeros between two non - zeros digits, irrespective of the decimal point

D. all the above

Answer: C

D Watch Video Solution

131. Column I gives three physical quantities. Select the appropriate units for the choices given in column
II.

Some of the physical quantities may have more than
one choice correct.

Column I

1. Inductance
2. Magnetic induction
3. Capacitance

Column II

(i) Ohm (second)
(ii) Coulomb $^{2}(\text { joule })^{-1}$
(iii) Coulomb (volt) ${ }^{-1}$
(iv) Newton (ampere metre) ${ }^{-1}$
(v) Volt second (ampere) ${ }^{-1}$

$$
\text { A. } 1 \text { - (iv), } 2 \text { - (iii), } 3 \text { - (ii) and (i) }
$$

B. 1 - (i) and (v), 2 - (iv), 3 - (ii) and (iii)
C. 1 - (ii) and (v), 2 - (i) and (ii), 3 - (i) and (v)
D. 1 - (iv) and (v), 2 - (ii), 3 - (iii) and (iv)

Answer: B

132. The dimensional formula for relative density is :
A. $M L^{-3}$
B. $M^{0} L^{-3}$
C. $M^{0} L^{0} T^{0}$
D. $M^{0} L^{0} T^{-1}$

Answer: C

D Watch Video Solution

133. The dimensions of Hubble's constant are :
A. $\left[M^{0} L^{0} T\right]$
B. $\left[M^{0} L^{0} T^{-1}\right]$
C. $\left[M L T^{2}\right]$
D. $\left[M L T^{-1}\right]$

Answer: B

D Watch Video Solution

134. The dimensional formula of Planck's constand h is
A. energy
B. power
C. angular momentum
D. momentum

Answer: C

- Watch Video Solution

135. Match the physical quantities given in column I with dimensions given in column II. (Dimension of charge is Q)

Column I	Column II
1. Torque	(i) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
2. Resistivity	(ii) $\mathrm{L}^{2} \mathrm{~T}^{-2}$
3. Angular momentum	(iii) $\mathrm{ML}^{2} \mathrm{Q}^{1}$
4. Latent heat	(iv) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
	(v) $\mathrm{ML}^{3} \mathrm{~T}^{-1} \mathrm{Q}^{-2}$
	(vi) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$

A. 1 - (iv), 2 - (iv), 3 - (v), 4 - (ii)
B. 1 - (v), 2 - (iv), 3 - (ii), 4 - (i)
C. 1 - (vi), 2-(v), 3-(i), 4-(ii)
D. 1-(v), 2-(i), 3-(ii), 4-(iii)

Answer: C

- Watch Video Solution

136. Select the odd man out from the following parameters.
A. Velocity gradient

B. Wave number

C. Decay constant
D. Linear frequency

Answer: B
(D) Watch Video Solution
137. Dimensions of impulse are :
A. $\left[M L^{-2} T^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-1} T^{-3}\right]$
D. $\left[M L^{-1} T^{-2}\right]$

Answer: B

D Watch Video Solution

138. Of the following Has dimensions.
A. strain
B. angle
C. gravitational constant
D. refractive index
A. Force and momentum
B. Density and linear density
C. Light year and wavelength
D. Stress and strain

Answer: C
140. Which of the following is dimensional constant?
A. Refractive index
B. Poisson's ratio
C. Strain
D. Gravitational constant

Answer: D

D Watch Video Solution

141. A wire has a mass $0.3 \pm 0.003 g$ radius
$0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The
maximum percentage error in the measurement of its density is :
A. 3
B. 4
C. 5
D. 2

Answer: B

D Watch Video Solution

142. The dimension of a quantity $\frac{h \gamma}{c}$ where h is the planck's constants, γ is the frequency and c is the
velocity of light are :
A. $M T^{-1}$
B. $M L T^{-1}$
C. $M L T^{-1}$
D. $M L^{2} T^{2}$

Answer: B

- Watch Video Solution

143. If the energy $E=G^{p} h^{q} c^{r}$ where G is the universal gravitational constant, h is the planck's constant and c is the velocity of light, then the values of p, q and r
are respectively:
a) $-1 / 2,1 / 2$ and $5 / 2$
b) $1 / 2,-1 / 2$ and $-5 / 2$
c) $-1 / 2,1 / 2$ and $3 / 2$
d) $1 / 2,-1 / 2$ and $-3 / 2$
A. $-\frac{1}{2}, \frac{1}{2}$ and $\frac{5}{2}$
B. $\frac{1}{2},-\frac{1}{2}$ and $-\frac{5}{2}$
C. $-\frac{1}{2}, \frac{1}{2}$ and $\frac{3}{2}$
D. $\frac{1}{2},-\frac{1}{2}$ and $-\frac{3}{2}$

Answer: A
144. The dimensional formula of the constant "a" in

Vanderwaals gas eqaution is

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T:
$$

A. $M L^{-5} T^{2}$
B. $M L^{3} T^{-2}$
C. $M L^{2} T^{-1}$
D. $M L^{5} T^{-3}$

Answer: A
145. Force F is given by $F=a t+b t^{2}$. Where " t " is time. What are the dimensions of "a" and "cb"?
A. $M L T^{-1}$ and $M L T^{0}$
B. $M L T^{-3}$ and $M L T^{-4}$
C. $M L T^{-3}$ and $M L T^{4}$
D. $M L T^{3}$ and $M L T^{-4}$

Answer: B
146. The radius of a sphere is measured as $(2.1 \pm 0.5) \mathrm{cm}$. Its surface area with error limits is :
A. $(55.4 \pm 23.4) \mathrm{cm}^{3}$
B. $(55.4 \pm 26.4) \mathrm{cm}^{2}$
C. $(55.4 \pm 22.4) \mathrm{cm}^{2}$
D. $(55.5 \pm 22.6) \mathrm{cm}^{2}$

Answer: B
147. In an experiment four quantities, a, b, c and d are measured with $\%$ error $1 \%, 2 \%, 3 \%$ and 4% respectively. If the quantity A is calculated as $A=\frac{a^{3} b^{2}}{c d}$ the $\%$ error in A is :
A. 4%
B. 28%
C. 14%
D. 7%

Answer: C

148. The frequency of vibration v of mass m suspended from a spring of spring constant k is given by $f=c m^{x} k^{y}$ where c is a dimensional constant. The volumes of x and y are :
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=\frac{1}{2}, y=-\frac{1}{2}$
C. $x=-\frac{1}{2}, y=\frac{1}{2}$
D. $x=-\frac{1}{2}, y=-\frac{1}{2}$

Answer: C

149. The dimensions of $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$ are the same as those of:
A. force
B. acceleration
C. velocity
D. energy

Answer: C

D Watch Video Solution
150. The dimensions of the quantities is one of the following pairs are the same. Identify the correct pair:
A. Energy and Young's modulus
B. Angular momentum and work
C. Time period and frequency
D. Torque and work

Answer: D
151. The voltage across a lamp is (6.0 ± 0.2) volt and current that passes through it is (2.0 ± 0.1) ampere.

The power of the lamp in watt is :
A. (6 ± 0.1)
B. (12 ± 0.1)
C. (24 ± 0.1)
D. (4 ± 0.1)

Answer: B

152. Which of the following will be the same dimension as that of time?
A. $\frac{L}{R}$
B. $\frac{C}{L}$
C. LC
D. $\frac{R}{L}$

Answer: A

D Watch Video Solution

Other Important Questions Answers li Very Short Answer
Questions

1. What is science?

- Watch Video Solution

2. What are physical and biological sciences ?

D Watch Video Solution
3. What is the origin of the word physics ?

-
 Watch Video Solution

4. What is the Physics?
5. Name the main branches of physics.

- Watch Video Solution

6. What are the branches of classical physics?

(D) Watch Video Solution

7. What are the braches of modern physics?
8. Distinguish between classical mechanics and quantum mechanics.

- Watch Video Solution

9. What is Thermodynamics?

- Watch Video Solution

10. What is optics?
11. What are electricity and magnetism?

- Watch Video Solution

12. What si the meaning of Acoustics?

- Watch Video Solution

13. What is Astrophysics?

-
 Watch Video Solution

14. What is relativity?
15. What are atomic and nuclear physics ?

- Watch Video Solution

16. What is condensed matter physics ?

D Watch Video Solution
17. What is high energy physics ?
18. In what way Physics is in relation to Chemistry.

D Watch Video Solution

19. What is the relation of Physics to Biology?

D Watch Video Solution

20. Describe the relation of Physics with mathematics

D Watch Video Solution

21. In what ways physics is in relation to astronomy?

- Watch Video Solution

22. How is physics useful in geology and oceanogrpahy? (or) Describe the relation of Physics with geology.

- Watch Video Solution

23. How is physics useful in geology and oceanogrpahy? (or) Describe the relation of Physics with geology.

24. Describe the relation of Physics with Psychology.

- Watch Video Solution

25. Define physical quantity.

D Watch Video Solution

26. What are fundamental units and derived units?

D Watch Video Solution
27. What are fundamental units and derived units?
28. Define FPS system of units.

- Watch Video Solution

29. What is meant by C.G.S. system of units ?

(D) Watch Video Solution

30. Define MKS system of units.
31. Dimensions of stress are :
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{0} T^{-2}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L T^{-2}\right]$

Answer: C

(Watch Video Solution

32. Define one metre.
33. Define the SI unit of mass (or) What is one kilogram in SI system of units?

- Watch Video Solution

34. Define the SI unit of time. (or) What is one second in SI system of units?

- Watch Video Solution

35. Define th SI unit of electric current. (or) What is one second in SI system of units? (or) Define one
ampere (S.I standard for current)

D Watch Video Solution

36. Define one kelvin.

D Watch Video Solution
37. Define one mole.
(D) Watch Video Solution
38. What meant by one candela? And Which base quantity is measured by this unit? (or) Define one candela (S.I standard for Luminous intensity)

- Watch Video Solution

39. What is meant by the triple point of water?

- Watch Video Solution

40. Define the SI unit of length.

41. Define one radian (S.I standard for plane angle)

- Watch Video Solution

42. Define one steraedian(S.I standard for solid angle)

D Watch Video Solution
43. Define a radian.

- Watch Video Solution

44. Name the supplementary units converted into derived units.
(D) Watch Video Solution
45. Where do we use indirect methods to measure distance?

D Watch Video Solution
46. Name the method used in the determination of very large distances.
47. What do you understand by the term parallax angle ?

- Watch Video Solution

48. How many Astronomical units are there in one
light year?
Given Data:
1 Astronomical unit $=1.496 \times 10^{11} \mathrm{~m}$
1 light year $=9.46 \times 10^{15} \mathrm{~m}$

- Watch Video Solution

49. Define a Astronomical Unit.
50. What is parsec? (or) Define one parsec (parallactic second)

D Watch Video Solution
51. Define mass

D Watch Video Solution

52. Name the instrument to measure sub- atomic particles.
53. Define the term time. Give its S.I. unit.

D Watch Video Solution

54. List few instruments to measure time.

- Watch Video Solution

55. What is an error? Name the three Errors in

Measurement.
56. What do you understand by term error in measurements ?

- Watch Video Solution

57. What is Absolute Error.

- Watch Video Solution

58. What is Mean Absolute error?
59. What do you mean by Relative error ?

D Watch Video Solution

60. What do you mean by percentage error ?

- Watch Video Solution

61. What is significant figures?

- Watch Video Solution

62. What is menat by the dimensions of a physical quantity?

D Watch Video Solution
63. What is meant by dimensional formula ?

D Watch Video Solution

64. What is dimensiional equation? Given an example.
65. What is science?

D Watch Video Solution

66. What are physical and biological sciences?

D Watch Video Solution
67. What is the Physics?

0
 Watch Video Solution

68. What is the Physics?
69. Name the main branches of physics.

D Watch Video Solution

70. What are the branches of classical physics?

- Watch Video Solution

71. What are the braches of modern physics?

72. What is Classical mechanics?

- Watch Video Solution

73. What is Thermodynamics?

- Watch Video Solution

74. What is optics?

D Watch Video Solution
75. What are electricity and magnetism?
76. What is acoustics ?

- View Text Solution

77. What is Astrophysics?

(D) Watch Video Solution

78. What is relativity ?
79. What are atomic and nuclear physics ?

- Watch Video Solution

80. What is condensed matter physics ?

D Watch Video Solution

81. What is high energy physics ?

- Watch Video Solution

82. In what way Physics is in relation to Chemistry.
83. What is the relation of Physics to Biology?

- Watch Video Solution

84. Describe the relation of Physics with mathematics

- Watch Video Solution

85. In what ways physics is in relation to astronomy?
86. How is physics useful in geology and oceanogrpahy? (or) Describe the relation of Physics with geology.

D Watch Video Solution

87. Discuss the relation of physics with oceanography.

D Watch Video Solution
88. Describe the relation of Physics with Psychology.
89. Assertion: Quantities that can be expressed in terms of fundamental quantities are derived quantities.

Reason: Examples are Mass, Length, Time etc.
(D) Watch Video Solution
90. What are fundamental units and derived units?

- Watch Video Solution

91. What are fundamental units and derived units?

92. Define FPS system of units.

(D) Watch Video Solution

93. What is meant by C.G.S. system of units ?

- Watch Video Solution

94. Define MKS system of units.

-
 Watch Video Solution

95. What is meant by S.I. unit ?

- Watch Video Solution

96. Define one metre.

- Watch Video Solution

97. Define one kilogram.

D Watch Video Solution
98. Define one second.
100. What is the SI unit of temperature and define it?

What is one kelvin in SI system of units?

- Watch Video Solution

101. Define one mole.
102. What meant by one candela? And Which base quantity is measured by this unit? (or) Define one candela (S.I standard for Luminous intensity)

D Watch Video Solution

103. What is meant by the triple point of water?

- Watch Video Solution

104. Define the SI unit of length.
105. Define a radian.

(D) Watch Video Solution

106. Define one steraedian(S.I standard for solid angle)

D Watch Video Solution
107. Obtain the value of 1 radian.
(D) Watch Video Solution
108. Name the supplementary units converted into derived units.

D Watch Video Solution

109. Where do we use indirect methods to measure distance?
(D) Watch Video Solution
110. Name the method used in the determination of very large distances.
111. What do you understand by the term parallax angle ?

- Watch Video Solution

112. How many Astronomical units are there in one
light year?
Given Data:
1 Astronomical unit $=1.496 \times 10^{11} \mathrm{~m}$
1 light year $=9.46 \times 10^{15} \mathrm{~m}$

- Watch Video Solution

113. Define a Astronomical Unit.
114. What is parsec? (or) Define one parsec (parallactic second)

D Watch Video Solution
115. Define mass

D Watch Video Solution

116. Name the instrument to measure sub- atomic particles.
117. Define the SI unit of time. (or) What is one second in SI system of units?

D Watch Video Solution
118. List few instruments to measure time.

D Watch Video Solution

119. What is an error? Name the three Errors in

Measurement.
120. What do you understand by term error in measurements ?
(D) Watch Video Solution
121. What is Absolute Error.

- Watch Video Solution

122. What is Mean Absolute error?

D Watch Video Solution
123. What is Relative error?

- Watch Video Solution

124. What is Percentage error?

D Watch Video Solution
125. What is significant figures?

D Watch Video Solution
126. What is menat by the dimensions of a physical quantity?

- Watch Video Solution

127. What is meant by dimensional formula?

D Watch Video Solution

128. What is dimensiional equation? Given an example.

Other Important Questions Answers lii Short Answer Questions

1. What is meant by Parallax?

D Watch Video Solution

2. What is menat by Scientific method?

-
 Watch Video Solution

3. What are the two approaches to be applied while studying physics ? Give suitable example for each.
4. Write a note on scope of physics.

- Watch Video Solution

5. How is physics learning really exiting ?

D Watch Video Solution

6. "Technological advancements owe a great deal to the developments in physics" - Explain.
7. What do you understand by the term measurement ? Explain with example.

- Watch Video Solution

8. What is the Relation between radians and degrees ?

D Watch Video Solution
9. Distinguish between macrocosm and microcosm.

Watch Video Solution

10. What are the advantages of SI system?

- Watch Video Solution

11. State the rules for finding the significant figures in the addition and subtraction of two numbers, with example.

- Watch Video Solution

12. State the rules for finding the significant figures in
the multiplication and division of two numbers, with example.

- Watch Video Solution

13. What is meant by Parallax?

D Watch Video Solution

14. What is scientific method ? List the various stages involved in it.

- View Text Solution

15. What are the two approaches to be applied while
studying physics ? Give suitable example for each.
16. Write a note on scope of physics.

- Watch Video Solution

17. How is physics learning really exiting ?

D Watch Video Solution

18. "Technological advancements owe a great deal to the developments in physics" - Explain.
19. What do you understand by the term measurement ? Explain with example.

D Watch Video Solution

20. Derive the relations between radian, degree and minute.

D Watch Video Solution

21. Distinguish between macrocosm and microcosm.
22. What are the advantages of SI system?

D Watch Video Solution

23. State the rules for finding the significant figures in the addition and subtraction of two numbers, with example.
24. State the rules for finding the significant figures in
the multiplication and division of two numbers, with example.

D Watch Video Solution

Other Important Questions Answers Iv Long Answer Questions

1. How will measure the diameter of the Moon using parallax method?
2. If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be:
A. $\left[E V^{-1} T^{-2}\right]$
B. $\left[E V^{-2} T^{-2}\right]$
C. $\left[E^{-2} V^{-1} T^{-3}\right]$
D. $\left[E V^{-2} T^{-1}\right]$

Answer: B

- Watch Video Solution

3. What are the rule for rounding off a number?
4. If dimensions of critical velocity of a liquid v_{c} flowing through a tube are expressed as $\left[\eta^{x} \rho^{y} r^{z}\right]$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by A. $-1,-1,1$
B. $-1,-1,-1$
C. $1,1,1$
D. $1,-1,-1$

Answer: D

- Watch Video Solution

5. How will you measure the diameter of the Moon using parallax method?

D Watch Video Solution

6. Explain the propagation of errors in subtraction, quotient and power of a quantity.
7. Write the rules of "Rounding off" with example.

(D) Watch Video Solution

8. How can we classify variables and constants based on dimension. Give example for each type?

D Watch Video Solution

Other Important Questions Answers V Numerical Problems

1. The density of material is $0.6 \mathrm{~g} \mathrm{~cm}^{-3}$ express it in S.I. units.

D Watch Video Solution
2. Convert an acceleration of $5 \mathrm{kmh}^{-2}$ into an s^{-2}.

D Watch Video Solution

3. Calculate the angle of
(i) 1° (degree) in radius.

Use $360^{\circ}=2 \pi \mathrm{rad}, 1^{\circ}=60^{\circ}$ and $1^{\prime}=60^{\prime} \prime$
4. Calculate the angle of
(ii) 1^{\prime} (minute of arc or arc min) in radius.

Use $360^{\circ}=2 \pi \mathrm{rad}, 1^{\circ}=60^{\circ}$ and $1^{\prime}=60^{\prime}$

- Watch Video Solution

5. The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-\frac{1}{2}}$ are
A. $\left[L^{\frac{1}{2}} T^{-\frac{1}{2}}\right]$
B. $\left[L^{-1} T\right]$
C. $\left[L T^{-1}\right]$
D. $\left[L^{-\frac{1}{2}} T^{\frac{1}{2}}\right]$

Answer: C

- Watch Video Solution

6. The angular diameter of the sun is 1920 ". If the distance of the sun from the earth is $1.5 \times 10^{9} \mathrm{~m}$, what is the linear diameter of the sun?

D Watch Video Solution

7. The angular diameter of the sun is 1920 ". If the distance of the sun from the earth is $1.5 \times 10^{12} \mathrm{~m}$, what is the linear diameter of the sun?
8. The length of a rod as measured in an experiment was found to be $3.48,3.46,3.49 \mathrm{~m}, 3.50 \mathrm{~m}$ and 3.48 m .

Find the average length, the absolute error in each observation and percentage error.

D Watch Video Solution

9. A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Determine velocity of the body within error limits.
10. The percentage errors in the measurement of length and time period of a simple pendulum are
2% and 3% respectively. Then find the maximum error in the measurement of acceleration due to gravity.

- Watch Video Solution

11. In the formula, $N=-D\left[\frac{n_{2}-n_{1}}{x_{2}-x_{1}}\right], \quad \mathrm{D}$ -

Diffusion coefficient, n_{1} and ${ }_{2}$ is number of molecules
in unit volume along x_{1} and x_{2} which represents
distances where N is number of molecules passing
through per unit area per unit time. Calculate dimensions of D.

- Watch Video Solution

$$
\begin{aligned}
& \text { 12. The resistance } R=\frac{V}{I} \text {, where } \\
& V=500 \pm 5 V \text { and } I=10 \pm 0.5 A \text {. Find the }
\end{aligned}
$$

percentage error in R.

- Watch Video Solution

13. The percentage of error in the measurement of mass and speed are 4% and 5% respectively. How much will be the maximum error in the estimating
kinetic energy obtained by measuring mass and speed?

- Watch Video Solution

14. If the length and tiome period of an oscillating pendulum have errors of 1% and 3% respectgively then the error in measurement of acceleratinon due to gravity is

- Watch Video Solution

15. The heat dissipated in a resistance can be determined by measuring resistance current and time.

If the maximum error in the above quantities are $2 \%, 3 \%$ and 6% respectively. Then calculate the maximum error in the determination of the dissipated heat?

- Watch Video Solution

16. The relative density of a material is found by weighing the body first in air and then in water. If the weight in air is $(20.0 \pm 0.1) N$ and weight and water is $(10.0 \pm 0.1) N$, what would be the maximum percentage error in relative density?
17. Round off the following numbers are indicated?
18.35 upto 3 digits

- Watch Video Solution

18. Round off the following numbers are indicated ?
(ii) 143.45 upto 4 digits

- Watch Video Solution

19. Round off the following numbers are indicated ?
(iii) 18967 upto 3 digits
20. Round off the following numbers are indicated ?
(iv) 12.653 upto 3 digits

D Watch Video Solution

21. Round off the following numbers are indicated ?
(v) 248337 upto 3 digits

D Watch Video Solution

22. Round off the following numbers are indicated ?
(vi) 321.135 upto 5 digits
23. Round off the following numbers are indicated ? (vii) 101.55×10^{6} upto 4 digits

- Watch Video Solution

24. Round off the following numbers are indicated ?
(viii) 31.325×10^{-5} unto 4 digits.
(D) Watch Video Solution

25. Add 7.21, 12.141 and 0.0028 and express the result

 to an appropriate number of significant figures.
- Watch Video Solution

26. Solve the following and express the result to an appropriate number of significant figures.
(i) Add $6.2 \mathrm{~g}, 4.33 \mathrm{~g}$ and 17.456 g

- Watch Video Solution

27. Solve the following and express the result to an appropriate number of significant figures.
(ii) Subtract 63.54 kg from 187.2 kg

D Watch Video Solution

28. Solve the following and express the result to an appropriate number of significant figures.
(iii) $75.5 \times 125.2 \times 0.51$

- Watch Video Solution

29. Solve the following and express the result to an appropriate number of significant figures.
(vi) $\frac{2.13 \times 24.78}{485.2}$
30. Solve the following and express the result to an appropriate number of significant figures.
(v) $\frac{2.51 \times 10^{-4} \times 1.81 \times 10^{7}}{0.4463}$

D Watch Video Solution
31. Find the number of erg in one Joule.
32. Value of acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

Find its value in $k m / h r^{2}$.

- Watch Video Solution

33. Density of oil is $0.8 \mathrm{gm} / \mathrm{cm}^{3}$. Find its value in MKS
system.

- Watch Video Solution

34. The kinetic energy of rotation K depends on the angular momentum J and moment of inertia I. Find the expression for kinetic energy.

- Watch Video Solution

35. The percentage of error in the measurement of mass and speed are 5% and 8% respectively. How much will be the maximum error in the estimating kinetic energy obtained by measuring mass and speed?

Watch Video Solution

36. Deduce the dimensional formulae of the following physical quantities. (i) Heat
37. The percentage of error in the measurement of mass and speed are 7% and 9% respectively. How much will be the maximum error in the estimating kinetic energy obtained by measuring mass and speed?

- Watch Video Solution

38. Deduce the dimensional formulae of the following physical quantities. (iii) latent heat
39. The percentage errors in the measurement of length and time period of a simple pendulum are 3% and 6% respectively. Then find the maximum error in the measurement of acceleration due to gravity.

- Watch Video Solution

40. Deduce the dimensional formulae of the following physical quantities. (v) Boltzmann's constant
41. The dimension of $\frac{1}{2} \varepsilon_{0} E^{2}$, where ε_{0} is permittivity of free space and E is electric field is :
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L T^{-1}\right]$

Answer: B
(D) Watch Video Solution
42. Deduce the dimensional formulae of the following physical quantities. (vii) mechanical equivalent of heat.

- Watch Video Solution

43. If force $|F|$, velocity $|v|$ and time $|T|$ are taken as to fundamental units then the dimensions of mass are

- Watch Video Solution

44. The value G is CGS system is 6.67×10^{-8} dyne $\mathrm{cm}^{2} g^{-2}$. Calcualte the value in SI units.
45. If the units of force, energy and velocity are 20N, 200J and $5 \mathrm{~ms}^{-1}$, find the unit of length, mass time.

D Watch Video Solution

46. If the dimensions of a physical quantity are given
by $M^{a} L^{b} T^{c}$, then the physical quantity will be:
A. Velocity if $a=1, b=0, c=-1$
B. Acceleration if $a=1, b=1, c=-2$
C. Force if $a=0, b=-1, c=-2$
D. Pressure if $a=1, b=-1, c=-2$

Answer: D

- Watch Video Solution

47. Dimensions of resistance in an electrical circuit, in terms of dimension of mass [M], of length [L], of time
[T) and of current [I], would be
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{2} T^{-1} I^{-1}\right]$
C. $\left[M L^{2} T^{-3} I^{-2}\right]$
D. $\left[M L^{2} T^{-3} I^{-1}\right]$

Answer: C

D Watch Video Solution

48. Find the dimensions of a / b in the equation. $F=a \sqrt{x}+b t^{2}$ where F is force, x is distance and t is time.

D View Text Solution

49. In the equation : $y=a \sin (\omega t-k x)$, t and x
stand for time and distnace respectively. Obtain the dimensional formula for ω and k .
50. A planet moves around the sun in nearly circular orbit. Its period of revolution 'T' depends upon. (i) radius 'r' or orbit, (ii) mass ' m ' of the sun and. (iii) The gravitational constant G show dimensionally that $T^{2} \propto r^{3}$.

- Watch Video Solution

51. The escape velocity v of a body depends upon (i)
the acceleration due to gravity of the planet and (ii) the radius of the planet R. Establish dimensionally the relationship between v, g and R .
52. The density of material is $0.6 \mathrm{~g} \mathrm{~cm}^{-3}$ express it in S.I. units.

D Watch Video Solution

53. Convert an acceleration of $3 \mathrm{kmh}^{-2}$ into $\mathrm{cms}^{\wedge}(-2)^{\prime}$.

- Watch Video Solution

54. Calculate the angle of
(i) 1° (degree) in radius.

Use $360^{\circ}=2 \pi \mathrm{rad}, 1^{\circ}=60^{\circ}$ and $1^{\prime}=60^{\prime}{ }^{\prime}$

D Watch Video Solution

55. Calculate the angle of
(ii) 1^{\prime} (minute of arc or arc min) in radius.

Use $360^{\circ}=2 \pi \mathrm{rad}, 1^{\circ}=60^{\circ}$ and $1^{\prime}=60^{\prime}$

- Watch Video Solution

56. Calculate the angle of
(iii) 1" (second of arc or arc second) in radius.

Use $360^{\circ}=2 \pi \mathrm{rad}, 1^{\circ}=60^{\circ}$ and $1^{\prime}=60^{\prime}$
57. The angular diameter of the sun is 1920". If the distance of the sun from the earth is $1.5 \times 10^{11} \mathrm{~m}$, what is the linear diameter of the sun?

D Watch Video Solution

58. Which of the following measurements is most precise?
59. The length of a rod as measured in an experiment was found to be $3.48,3.46,3.49 \mathrm{~m}, 3.50 \mathrm{~m}$ and 3.48 m .

Find the average length, the absolute error in each observation and percentage error.

- Watch Video Solution

60. A body travels uniformly a distance of
$(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Determine velocity of the body within error limits.
61. The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then find the maximum error in the measurement of acceleration due to gravity.

- Watch Video Solution

62. In the formula, $N=-D\left[\frac{n_{2}-n_{1}}{x_{2}-x_{1}}\right], \quad \mathrm{D}-$

Diffusion coefficient, n_{1} and ${ }_{2}$ is number of molecules
in unit volume along x_{1} and x_{2} which represents
distances where N is number of molecules passing
through per unit area per unit time. Calculate dimensions of D.

- Watch Video Solution

63. The resistance $R=\frac{V}{I}$, where
$V=100 \pm 5 V$ and $I=10 \pm 0.2 A . \quad$ Find the
percentage error in R.

- Watch Video Solution

64. The percentage of error in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimating
kinetic energy obtained by measuring mass and speed?

- Watch Video Solution

65. If the length and time period of an oscillating pendulum have errors of 2% and 5% respectively, what is the error in the estimate of g ?

D Watch Video Solution

66. The heat dissipated in a resistance can be determined by measuring resistance current and time.

If the maximum error in the above quantities are
$1 \%, 2 \%$ and 1% respectively. Then calculate the maximum error in the determination of the dissipated heat?

- Watch Video Solution

67. The relative density of a material is found by weighing the body first in air and then in water. If the weight in air is $(10.0 \pm .01) N$ and weight and water is $(5.0 \pm 0.1) N$, what would be the maximum percentage error in relative density?
68. Round off the following numbers are indicated ? (i)
18.35 upto 3 digits

- Watch Video Solution

69. Round off the following numbers are indicated ?
(ii) 143.45 upto 4 digits

D Watch Video Solution
70. Round off the following numbers are indicated ?
(iii) 18967 upto 3 digits
71. Round off the following numbers are indicated ?
(iv) 12.653 upto 3 digits

- Watch Video Solution

72. Round off the following numbers are indicated ?
(v) 248337 upto 3 digits
(D) Watch Video Solution
73. Round off the following numbers are indicated ?
(vi) 321.135 upto 5 digits
74. Round off the following numbers are indicated ? (vii) 101.55×10^{6} upto 4 digits

- Watch Video Solution

75. Round off the following numbers are indicated ?
(viii) 31.325×10^{-5} unto 4 digits.

- Watch Video Solution

76. Add 7.21, 12.141 and 0.0028 and express the result to an appropriate number of significant figures.

- Watch Video Solution

77. Solve the following and express the result to an appropriate number of significant figures.
(i) Add $6.2 \mathrm{~g}, 4.33 \mathrm{~g}$ and 17.456 g

- Watch Video Solution

78. Solve the following and express the result to an appropriate number of significant figures.
(ii) Subtract 63.54 kg from 187.2 kg

D Watch Video Solution

79. Solve the following and express the result to an appropriate number of significant figures.
(iii) $75.5 \times 125.2 \times 0.51$

- Watch Video Solution

80. Solve the following and express the result to an appropriate number of significant figures.
(vi) $\frac{2.13 \times 24.78}{485.2}$
81. Solve the following and express the result to an appropriate number of significant figures.
(v) $\frac{2.51 \times 10^{-4} \times 1.81 \times 10^{7}}{0.4463}$

D Watch Video Solution
82. Find the number of erg in one Joule.
(D) Watch Video Solution
83. Value of acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

Find its value in $k m / h r^{2}$.

- Watch Video Solution

84. Density of oil is $0.8 \mathrm{gm} / \mathrm{cm}^{3}$. Find its value in MKS
system.

D Watch Video Solution
85. The kinetic energy of rotation K depends on the
angular momentum J and moment of inertia I. Find
the expression for kinetic energy.

- Watch Video Solution

86. If the constant of gravitation (G), Planck's constant
(h) and the velocity of light (c) be chosen as fundamental units. What is the dimension of the raidus of gyration?

D Watch Video Solution

87. Deduce the dimensional formulae of the following physical quantities. (i) Heat
88. Deduce the dimensional formulae of the following physical quantities. (ii) specific heat

- Watch Video Solution

89. Deduce the dimensional formulae of the following
physical quantities. (iii) latent heat

- Watch Video Solution

90. Deduce the dimensional formulae of the following
physical quantities. (iv) gas constant
91. Deduce the dimensional formulae of the following physical quantities. (v) Boltzmann's constant

- Watch Video Solution

92. Deduce the dimensional formulae of the following
physical quantities. (vi) coefficient of thermal conductivity

D Watch Video Solution
93. Deduce the dimensional formulae of the following physical quantities. (vii) mechanical equivalent of heat.

- Watch Video Solution

94. Taking velocity, time and force as the fundamental quantities, find the dimensions of mass.

D Watch Video Solution

95. The value G is CGS system is 6.67×10^{-8} dyne
$\mathrm{cm}^{2} g^{-2}$. Calcualte the value in SI units.
96. If the units of force, energy and velocity are 20N, 200J and $5 \mathrm{~ms}^{-1}$, find the unit of length, mass time.

- Watch Video Solution

97. Check the dimensional consistency of the following equations.
(i) de-Broglie wavelength, $\lambda=\frac{h}{m v}$.
98. Check the dimensional consistency of the following equations.
(ii) Escape velocity, $v=\sqrt{\frac{2 G M}{R}}$

(D) Watch Video Solution

99. Find the dimensions of a / b in the equation. $F=a \sqrt{x}+b t^{2}$ where F is force, x is distance and t is time.
100. In the equation : $y=a \sin (\omega t-k x), \mathrm{t}$ and x stand for time and distnace respectively. Obtain the dimensional formula for ω and k .

- Watch Video Solution

101. A planet moves around the sun in nearly circular orbit. Its period of revolution 'T' depends upon. (i) radius 'r' or orbit, (ii) mass ' m ' of the sun and. (iii) The gravitational constant G show dimensionally that $T^{2} \propto r^{3}$.
102. The escape velocity v of a body depends upon (i)
the acceleration due to gravity of the planet and (ii)
the radius of the planet R. Establish dimensionally the relationship between v, g and R .

- Watch Video Solution

Other Important Questions Answers Vi Conceptual

Questions

1. Is the measure of an angle dependent upon the unit of length?
2. Explain the principle of homogeneity of dimensions.

What are its uses? Given example.

- Watch Video Solution

3. The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$ where a, b and c are constant. The dimensions of a, b and c respectively are
A. $\left[L^{2}, T\right.$ and $\left.L T^{2}\right]$
B. $\left[L T^{2}, L T\right.$ and $\left.L\right]$
C. $\left[L, L T\right.$ and $\left.T^{2}\right]$
D. $\left[L T^{-2}, L\right.$ and $\left.T\right]$

Answer: D

D Watch Video Solution

4. The dimensions of Planck's constant are same as
A. Energy
B. Power
C. Momentum
D. Angular momentum

Answer: D

-

5. The dimensional formula for energy is
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{-2} T^{-2}\right]$
C. $\left[M L^{2} T^{-3}\right]$
D. $\left[M L T^{-1}\right]$

Answer: A

D Watch Video Solution
6. The dimensional formula for velocity is
A. $\left[M L T^{-2}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{0} L T^{-1}\right]$
D. $\left[M L T^{-3}\right]$

Answer: C

D Watch Video Solution

7. State any three physical quantities having same dimensions and their dimension.
8. The dimensional formula for acceleration is
A. $\left[M L T^{-2}\right]$
B. $\left[M^{0} L T^{-2}\right]$
C. $\left[M L T^{2}\right]$
D. $\left[M L T^{-3}\right]$

Answer: B

- Watch Video Solution

9. How many light years are there in one meter?
10. The dimensional formula for force is
A. $\left[M L T^{-1}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L T^{2}\right]$
D. $\left[M L T^{-3}\right]$

Answer: B

- Watch Video Solution

11. Is the measure of an angle dependent upon the unit of length?

D Watch Video Solution
12. What is the basis of the principle of homogeneity of dimensions?

D Watch Video Solution
13. Can a quantity have dimensions but still has no units?
14. Can a quantity have units but still be dimensionless?

- Watch Video Solution

15. Why have scientists and engineers all over the world agreed to use SI units?

D Watch Video Solution

16. While deriving the relationship between physical quantities by dimensional analysis, dimensionless
constant enters into the relationship. Can you find its magnitude by the method of dimensions?

- Watch Video Solution

17. State any three physical quantities having same dimensions and their dimension.

D Watch Video Solution
18. What is the estimated radius of the universe?
19. How many light years are there in one meter?

- Watch Video Solution

20. The period of oscillation of a simple pendulum is given by $T=2 \pi \sqrt{\frac{l}{g}}$. In finding the value of g , which quantity should be measured most accurately and why?
