©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PREMIERS PUBLISHERS

QUESTION PAPER MARCH 2019

Part I

1. What is the angular displacement made by a
particle after $5 s$, when it starts from rest with
an angular acceleration 0.2 and s^{-2} ?
A. 4 rad
B. 1 rad
C. 2.5 rad
D. 5 rad

Answer:

D Watch Video Solution

2. The process in which heat transfer is by actual movement of molecules in fluids such as liquids and gases is called :
A. Thermal conductivity
B. Convection
C. Conduction
D. Radiation

Answer:

D Watch Video Solution

3. Which of the following pairs of physical quantities have same dimension?

A. Torque and Power

B. Force and Torque
C. Force and Power
D. Torque and Energy

Answer:

D Watch Video Solution

4. For a satellite moving in an orbit around the earth, the ratio of kinetic energy of potential
A. 2
B. $\sqrt{2}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer:

D Watch Video Solution
5. A referigertor has COP of 3 . How much work must be supplied to a refrigertor in order to remove 200 J of heart from its interior?
A. 33.33 J
B. 44.44 J
C. 66.67 J
D. 50 J

Answer:

D Watch Video Solution

6. If the temperature of the wire is increased,
then the Young's modulus will
A. increase rapidly
B. increases by very small amount
C. remain the same
D. decrease

Answer:

D Watch Video Solution
7. If the internal energy of an ideal gas U and
volume V are doubled, then the pressure of
the gas:
A. halves
B. quadruples
C. doubles
D. remains same

Answer:

D Watch Video Solution

8. A body of mass 5 kg is thrown up vertically
with a kinetic energy of 1000 J . If acceleration due to gravity is $10 m s^{-2}$, find the height at
which the kinetic energy becomes half of the original value.
A. 10 m
B. 20 m
C. 50 m
D. 100 m

Answer:

D Watch Video Solution

9. Define acceleration.

A.
B.
C.
D.

Answer:

- Watch Video Solution

10. In an isochoric process we have

A. $\Delta U=0$
B. $\Delta T=0$
C. $\mathrm{W}=0$
D. $Q=0$

Answer:

11. The amplitude and time period of a simple pendulum bob are $0.05 m$ and 2 s respectively. Then the maximum velocity of the bob is :
A. $0.157 m s^{-1}$
B. $0.257 m s^{-1}$
C. $0.10 m s^{-1}$
D. $0.025 \mathrm{~ms}^{-1}$

Answer:

- Watch Video Solution

12. A closed cylindrical container is partially
filled with water. As the container rotates in a
horizontal plane about a perpendicular bisector, its moment of inertia.
A. remains constant
B. depends on the direction of rotation
C. increases
D. decreases

Answer:

13. Which of the following represents a wave?

$$
\begin{aligned}
& \text { A. } \frac{1}{x+v t} \\
& \text { B. } \sin (x+v t) \\
& \text { C. }(x-v t)^{3} \\
& \text { D. } x(x+v t)
\end{aligned}
$$

Answer:

14. If the linear momentum of the object in increased by 0.1%, then the kinetic energy is increased by :
A. 0.4%
B. 0.01%
C. 0.1%
D. 0.2%

Answer:

- Watch Video Solution

15. What is the angular displacement made by
a particle after $5 s$, when it starts from rest with an angular acceleration 0.2 and s^{-2} ?
A. 4 rad
B. 1 rad
C. 2.5 rad
D. 5 rad

Answer:

D Watch Video Solution
16. In which process heat is transferred directly
from one molecule to other ?
A. Thermal conductivity
B. Convection
C. Conduction
D. Radiation

Answer:

D Watch Video Solution
17. Which of the following pairs of physical quantities have same dimension?
A. Torque and Power
B. Force and Torque
C. Force and Power
D. Torque and Energy

Answer:

D Watch Video Solution
18. For a satellite moving in an orbit around
the earth, the ratio of kinetic energy of potential
A. 2
B. $\sqrt{2}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer:

D Watch Video Solution
19. A referigertor has COP of 3 . How much
work must be supplied to a refrigertor in
order to remove 200 J of heart from its interior?
A. 33.33 J
B. 44.44 J
C. 66.67 J
D. 50 J

Answer:

20. If the temperature of the wire is increased, then the Young's modulus will
A. increase rapidly
B. increases by very small amount
C. remain the same
D. decrease

Answer:

21. If the internal energy of an ideal gas U and
volume V are doubled, then the pressure of the gas :
A. halves
B. quadruples
C. doubles
D. remains same

Answer:

22. A body of mass 5 kg is thrown up vertically
with a kinetic energy of 1000 J . If acceleration
due to gravity is $10 \mathrm{~ms}^{-2}$, find the height at
which the kinetic energy becomes half of the original value.
A. 10 m
B. 20 m
C. 50m
D. 100 m

Answer:

- Watch Video Solution

23. What is uniform motion ?

A.
B.
c.
D.
24. In an isochoric process we have
A. $\Delta U=0$
B. $\Delta T=0$
C. $\mathrm{W}=0$
D. $\mathrm{Q}=0$

Answer:

25. The amplitude and time period of a simple pendulum bob are 0.05 m and 2 s respectively.

Then the maximum velocity of the bob is :
A. $0.157 m s^{-1}$
B. $0.257 m s^{-1}$
C. $0.10 m s^{-1}$
D. $0.025 \mathrm{~ms}^{-1}$

Answer:

D Watch Video Solution
26. A closed cylindrical container is partially
filled with water. As the container rotates in a
horizontal plane about a perpendicular bisector, its moment of inertia.
A. remains constant
B. depends on the direction of rotation
C. increases
D. decreases

27. Which of the following represents a wave?

$$
\begin{aligned}
& \text { A. } \frac{1}{x+v t} \\
& \text { B. } \sin (x+v t) \\
& \text { C. }(x-v t)^{3} \\
& \text { D. } x(x+v t)
\end{aligned}
$$

Answer:

28. If the linear momentum of the object in increased by 0.1%, then the kinetic energy is increased by :
A. 0.4%
B. 0.01%
C. 0.1%
D. 0.2%

Answer:

D Watch Video Solution

Part li

1. Write any two errors of systematic errors.

Explain them.

(Watch Video Solution

2. What is projectile ? Give it's examplees.

(Watch Video Solution

3. State newton's second law

D Watch Video Solution

4. A car takes a turn with velocity $50 \mathrm{~ms}^{-1}$ on the circular road of radius of curvature 10 m .

Calculate the centrifugal force experienced by a person of mass 60 kg inside the car?

D Watch Video Solution

5. Why is it more difficult to revolve a stone
tied to a longer string than a stone tied to a
shorter string ?
(Watch Video Solution
6. State Stefan-Boltzmann law.
(Watch Video Solution

7. What are the factors which effect Brownian

motion?

D Watch Video Solution
8. "Soldiers are not allowed to march on a bridge". Give reason.

- Watch Video Solution

9. The surface tension of a soap solution is
$0.03 \mathrm{Nm}^{-1}$. How much work is done in producing soap bubble of radius $0.05 m$?

D Watch Video Solution

10. Write any two errors of systematic errors.

Explain them.

- Watch Video Solution

11. What is projectile? Give it's examplees.

D Watch Video Solution

12. State newton's second law

D Watch Video Solution
13. A car takes a turn with velocity $50 \mathrm{~ms}^{-1}$ on
the circular road of radius of curvature 10 m .

Calculate the centrifugal force experienced by a person of mass 60 kg inside the car?

- Watch Video Solution

14. Why is it more difficult to revolve a stone tied to a longer string than a stone tied to a shorter string ?

- Watch Video Solution

15. State Stefan-Boltzmann law.
16. What are the factors which effect Brownian motion?

- Watch Video Solution

17. "Soldiers are not allowed to march on a bridge". Give reason.

- Watch Video Solution

18. The surface tension of a soap solution is
$0.03 N m^{-1}$. How much work is done in producing soap bubble of radius $0.05 m$?

- Watch Video Solution

Part lii

1. What is the torque of the force
$\vec{F}=3 \hat{i}-2 \hat{j}+4 \hat{k}$ acting at a point
$\vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ about the origin?
2. Explain various types of friction suggest a few methods to reduce friction

D Watch Video Solution

3. A heavy body and a light body have same momentum. Which one of them has more kinetic energy and why?

D Watch Video Solution

4. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3 m rotating with 240 rpm about an axis passing through its centre and perependicualr to its plane.

D Watch Video Solution

5. Derive an expression for the terminal velocit of a sphere falling through a viscous liquid.

D Watch Video Solution

6. Explain linear expansion of solid.

D Watch Video Solution

7. Write down the postulates of kinetic theory of gases.

D Watch Video Solution

8. Two waves of wavelength 99 cm and 100 cm
both travelling with the velocity of $396 m s^{-1}$
are made to interfere. Calculate the number of beats produced b then per sec.

D Watch Video Solution

9. What is the torque of the force
$\vec{F}=3 \hat{i}-2 \hat{j}+4 \hat{k}$ acting at a point
$\vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ about the origin?

D Watch Video Solution

10. Explain various types of friction suggest a few methods to reduce friction

D Watch Video Solution

11. A heavy body and a light body have same momentum. Which one of them has more kinetic energy and why?

- Watch Video Solution

12. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3 m rotating with 240 rpm about an axis passing through its centre and perependicualr to its plane.

D Watch Video Solution

13. What do you mean by the term weightlessness ? Explain the state of weightlessness of a freely falling body.
14. Derive an expression for the terminal velocit of a sphere falling through a viscous liquid.

- Watch Video Solution

15. Explain linear expansion of solid.

- Watch Video Solution

16. Write down the postulates of kinetic theory of gases.

D Watch Video Solution

17. Two waves of wavelength 99 cm and 100 cm
both travelling with the velocity of $396 \mathrm{~ms}^{-1}$
are made to interfere. Calculate the number of
beats produced b then per sec.
18. The force F acting on a body moving in a circular path depends on mass of the body (m) velocity(v) and radius (r) of the circular path.

Obtain the expression for the force by dimensional analysis method $(k=1)$

D Watch Video Solution

2. State and prove Bernoulli's theorem for a
flow of incompressible, non-viscous, and
streamlined flow or fluid.

D Watch Video Solution

3. Prove the law of conservation of linear

 momentum use it to find the recoil velocity of a gun when a bullet is fired from it
D Watch Video Solution

4. State and prove parallel axis theorem
5. What is elastic collision ? Derive an expression for final velocities of two bodies which undergo elastic in one dimension.

- Watch Video Solution

6. Derive Mayer's relation for an ideal gas.
7. Explain the horizontal oscillations of a spring.

D Watch Video Solution
8. Write down the equation of a freely falling body under gravity.

D Watch Video Solution
9. A ball is thrown vertically upwards with the speed of $19.6 \mathrm{~ms}^{-1}$ from the top of building and reaches the earth in 6 s . Find the height of the building .

- Watch Video Solution

10. Define orbital velocity and establish an expression for it.
11. Calculate the value of orbital velocity for an artifical satellite of earth orbiting at a height of 1000 km (Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$, radius of the earth $=6400 \mathrm{~km}$)

- Watch Video Solution

12. The force F acting on a body moving in a circular path depends on mass of the body (m) velocity(v) and radius (r) of the circular path.

Obtain the expression for the force by dimensional analysis method $(k=1)$
13. State and prove Bernoulli's theorem for a flow of incompressible, non-viscous, and streamlined flow or fluid.

D Watch Video Solution

14. Prove the law of conservation of linear momentum use it to find the recoil velocity of a gun when a bullet is fired from it

Watch Video Solution

15. State and prove parallel axis theorem

D Watch Video Solution

16. What is elastic collision ? Derive an expression for final velocities of two bodies which undergo elastic in one dimension.
17. How will you determine the velocity of sound using resonance air column apparatus ?

D Watch Video Solution
18. Derive Mayer's relation for an ideal gas.

D Watch Video Solution

19. Explain the horizontal oscillations of a spring.
20. Write down the equation of a freely falling body under gravity.

D Watch Video Solution

21. A ball is thrown vertically upwards with the speed of $19.6 \mathrm{~ms}^{-1}$ from the top of building and reaches the earth in 6 s . Find the height of the building .
22. Define orbital velocity and establish an expression for it.

D Watch Video Solution

23. Calculate the value of orbital velocity for an artifical satellite of earth orbiting at a height of 1000 km (Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$, radius of the earth $=6400 \mathrm{~km}$)

D Watch Video Solution

