©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PREMIERS PUBLISHERS

APPLICATIONS OF DIFFERENTIAL

CALCULUS

Worked Example

1. For the functions $f(x)=x^{2}, x \in[0,2]$ compute the average rate of changes in the
subintervals $\quad[0,0.5],[0.5,1],[1,1.5],[1.5,2]$ and the instantaneous rate of changes at the points $x=0.5,1,1.5,2$

D Watch Video Solution

2. A rod is of length 30 m , insulated at both ends. The temperature of the rod is given by T
$=x(30-x)$ where x is length. Prove that the rate of change of temperature at the mid point of the rod vanishes.
3. The length I meters of a metal rod at temperature $\theta^{\circ} C$ is given by
$l=2+0.5 \theta+0.4 \theta^{2}$. Determine the rate of change of length with respect to temperature
(i) where $\theta=100^{\circ} C$, (ii) when $\theta=20^{\circ} C$.

D Watch Video Solution

4. The equation of motion is given by
$s(t)=2 t^{3}-6 t^{2}+6 . \quad$ At what time the velocity and accelerations are zero?

- Watch Video Solution

5. The distance in meters described by a car in
time t seconds
is given
$s=4 t^{3}-3 t^{2}+6 t-1 . \quad$ Determine the
velocity and acceleration when (i) $t=0$, (ii) $t=2$
seconds.
(Watch Video Solution
6. A particle moves along a horizontal line such that its equation of motion is
$s(t)=2 t^{3}-15 t^{2}+24 t-2, \mathrm{~s}$ in meters and t in second.

At what time the particle is at rest

D Watch Video Solution

7. A particle moves along a horizontal line such that its equation of motion is $s(t)=2 t^{3}-15 t^{2}+24 t-2, \mathrm{~s}$ in meters and t
in second.

At what time the particle changes its direction

D Watch Video Solution

8. A particle moves along a horizontal line such that its equation of motion is
$s(t)=2 t^{3}-15 t^{2}+24 t-2, \mathrm{~s}$ in meters and t in second.

Find the total distance travelled by the particle in the first 2 seconds.
9. The rate of increase of the volume of air in a baloon is $400 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of increase of its radius, when its diameter is 20 cm

D Watch Video Solution

10. The supply equation is given
$p(x+2)=4 x+90$, where p is the price/unit
in rupees and x is the no. of units find the rate
at which the price is changing with respect to
time when 39 units are available and the
supply is increasing at the rate of 5 units/week.

D Watch Video Solution

11. Gravel is being clumped form a conveyor belt at a rate of $60 \mathrm{ft}^{3} / \mathrm{min}$ and is coasrsened such that it forms a pie in the shape of a cone where base diameter and height and always equal. How fast is the height of the pile increasing when the pile is 15 ft high ?
12. A ship A which is at distance of 30 km to the north of P moves at $15 \mathrm{~km} / \mathrm{hr}$ and another ship B which is at a distance of 40 km to the east of P moves at $20 \mathrm{~km} / \mathrm{hr}$. How fast the distance between the cars changing?

D Watch Video Solution

13. Find the equations of tangent and normal
to the curve $y=x^{2}-2 x-3$ at the point (2,
3)
14. For what value of x the tangent to the curve $y=3 x^{2}+4 x+1$ is parallel to the line $y+2 x-3=0$

- Watch Video Solution

15. Show that the equation of the normal to
the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at ' θ ' is
$x \cos \theta-y \sin \theta=a \cos 2 \theta$.

Watch Video Solution

16. If the curve $y^{2}=x$ and $x y=k$ are orthogonal then prove that $8 k^{2}=1$

- Watch Video Solution

17. Find the equation of the normal to

$$
y=x^{2}-2 x \quad \text { that } \quad \text { is parallel to }
$$

$x+4 y-1=0$
18.
If
the
curves
$a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$
intersect each other orthogonally then show
that $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$

- Watch Video Solution

19. Show that $x^{2}-y^{2}=a^{2}$ andxy $=c^{2}$ cut orthogonally
20. Verify Rolle's theorem for the funnction
$f(x)=4 x^{3}-9 x$ in $-\frac{3}{2} \leq x \leq \frac{3}{2}$

- Watch Video Solution

21. Apply Rolle's theorem to find points on the
curve $y=-1+\cos 2 x$ where the tangent is
parallel to x axis $(0, \pi)$

- Watch Video Solution

22. Prove, Using the Rolle's theorem that between any two distinct real zeros of the polynomial
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots . . a_{1} x+a_{0}$ there is a zero of the polynomial .
$n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots .+a_{1}$

D Watch Video Solution

23. Verify Rolle's theorem for the following
$f(x)=|x|-1 \leq x \leq 1$
24. Verify Rolle's theorem for the following
$f(x)=x^{3}-3 x+3$ in $0 \leq x \leq 1$

D Watch Video Solution

25. Verify Lagrange 's law of the mean for $f(x)=$ x^{3} on [-2, 2].

- Watch Video Solution

26. Verify Lagrange's mean value theorem for $f(x)=\frac{1}{x}$ in $[1,2]$

D Watch Video Solution

27. At 2.00 pm a car's speedometer reads 30 miles/hr. At 2.10 it reads 50 miles $/ \mathrm{hr}$. Show that sometime between 2.00 and 2.10 the acceleration is exactly 120 miles $/ \mathrm{hr}^{\wedge} 2$.

- Watch Video Solution

28. Verify Lagrange's theorem for
$f(x)=x^{\frac{2}{3}}$ in $[-2,2]$

D Watch Video Solution
29.

Suppose
that
$f(0)=-3$, and $f^{\prime}(x) \leq 5$ for all values of
x how large can $f(2)$ possibly be?

D Watch Video Solution
30. Expand $f(x)=e^{-2 x}$ as a Maclaurin's series

D Watch Video Solution
31. Expand $\tan x$ in ascending power of x upto
$5^{t h}$ power for $\frac{-\pi}{2}<x<\frac{\pi}{2}$

- Watch Video Solution

32. Expand $\mathrm{f}(\mathrm{x})=\cos x$ in Taylors series about
$x=\frac{\pi}{4}$

D Watch Video Solution
33. Evaluate $\lim _{x \rightarrow 0} \frac{\sin m x}{\sin n x}$

- Watch Video Solution

34. Find $\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{1}{x}\right)}{\tan \left(\frac{1}{x}\right)}$
35. Evaluate $\lim _{\theta \rightarrow 0} \frac{1-\cos m \theta}{1-\cos n \theta}$

- Watch Video Solution

36. Evaluate lim

$\log \sin x$

$$
\lim _{x \rightarrow \frac{\pi}{2}} \overline{(\pi-2 x)^{2}}
$$

D Watch Video Solution

37. Evaluate $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}$
38. Evaluate $\lim _{x-2} \frac{x^{n}-2^{n}}{x-2}$

- Watch Video Solution

39. Evaluate $\lim _{x \rightarrow 0} x^{3} \log x$

- Watch Video Solution

40. Evaluate $\lim _{x \rightarrow 1} x^{\frac{1}{x-1}}$

- Watch Video Solution

41. Evaluate $\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{\log x}}$

- Watch Video Solution

42. The current at time t in a coil with resistance R inductance L and subjected to a constant electromotive force E is given By $I=\frac{E}{R}\left(1-e^{\frac{-R t}{L}}\right)$ obtain a suitable formula to be used where R is small.

Watch Video Solution

43. Prove that $f(x)=x^{2}-x+1$ is neither encreasing nor decreasing in $[0,1]$

- Watch Video Solution

44. Prove that $f(x)=x^{2}-6 x+3$ is strictly increasing in $(3, \infty)$
45. Find the absolute maximum and absolute

$$
\begin{aligned}
& \text { minimum values of the function } \\
& f(x)=2 x^{3}-3 x^{2}+2 \text { in }-\frac{1}{2} \leq x \leq 4
\end{aligned}
$$

D Watch Video Solution

46. Find the intervals of monotonicity and hence find the local maximum for the function
$f(x)=x^{2}-6 x+2$

- Watch Video Solution

47. Find the extrema of
$f(x)=\log (1+x)-\frac{x}{1+x}, x>-1$

D Watch Video Solution
48. Find the intervals of monotonicity and local extrema of the function
$f(x)=x \log x+x$

D Watch Video Solution
49. Find the intervals of monotonicity and local extreme of the function $f(x)=\frac{1}{1+x^{2}}$

D Watch Video Solution

50. Determine the intervals of concavity of the
curve $\quad f(x)=(x-2)^{3}(x-4), x \in R \quad$ and
the points of inflection if any.

D Watch Video Solution

51. Determine the intervals of concavity of the
curve $y=2+\sin x$ in $(-\pi, \pi)$

- Watch Video Solution

52. Find the local extremum of the function
$f(x)=x^{3}-12 x$

- Watch Video Solution

53. Find the local extrema of the function
$f(x)=3 x^{4}-4 x^{3}$

- Watch Video Solution

54. Find the local maximum and local minimum of the function $x^{4}-3 x^{3}+3 x^{2}-x$

- Watch Video Solution

55. Find a point on the parabola $y^{2}=2$ that is
closest to the point $(1,32)$

56. A closed box (cuboid) with a square base is
to have a volume 2000c.c, The material for the
top and bottom of the box is to cost Rs 3 per square cm and the material for the sides is to cost Rs 1.50 per square cm . If the cost of the material is to be least find the dimension of the box.

D Watch Video Solution

57. A garden is to be formed in a rectangular
shape and projected by wire fence. What is the
largest possible area of the fenced garden with 60 metres of wire.

D Watch Video Solution

58. Find the asymptotes of the curve $x y=c^{2}$

D Watch Video Solution

59. Find the slant (oblique) asymptote of the
function $f(x)=\frac{x^{2}+3 x+5}{x+2}$

- Watch Video Solution

60. Sketch the curve $y=f(x)=x^{2}-5 x+6$

D Watch Video Solution

61. Find the asymptotes of the curve
$f(x)=\frac{3 x^{2}-27}{x^{2}-25}$

- Watch Video Solution

62. Sketch the curve $y=f(x)=x^{2}-5 x+4$

- Watch Video Solution

63. Sketch the graph of $y=\frac{3 x}{x^{2}-4}$

- Watch Video Solution

Solution To Exercise 71

1. A particle moves along a straight line in suc a way that after t second its distance from the origin is $s=2 t^{2}+3 t$ metres.

Find the instantaneous velocities at $\mathrm{t}=3$ and t $=6$ seconds.

D Watch Video Solution

2. A particle moves along a straight line in suc a way that after t second its distance from the origin is $s=2 t^{2}+3 t$ metres.

Find the instantaneous velocities at $\mathrm{t}=3$ and t $=6$ seconds.

D Watch Video Solution

3. A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of $s=16 t^{2}$ in t seconds.

How long does the camera fall before it hits the ground?

D Watch Video Solution

4. A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of $s=16 t^{2}$ in t seconds.

What is the average velocity with which the camera falls during the last 2 seconds?

- Watch Video Solution

5. A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of $s=16 t^{2}$ in t seconds.

What is the instantaneous velocity of the camera when it hits the ground?

- Watch Video Solution

6. A particle moves along a horizontal line such that its equation of motion is $s(t)=2 t^{3}-15 t^{2}+24 t-2, \mathrm{~s}$ in meters and t in second.

At what time the particle changes its direction

- Watch Video Solution

7. A particle moves along a line according to the law $s(t)=2 t^{3}-9 t^{2}+12 t-4$, where $t \geq 0$.

Find the total distance travelled by the particle in the first 4 seconds.

- Watch Video Solution

8. A particle moves along a line according to
the law $s(t)=2 t^{3}-9 t^{2}+12 t-4$, where $t \geq 0$.

Find the particle's acceleration each time the velocity is zero.

D Watch Video Solution

9. If the volume of a cube of side length x is
$V=x^{3}$. Find the rate of change of the volume
with respect to x when $x=5$ units.

D Watch Video Solution
10. If the mass $m(x)$ (in kilograms) of a thin rod of length x (in metres) is given by, $m(x)=\sqrt{3 x}$ then what is the rate of change of mass with respect to the length when it is x $=27$ meters.

D Watch Video Solution

11. A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a
constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?

D Watch Video Solution

12. A conical water tank with vertex down of 12
meters height has a radius of 5 meters at the
top. If water flows into the tank at a rate 10
cubic $\mathrm{m} / \mathrm{min}$, how fast is the depth of the
water increases when the water is 8 metres deep?
13. A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of $5 \mathrm{~m} / \mathrm{s}$. When the base of the ladder is 8 metres from the wall.

How fast is the top of the ladder moving down
the wall?

- Watch Video Solution

14. A ladder 17 metre long is leaning against
the wall. The base of the ladder is pulled away
from the wall at a rate of $5 \mathrm{~m} / \mathrm{s}$. When the base of the ladder is 8 metres from the wall.

At what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?

- Watch Video Solution

15. A police jeep, approaching an orthogonal intersection from the northern direction, is
chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police deteremine with a radar that the distance between them and the cae is increasing at $20 \mathrm{~km} / \mathrm{hr}$. If the jeep is moving at $60 \mathrm{~km} / \mathrm{hr}$ at the instant of measurement, what is the speed of the car?

- Watch Video Solution

Solution To Exercise 72

1. Find the slope of the tangent to the following curves at the respective given points.
$y=x^{4}+2 x^{2}-x$ at $x=1$

- Watch Video Solution

2. Find the slope of the tangent to the following curves at the respective given points.
$x=a \cos ^{3} t, y=b \sin ^{3} t$ at $t=\frac{\pi}{2}$
3. Find the point on the curve $y=x^{2}-5 x+4$ at which the tangent is parallel to the line $3 x+y=7$.

D Watch Video Solution

4. Find the points on the curve
$y=x^{3}-6 x^{2}+x+3$ where the normal is
parallel to the line $x+y=1729$
5. Find the points on the curve
$y^{2}-4 x y=x^{2}+5$ for which the tangent is
horizontal.

D Watch Video Solution
6. Find the tangent and normal to the following curves at the given points on the curve.

$$
y=x^{2}-x^{4} \text { at }(1,0)
$$

7. Find the tangent and normal to the following curves at the given points on the curve.
$y=x^{4}+2 e^{x}$ at $(0,2)$

- Watch Video Solution

8. Find the tangent and normal to the
following curves at the given points on the
curve.
$y=x \sin x \quad$ at $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$

D Watch Video Solution

9. Find the tangent and normal to the following curves at the given points on the curve.
$x=\cos t, y=2 \sin ^{2} t$ at $t=\frac{\pi}{3}$
10. Find the equation of the tangents to the curve $y=1+x^{3}$ for which the tangent is orthogonal with the line $x+12 y=12$.

D Watch Video Solution

11. Find the equations of the tangents to the
curve $y=\frac{x+1}{x-1}$ which are parallel to the line $x+2 y=6$
12. Find the equation of tangent and normal
to the curve given by $x=7$
$\cos t$ and $y=2 \sin t, t \in R$ at any point on
the curve.

D Watch Video Solution

13. Show that $x^{2}-y^{2}=a^{2}$ andxy $=c^{2}$ cut orthogonally
14. Explain why Rolle's theorem is not applicable to the following functions in the respective intervals.
$f(x)=\left|\frac{1}{x}\right|, x \in[-1,1]$

- Watch Video Solution

2. Explain why Rolle's theorem is not applicable to the following functions in the
respective intervals.
$f(x)=\tan x, x \in[0, \pi]$

D Watch Video Solution

3. Explain why Rolle's theorem is not applicable to the following functions in the respective intervals.
$f(x)=x-2 \log x, x \in[2,7]$

D Watch Video Solution

4. Using the Rolle's theorem, determine the values of x at which the tangent is parallel to the x-axis for the following functions :
$f(x)=x^{2}-x, x \in[0,1]$

D Watch Video Solution

5. Using the Rolle's theorem, determine the
values of x at which the tangent is parallel to
the x-axis for the following functions:
$f(x)=\frac{x^{2}-2 x}{x+2}, x \in[-1,6]$
6. Using the Rolle's theorem, determine the value of x at which the tangent is parallel to the x-axis for the following functions:
$f(x)=\sqrt{x}-\frac{x}{3}, \in[0,9]$

D Watch Video Solution
7. Explain why Lagrange's mean value theorem is not applicable to the following functions in
the respective intervals:
$f(x)=\frac{x+1}{x}, x \in[-1,2]$

D Watch Video Solution

8. Explain why Lagrange's mean value theorem
is not applicable to the following functions in
the respective intervals :
$f(x)=|3 x+1|, x \in[-1,3]$

D Watch Video Solution

9. Show that the value in the conclusion of the mean value theorem for
$f(x)=\frac{1}{x}$ on a closed interval of positive number $[\mathrm{a}, \mathrm{b}]$ in $\sqrt{a} b$

- Watch Video Solution

10. A race car driver is racing at $20^{\text {th }} \mathrm{km}$. If his
speed never exceeds $150 \mathrm{~km} / \mathrm{hr}$, what is the maximum distance he can cover in the next two hours.
11. Does there exist a differentiable function
$f(x)$ such that
$f(0)=-1, f(2)=4$ and $f^{\prime}(x) \leq 2$ for all x. Justify your answer.

D Watch Video Solution

12. Show that there lies a point on the curve
$f(x)=x(x+3) e^{\frac{\pi}{2}},-3 \leq x \leq 0 \quad$ where
tangent drawn is parallel to the x-axis.

- Watch Video Solution

13. Using mean value theorem prove that for,

$$
a>0, b>0,\left|e^{-a}-e^{-b}\right|<|a-b|
$$

D Watch Video Solution

Solution To Exercise 74

1. Write the Maclaurin series expansion of the following functions :

- Watch Video Solution

2. Write the Maclaurin series expansion of the following functions :
$\sin x$
(Watch Video Solution
3. Write the Maclaurin series expansion of the
following functions :

- Watch Video Solution

4. Write the Maclaurin series expansion of the
following functions :

$$
\log (1-x),-1 \leq x \leq 1
$$

D Watch Video Solution

5. Write the Maclaurin series expansion of the
following functions :
$\tan ^{-1}(x),-1 \leq x \leq 1$

D Watch Video Solution

6. Write the Maclaurin series expansion of the following functions :
$\cos ^{2} x$

D Watch Video Solution
7. Write down the Taylor series expansion, of
the function $\log x$ about $\mathrm{x}=1$ upto three non
zero terms for $x>0$.

D Watch Video Solution

8. Expand $\sin x$ in ascending powers $x-\frac{\pi}{4}$ upto three non-zero terms.

- Watch Video Solution

9. Expand the polynomial $f(x)=x^{2}-3 x+2$
in powers of $x-1$.

D Watch Video Solution

Solution To Exercise 75

1. Evaluate the following limits, if necessary use 1'Hopital Rule:
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$

- Watch Video Solution

2. Evaluate the following limits, if necessary use I' Hopital Rule:
$\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{x^{2}-5 x+3}$

D Watch Video Solution

3. Evaluate the following limits, if necessary use 1'Hopital Rule:
$\lim _{x \rightarrow \infty} \frac{x}{\log x}$

D Watch Video Solution

4. Evaluate the following limits, if necessary
use I' Hopital Rule :
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{\sec x}{\tan x}$

D Watch Video Solution

5. Evaluate the following limits, if necessary use l' Hopital Rule :
$\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}$

- Watch Video Solution

6. Evaluate the following limits, if necessary use l' Hopital Rule :
$\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$

D Watch Video Solution

7. $\lim _{x \rightarrow 1}\left(\frac{2}{x^{2}-1}-\frac{x}{x-1}\right)$

- Watch Video Solution

8. Evaluate the following limits, if necessary
use l' Hopital Rule :
$\lim _{x \rightarrow o^{+}} x^{x}$

D Watch Video Solution
9. Evaluate the following limits, if necessary use l' Hopital Rule :
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$

D Watch Video Solution

10. $\lim _{x \rightarrow \frac{x}{2}}(\sin x)^{\tan x}$

$$
x \rightarrow \frac{x}{2}
$$

(Watch Video Solution
11. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim _{0^{+}}(\cos x)^{\frac{1}{x^{2}}}$

D Watch Video Solution

12. If an initial amount A_{0} of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is $A=A_{0}\left(1+\frac{1}{n}\right)^{n t}$. If the interest is compounded continuously, (that is as $n \rightarrow \infty$
), show that the amount after t years is $A=A_{0} e^{r t}$.

D Watch Video Solution

Solution To Exercise 76

1. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=x^{3}-12 x+10,[1,2]$

D Watch Video Solution

2. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=3 x^{4}-4 x^{3},[-1,2]$

D Watch Video Solution

3. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=6 x^{\frac{4}{3}}-3 x^{\frac{1}{3}},[-1,1]$

D Watch Video Solution

4. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=2 \cos x+\sin 2 x,\left[0, \frac{\pi}{2}\right]$

- Watch Video Solution

5. Find the intervals of monotonicities and
hence find the local extremum for the following functions:
$f(x)=2 x^{3}+3 x^{2}-12 x$

D Watch Video Solution

6. Find the intervals of monotonicities and
hence find the local extremum for the
following functions:
$f(x)=\frac{x}{x-5}$

- Watch Video Solution

7. Find the intervals of monotonicities and
hence find the local extremum for the following functions:
$f(x)=\frac{e^{x}}{1-e^{x}}$
8. Find the intervals of monotonicities and hence find the local extremum for the following functions:
$f(x)=\frac{x^{3}}{3}-\log x$
(Watch Video Solution
9. Find the intervals of monotonicities and
hence find the local extremum for the
following functions:
$f(x)=\sin x \cos x+5, x \in(0,2 \pi)$

D Watch Video Solution

Solution To Exercise 77

1. Find intervals of concavity and points of inflexion for the following functions:
$f(x)=x(x-4)^{3}$

- Watch Video Solution

2. Find intervals of concavity and points of inflexion for the following functions:
$f(x)=\sin x+\cos x, 0<x<2 \pi$

- Watch Video Solution

3. Find intervals of concavity and points of inflexion for the following functions:
$f(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

D Watch Video Solution

4. Find the local extrema for the following
functions using second derivative test :
$f(x)=-3 x^{5}+5 x^{3}$

- Watch Video Solution

5. Find the local extrema for the following
functions using second derivative test :
$f(x)=x \log x$

- Watch Video Solution

6. Find the local extrema for the following functions using second derivative test :
$f(x)=x^{2} e^{-2 x}$

D Watch Video Solution

> 7. $\begin{aligned} & \text { For }\end{aligned}$ the function $f(x)=4 x^{3}+3 x^{2}-6 x+1$ find the intervals
of monotonicity, local extrema, intervals of concavity and points of inflection.

Solution To Exercise 78

1. Find two positive numbers whose sum is 12 and their product is maximum.

- Watch Video Solution

2. Find two positive numbers whose product is

20 and their sum is minimum.

3. Find the smallest possible value of $x^{2}+y^{2}$

 given that $\mathrm{x}+\mathrm{y}=10$.
D Watch Video Solution

4. A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest possible area of the fenced garden with 40 metres of wire.

D Watch Video Solution

5. A rectangular page is to contain $24 \mathrm{~cm}^{2}$ of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm . What should be the dimensions of the page so that the area of the paper used is minimum.

- Watch Video Solution

6. A farmer plans to fence a rectangular pasture adjacent to a river. The pasture must contain $1,80,000$ sq. mtrs in order to provide
enough grass for herds. No fencing is needed along the river. What is the length of the minimum needed fencing material?

D Watch Video Solution

7. Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 cm .

D Watch Video Solution
8. Prove that among all the rectangles of the given perimeter, the square has the maximum area.

D Watch Video Solution

9. Find the dimensions of the largest rectangle
that can be inscribed in a semi circle of radius
rcm.

D Watch Video Solution
10. A manufacturer wants to design an open
box having a square base and a surface area of

108 sq. cm. Determine the dimensions of the box for the maximum volume.

D Watch Video Solution

11. The volume of a cylinder is given by the
formula $V=\pi r^{2} h$. Find the greatest and least values of V if $r+h=6$.
12. A hollow cone with base radius a cm and
height bcm is placed on a table. Show that
the volume of the largest cylinder that can be
hidden underneath is $\frac{4}{9}$ times volume of the cone .

- Watch Video Solution

Solution To Exercise 79

1. Find the asymptotes of the following curves:
$f(x)=\frac{x^{2}}{x^{2}-1}$

D Watch Video Solution

2. Find the asymptotes of the following curves:
$f(x)=\frac{x^{2}}{x+1}$
3. Find the asymptotes of the following curves:
$f(x)=\frac{x^{2}-6 x-1}{x+3}$

- Watch Video Solution

4. Find the asymptotes of the following curves:
$f(x)=\frac{x^{2}+6 x-4}{3 x-6}$

- Watch Video Solution

5. Sketch the graphs of the following functions:
$y=-\frac{1}{3}\left(x^{3}-3 x+2\right)$

D Watch Video Solution

6. Sketch the graphs of the following
functions:
$y=x \sqrt{4-x}$
7. Sketch the graphs of the following
functions:
$y=\frac{x^{2}+1}{x^{2}-4}$

- Watch Video Solution

8. Sketch the graphs of the following
functions:
$y=\frac{x^{3}}{24}-\log x$

D Watch Video Solution

Solution To Exercise 710

1. The volume of a sphere is increasing in
volume at the rate of $3 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. The rate of change of its radius when radius is $\frac{1}{2} \mathrm{~cm}$
A. $3 \mathrm{~cm} / \mathrm{s}$
B. $2 \mathrm{~cm} / \mathrm{s}$
C. $1 \mathrm{~cm} / \mathrm{s}$
D. $\frac{1}{2} \mathrm{~cm} / \mathrm{s}$

- Watch Video Solution

2. A balloon rises straight up at $10 \mathrm{~m} / \mathrm{s}$. An observer is 40 m away from the spot where the balloon left the ground. Find the rate of change of the balloon's angle of elevation in radian per second when the balloon is 30 metres above the ground.
A. $\frac{3}{25}$ radians $/ \mathrm{sec}$
B. $\frac{4}{25}$ radians/sec
C. $\frac{1}{5}$ radians $/ \mathrm{sec}$

D. $\frac{1}{3}$ radians $/ \mathrm{sec}$

Answer: B

D Watch Video Solution

3. The position of a particle moving along a horizontal line of any time t is given by $s(t)=3 t^{2}-2 t-8$. The time at which the particle is at rest is
A. $t=0$
B. $t=\frac{1}{3}$
C. $\mathrm{t}=1$
D. $t=3$

Answer: B

D Watch Video Solution

4. A stone is thrown up vertically. The height it reaches at time t seconds is given by $x=80 t-16 t^{2}$. The stone reaches the maximum height in time t seconds is given by
A. 2
B. 2.5
C. 3
D. 3.5

Answer: B

D Watch Video Solution

5. Find the point on the curve $6 y=x^{3}+2$ at which y-coordinate changes 8 times as fast as x-coordinate is:
A. $(4,11)$

$$
\begin{aligned}
& \text { B. }(4,-11) \\
& \text { C. }(-4,11) \\
& \text { D. }(-4,-11)
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. The abscissa of the point on the curve
$f(x)=\sqrt{8-2 x}$ at which the slope of the tangent is -0.25 ?
A. -8
B. -4
C. -2
D. 0

Answer: B

D Watch Video Solution

7. The slope of the line normal to the curve

$f(x)=2 \cos 4 x$ at $x=\frac{\pi}{12}$ is
A. $-4 \sqrt{3}$
B. -4
C. $\frac{\sqrt{3}}{12}$
D. $4 \sqrt{3}$

Answer: C

- Watch Video Solution

8. The tangent to the curve $y^{2}-x y+9=0$
is vertical when
A. $y=0$
B. $y= \pm \sqrt{3}$
C. $y=\frac{1}{2}$
D. $y= \pm 3$

Answer: D

- Watch Video Solution

9. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
A. $\tan ^{-1}\left(\frac{3}{4}\right)$
B. $\tan ^{-1}\left(\frac{4}{3}\right)$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

10. What is the value of the limit
$\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) ?$
A. 0
B. 1
C. 2
D. \leq

Answer: A::B

D Watch Video Solution

11. The function $\sin ^{4} x+\cos ^{4} x$ is increasing in
the interval
A. $\left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]$
B. $\left[\frac{\pi}{2}, \frac{5 \pi}{8}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[0, \frac{\pi}{4}\right]$

Answer: C

D Watch Video Solution

12. The number given by the Rolle's theorem for the function $x^{3}-3 x^{2}, x \in[0,3]$ is
A. 1
B. $\sqrt{2}$
C. $\frac{3}{2}$
D. 2

Answer: D

D Watch Video Solution

13. The number given by the Mean value
theorem for the function $\frac{1}{x}, x \in[1,9]$ is
A. 2
B. 2.53
C. 3
D. 3.5

Answer: C

- Watch Video Solution

14. The minimum value of the function
$|3-x|+9$ is
A. 0
B. 3
C. 6
D. 9

Answer: D

D Watch Video Solution

15. The maximum slope of the tangent to the
curve $y=e^{x} \sin x, x \in[0,2 \pi]$ is at:
A. $x=\frac{\pi}{4}$
В. $x=\frac{\pi}{2}$
C. $x=\pi$
D. $x=\frac{3 \pi}{2}$

Answer: B

D Watch Video Solution

16. The maximum value of the functions
$x^{2} e^{-2 x}, x>0$ is
A. $\frac{1}{e}$
B. $\frac{1}{2 e}$
C. $\frac{1}{e^{2}}$
D. $\frac{4}{e^{4}}$

Answer: C

D Watch Video Solution

17. One of the closest points on the curve $x^{2}-y^{2}=4$ to the point $(6,0)$ is
A. $(2,0)$
B. $(\sqrt{5}, 1)$
C. $(3, \sqrt{5})$
D. $(\sqrt{13},-\sqrt{3})$

Answer: C

D Watch Video Solution
18. The maximum value of the product of two positive numbers, when their sum of the squares is 200 , is

A. 100

B. $25 \sqrt{7}$
C. 28
D. $24 \sqrt{14}$

Answer: A

D Watch Video Solution

19. The curve $y=a x^{4}+b x^{2}$ with $a b>0$
A. has no horizontal tangent

B. is concave up

C. is concave down
D. has no points of inflection

Answer: D

D Watch Video Solution

20. The point of inflection of the curve

$$
y=(x-1)^{3} \text { is }
$$

A. $(0,0)$
B. $(0,1)$
C. $(1,0)$
D. $(1,1)$

Answer: C

D Watch Video Solution

Problems For Practice Choose The Correct

Answer

1. A particle moves so that the distance moved
is according to the law $s(t)=\frac{t^{3}}{3}-t^{2}+3$. At what time the velocity and acceleration are zero respectively?
A. $t=1$
B. $t=0$
C. $\mathrm{t}=2$
D. $t=\frac{1}{2}$

Answer: A
2. The slope of the normal to the curve $y=3 x^{2}$ at the point whose abscissa is 2 is:

$$
\begin{aligned}
& \text { A. } \frac{1}{12} \\
& \text { B. }-\frac{1}{12} \\
& \text { C. } \frac{1}{13} \\
& \text { D. } \frac{1}{14}
\end{aligned}
$$

Answer: B

- Watch Video Solution

3. The value of c is Rolle's theoram for the
function $\mathrm{f}(\mathrm{x})=\cos \left(\frac{x}{2}\right)$ on $[\pi, 3 \pi]$ is:

> A. $\frac{\pi}{2}$
> B. 2π
> C. $\frac{3 \pi}{2}$
> D. 0

Answer: B
4.

The
curves
$2 x^{2}+3 y^{2}=1$ and $c x^{2}+4 y^{2}=1$ cut each other orthogonally then the value of c is:
A. $\frac{1}{3}$
B. 3
C. $\frac{5}{12}$
D. $\frac{12}{5}$

Answer: D

D Watch Video Solution
5. The angle between $y^{2}=x$ and $x^{2}=y$ at
the origin is
A. $2 \tan ^{-1}\left(\frac{3}{4}\right)$
B. $\tan ^{-1} \frac{4}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

D View Text Solution
6. The curve $y=a x^{3}+b x^{2}+c x+d$ has a point of inflexion at $x=1$, then :
A. $a+b 0$
B. $a+3 b=0$
C. $3 a+b=0$
D. $3 a-b=0$

Answer: C

D Watch Video Solution
7. In a given semi circle of diameter 4 cm a rectangle is to be inscribed. The maximum area of the rectangle is
A. 2
B. 4
C. 8
D. 16

Answer: B

D Watch Video Solution
8. $\lim _{x \rightarrow 0} \frac{2 x}{\tan 2 x}$ is
A. 1
B. -1
C. 0
D. ∞

Answer: A
9. $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{c^{x}-d^{x}}$ is
A. ∞
B. 0
C. $\log \left(\frac{a b}{c d}\right)$
D. $\frac{\log \left(\frac{a}{b}\right)}{\log \left(\frac{c}{d}\right)}$

Answer: D

- View Text Solution

10. If $s=t^{3}-4 t^{2}+7$ the velocity when the acceleration is zero is
A. $\frac{32}{3} \mathrm{~m} / \mathrm{sec}$
B. $\frac{-16}{3} \mathrm{~m} / \mathrm{sec}$
C. $\frac{16}{3} \mathrm{~m} / \mathrm{sec}$
D. $\frac{-32}{3} \mathrm{~m} / \mathrm{sec}$

Answer: B

- Watch Video Solution

11. Which of the following functions is increasing in $(0, \infty)$?
A. e^{x}
B. $\frac{1}{x}$
C. $-x^{2}$
D. x^{-2}

Answer: A

- Watch Video Solution

12. The slope of the tangent to the curve $y=3 x^{2}+4 \cos x$ at $x=0$ is
A. 4
B. 2
C. 3
D. -1

Answer: A
(Watch Video Solution
13. The stationary point of $f(x)=x^{\frac{3}{5}}(4-x)$ occurs at $x=$
A. а) $\frac{3}{2}$
B. b) $\frac{2}{3}$
C. c) 0
D. d) 4

Answer: A

D View Text Solution
14. The angle between the curve
$x^{2}-y^{2}=8$ and $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

15. The radius of a cylinder is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$ and the height is decreasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. The rate of change of volume when the radius is 3 cm and height is 5 cm is:
A. 23π
B. 33π
C. 43π
D. 53π
16. $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$ is
A. 2
B. 0
C. ∞
D. 1

Answer: B
17. f is a differentiable function defined on an interval I with positive derivative. Then f is
A. increasing on I
B. decreasing on I
C. strictly increasing on I
D. strictly decreasing on I

Answer: C

- Watch Video Solution

18. For what values of x the rate of increase of
$x^{3}-2 x^{2}+3 x+8$ is twice the rate of increase of x.

$$
\begin{aligned}
& \text { A. }\left(-\frac{1}{3},-3\right) \\
& \text { В. }\left(\frac{1}{3}, 3\right) \\
& \text { C. }\left(-\frac{1}{3}, 3\right) \\
& \text { D. }\left(\frac{1}{3}, 1\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

19. The least possible perimeter of a rectangule of area $400 \mathrm{~m}^{2}$ is
A. 100 m
B. 40 m
C. 80 m
D. 60 m

Answer: C

D Watch Video Solution
20. The equation of the normal to the curve

$$
y=x^{3} \quad \text { at }(1,1) \text { is }
$$

A. $3 x+y-4=0$
B. $3 x+y=4$
C. $x-3 y-4=0$
D. $x+3 y-4=0$

Answer: D

D Watch Video Solution
21. The equation of the tangent to the curve
$y=\frac{x^{3}}{5}$ at $\left(-1,-\frac{1}{5}\right)$ is
A. $5 y+3 x-2=0$
B. $5 y-3 x=2$
C. $3 x+5 y=2$
D. $3 x+3 y-2=-6$

Answer: B

D Watch Video Solution

22. Which of the following is concave down:

$$
\begin{aligned}
& \text { A. } y=-x^{2} \\
& \text { B. } y=x^{2} \\
& \text { C. } y=e^{x} \\
& \text { D. } y=x^{2}+2 x-3
\end{aligned}
$$

Answer: A

D Watch Video Solution

23.

$f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$.
Then $\lim _{x \rightarrow a} \frac{g(x) f(a)-g(a) f(x)}{x-a}$ is
A. 5
B. -5
C. 3
D. -3

Answer: A
24. The velocity v of a particle moving along a straight line when at a distance x from the origin is given by $a+b v^{2}=x^{2}$ where a and b are constants then the acceleration is:

$$
\begin{aligned}
& \text { A. } \frac{b}{x} \\
& \text { B. } \frac{a}{x} \\
& \text { C. } \frac{x}{b} \\
& \text { D. } \frac{x}{a}
\end{aligned}
$$

Answer: C

25. The value of c in Lagrange's mean value
theorem for the function $f(x)=x^{2}+2 x-1$
in $(0,1)$ is
A. -1
B. 1
C. 0
D. $\frac{1}{2}$

Answer: D
26. The function $f(x)=x^{2}$ is decreasing in

$$
\begin{aligned}
& \text { A. }(-\infty, \infty) \\
& \text { B. }(-\infty, 0) \\
& \text { C. }(0, \infty) \\
& \text { D. }(-2, \infty)
\end{aligned}
$$

Answer: B

D Watch Video Solution

27. $y=-e^{x}$ is

A. concave up for $x>0$
B. concave down for $x>0$
C. concave up everywhere
D. concave down everywhere

Answer: D
(D) Watch Video Solution
28. If f has a local extremum at a and if $f^{\prime}(a)$ exists then
A. $f^{\prime}(a)<0$
B. $f^{\prime}(a)>0$
C. $f^{\prime}(a)=0$
D. $f^{\prime \prime}(a)=0$

Answer: C

- Watch Video Solution

29. A spherical snowball is melting in such a way that its volume is decreasing at a rate of $1 \mathrm{~cm}^{3} / \mathrm{min}$. The rate at which the diameter is decreaseing when the diameter is 10 cms is ..

D Watch Video Solution

30. $f(x)=\sqrt{x}, a=1, b=4 \quad$ find \quad с in

Lagrange's mean value theorm:
A. $\frac{9}{4}$
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: A

D Watch Video Solution

31. The point of curve $y=2 x^{2}-6 x-4$ at which the tangent is parallel to x-axis is
A. $\left(\frac{5}{2},-\frac{17}{2}\right)$
B. $\left(\frac{-5}{2}, \frac{-17}{2}\right)$
C. $\left(\frac{-5}{2}, \frac{17}{2}\right)$
D. $\left(\frac{3}{2},-\frac{17}{2}\right)$

Answer: D

- Watch Video Solution

32. The curve $y=3 e^{x}$ and $y=\frac{a}{3} e^{-x}$
intersect orthogonally if $\mathrm{a}=$
A. -1
B. 1
C. $\frac{1}{3}$
D. 3

Answer: B

- Watch Video Solution

33. $f^{\prime}(x)=x^{2}-5 x+4$ then $f(x)$ is decreasing in
A. $(-\infty, 0)$
B. $(1,4)$
C. $(4, \infty)$
D. everywhere

Answer: B

- Watch Video Solution

34. If the normal to the curve
$x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ makes an angle θ with
the x-axis then the slope of the normal is
A. $-\cot \theta$
B. $\tan \theta$

C. $-\tan \theta$

D. $\cot \theta$

Answer: D

- Watch Video Solution

35. For the curve $x=e^{t} \cos t, y=e^{t} \sin t$ the tangent line is parallel to x-axis when t is equal to
A. $-\frac{\pi}{4}$
B. $\frac{\pi}{4}$
C. 0
D. $\frac{\pi}{3}$

Answer: A

D Watch Video Solution

36. If $y=6 x-x^{3}$ and x increases at the rate
of 5 units/sec the rate of change of slope
when $x=3$ is
A. -90 units $/ \mathrm{sec}$
B. 90 units/sec
C. 180 units/sec
D. -180 units/sec

Answer: A

D Watch Video Solution
37. If the length of the diagonal of a square is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{sec}$ what is the
rate of increase of its area when the side is

15

$\frac{15}{\sqrt{2}} \mathrm{~cm}$?
A. $1.5 \mathrm{~cm}^{2} / \mathrm{sec}$
B. $3 \mathrm{~cm}^{2} / \mathrm{sec}$
C. $3 \sqrt{2} \mathrm{~cm}^{2} / \mathrm{sec}$
D. $0.15 \mathrm{~cm}^{2} / \mathrm{sec}$

Answer: A

- Watch Video Solution

38. The equation of the normal to the curve
$\theta=\frac{1}{t} \quad$ at $\quad\left(-3, \frac{-1}{3}\right)$ is:
A. $3 \theta=27 t-80$
B. $5 \theta=27 t-80$
C. $3 \theta=27 t+80$
D. $\theta=\frac{1}{t}$

Answer: C

- Watch Video Solution

39. The point of inflection of the curve $y=x^{4}$
is at:
A.
B.
C.
D.

Answer:

- Watch Video Solution

40. The angle between the curve
$y=e^{m x}$ and $y=e^{-m x} m>1$ is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{2 m}{m^{2}-1}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{2 m}{1-m^{2}}\right) \\
& \text { C. } \tan ^{-1}\left(-\frac{2 m}{1+m^{2}}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{2 m}{m^{2}+1}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

1. The angular displacement θ radians of a fly wheel varies with time t seconds and follow
the equation $\theta=9 t^{2}-2 t^{3}$. Determine the angular velocity and acceleration of the fly wheel when time $t=1$ seconds and (ii) The time when the angular acceleration is zero.
2. The distance s meters moved by a particle travelling in a straight line t seconds is given by $s=45 t+11 t^{2}-t^{3}$. Find the acceleration when the particle comes to rest.

- Watch Video Solution

3. A particle moves along a horizontal line
such that its position at any time t is given by

$$
s(t)=t^{3}-6 t^{2}+9 t+1, \mathrm{~s} \text { in meters and } \mathrm{t} \text { in }
$$

seconds.

At what time the particle is at rest?

D Watch Video Solution

4. A particle moves along a horizontal line such that its position at any time t is given by
$s(t)=t^{3}-6 t^{2}+9 t+1, \mathrm{~s}$ in meters and t in
seconds.

At what time the particle is at rest?

D Watch Video Solution

5. A particle moves along a horizontal line such that its equation of motion is
$s(t)=2 t^{3}-15 t^{2}+24 t-2, \mathrm{~s}$ in meters and t in second.

Find the total distance travelled by the particle in the first 2 seconds.

- Watch Video Solution

6. A missile fixed from ground level raises x metres vertically upwards in t seconds and
$x=100 t-\frac{25}{2} t^{2}$. Find
Initial velocity

- Watch Video Solution

7. A missile fixed from ground level raises x metres vertically upwards in t seconds and $x=100 t-\frac{25}{2} t^{2}$. Find

The time when height of the missile is max
8. A missile fixed from ground level raises x metres vertically upwards in t seconds and $x=100 t-\frac{25}{2} t^{2}$. Find

The maximum height reached

- Watch Video Solution

9. A missile fixed from ground level raises x metres vertically upwards in t seconds and $x=100 t-\frac{25}{2} t^{2}$. Find

Velocity with which the missile strikes the ground.

D Watch Video Solution

10. A water tank has the shape of an invertd circular cone with base radius 2 metres and height 4 metres. If water is being pumped into the tank at the rate of $2 m^{3} / m m$. Find the rate at which the water level is rising when the water is 3 m deep
11. At a particular instant ship A is 100 km west of ship B, ship A is sailing at a speed of 35 $\mathrm{km} / \mathrm{hr}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{hr}$. How fast is the distance between the ships changes after 4 hours

D Watch Video Solution

12. A particle is fired straight up from the ground to each a height of x feet in t seconds,
where $\mathrm{x}(t)=128 t-16 t^{2}$.
(1) Compute the maximum height of the particle reached.
(2) What is the velocity when the particle hits the ground?

D Watch Video Solution

13. Find the equation of tangent and normal
to the curve $y=x^{2}+3 x+2$ at $(0,2)$

D Watch Video Solution
14. For what value of x the tangent of the curve $y=x^{3}-3 x^{2}+2 x-5$ is parallel to $x+y+3=0$

- Watch Video Solution

15. Find the angle between the curves, $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$ and $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$

D View Text Solution
16. Find the equation of the tangent to the curve $x^{2}+y^{2}=5^{2}$ which are parallel to $2 x+3 y=6$

D Watch Video Solution

17. Find the equation of normal to
$y=x^{3}-3 x \quad$ that is parallel to
$2 x+18 y-9=0$
18. Verify Rolle's theorem for
$f(x)=\sqrt{1-x^{2}},-1 \leq x \leq 1$

D Watch Video Solution

19. Using Rolle's theorem find the point on the
curve $y=x^{2}+1,-2 \leq x \leq 2$ where the tangent is parallel to x-axis.

- Watch Video Solution

20. Verify mean value theorem for the function
$f(x)=x^{3}-5 x^{2}-2 x$ in $[1,3]$

- Watch Video Solution

21. Expand $f(x)=e^{3 x}$ on a maclaurin's series

- Watch Video Solution

22. Evaluate: $\lim _{x \rightarrow 2} \frac{\sin \pi x}{2-x}$
23. Evaluate: lim

$$
x^{\frac{1}{2}}-2 \tan ^{-1}\left(\frac{1}{x}\right)
$$

$$
x \rightarrow \infty
$$

$$
\left(\frac{1}{x}\right)
$$

D Watch Video Solution
24. Evaluate: $\lim x^{\sin x}$
$x \rightarrow 0$
(Watch Video Solution
25. Prove, using mean value theorem, that $|\sin \alpha-\sin \beta| \leq|\alpha-\beta|, \alpha, \beta \in \mathbb{R}$.

D Watch Video Solution
26. Expand $f(x)=\frac{1}{x}$ about $\mathrm{x}=2$ upto four terms

- Watch Video Solution

27. Evaluate $\lim _{\theta \rightarrow 0} \frac{1-\cos m \theta}{1-\cos n \theta}$

- Watch Video Solution

28. Evaluate: $\lim _{x \rightarrow 0} x \log x$

D Watch Video Solution

29. Determine for which values of x the
function $y=\frac{x-2}{x+1}, x \neq-1 \quad$ is strictly
increasing or decreasing.

D View Text Solution

30. Discuss the monotonicity of

$f(x)=2 x^{3}-15 x^{2}+36 x+1$

- Watch Video Solution

31. Find the critical number and stationary
point $f(x)=2 x-3 x^{2}$

D Watch Video Solution

32. Find the absolute extreme for $f(x)=1-2 x-x^{2}$ in $(-4,1)^{\prime}$

- Watch Video Solution

33. Find the local maximum and local minimum

$$
\text { of } f(x)=2 x^{3}+5 x^{2}-4 x
$$

34. Find the absolute extreme of the function
$f(x)=2 \cos x$ in $[0,2 \pi]$

D Watch Video Solution
35. Find the points of inflection of
$y=x^{4}-6 x^{2}+8 x-1$

D View Text Solution

36. Obtain Maclaurin's series for $f(x)=\log \sec x$

- Watch Video Solution

37. Resistance to motion F of a moving vehicle is given by $F=\frac{5}{x}+100 x$. Determined the minimum value of the resistance.

- Watch Video Solution

38. Find the point on the parabola $y^{2}=2 x$ that is closest to the point $(1,4)$
39. Find the asymptotes of the function
$f(x)=\frac{1}{x+1}$
(D) Watch Video Solution
