©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - PREMIERS PUBLISHERS

APPLICATIONS OF VECTOR ALGEBRA

Worked Examples

1. Cosine formula:

With usual notations in any triangle ABC
Prove that : $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

- Watch Video Solution

2. Projection formula:

Prove that $a=b \cos C+c \cos B$.
3. Sine formula:

With usual notation in a $\triangle A B C$
Prove that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

- Watch Video Solution

4. Prove by vector methods.
$\cos (A-B)=\cos A \cos B+\sin A \sin B$.

- Watch Video Solution

5. Prove that $\sin (A+B)=\sin A \cos B+\cos A \sin B$.

- Watch Video Solution

6. Prove that twice the area of a parallelogram is equal in the area of another parallelogram formed by taking as its adjacent sides of the diagonals of the former parallelogram.

- Watch Video Solution

7. Show that the diameter of a sphere subtends a right angle at a point on the circumference.

- Watch Video Solution

8. (Apollonius theorem): If D is the midpoint of the side $B C$ of a triangle $A B C$, then show by vector method that

$$
|\overrightarrow{A B}|^{2}+|\overrightarrow{A C}|^{2}=2\left(|\overrightarrow{A D}|^{2}+|\overrightarrow{B D}|^{2}\right)
$$

- Watch Video Solution

9.

A
$\vec{F}_{1}=3 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{F}_{2}=2 \hat{i}+3 \hat{j}-4 \hat{k}$, is displaced from the point $(3,-2,-1)$ to the point $(1,5,-2)$. Find the total work done by the forces.

- Watch Video Solution

10. A particle is acted upon by the forces
$\vec{F}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{F}_{2}=2 \hat{i}+\hat{j}-3 \hat{k}, \vec{F}_{3}=3 \hat{i}-4 \hat{j}+2 \hat{k}$,
displaced from the point $(-2,1,3)$ to the point $(1, \lambda,-2)$. If the total work done by the forces is 8 . Find the value of λ.

- Watch Video Solution

11. Find the magnitude and direction cosines of the torque about the point $(3,1,-2)$ of a force $3 \hat{i}+2 \hat{j}+\hat{k}$ whose line of action passes through that $(1,2,-1)$
12. If $\quad \vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{c}=4 \hat{i}+3 \hat{j}-\hat{k} \quad$ Find $\vec{a} \cdot(\vec{b} \times \vec{c})$.

- Watch Video Solution

13. Find the volume of the parallelepiped whose coterminus edges are given by the vectors $\hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}-\hat{j}-\hat{k}$ and $3 \hat{i}+4 \hat{j}+2 \hat{k}$

- Watch Video Solution

14.

Show

that the
vectors
$2 \hat{i}-3 \hat{j}+\hat{k},-4 \hat{i}-\hat{j}+3 \hat{k}$ and $-2 \hat{i}-4 \hat{j}+4 \hat{k}$ are coplanar.

- Watch Video Solution

15. If $3 \hat{i}+6 \hat{j}+2 \hat{k}, \hat{i}-2 \hat{j}+3 \hat{k}$ and $5 \hat{i}+2 \hat{j}+m \hat{k}$ are coplanar.

Watch Video Solution

16. If $\vec{a}, \vec{b}, \vec{c}$ are three given vectors show that
$[\vec{a}+\vec{b}+\vec{c}, \vec{b}+\vec{c}, \vec{a}+\vec{b}+\vec{c}]=0$

- Watch Video Solution

17. Show that for any three vectors
\vec{a}, \vec{b} and $\vec{c}[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

- Watch Video Solution

18. Show that the vectors \vec{a}, \vec{b} and \vec{c} are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

19.

$[\vec{b}, \vec{c}, \vec{d}] \vec{a}-[\vec{a}, \vec{c}, \vec{d}] \vec{b}+[\vec{a}, \vec{b}, \vec{d}] \vec{c}-[\vec{a}, \vec{b}, \vec{c}] \vec{d}=0$

- Watch Video Solution

20. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (all non coplanar) any vector can be written as a linear combination of other three vectors.

- Watch Video Solution

21. If $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}, \vec{c}=3 \hat{i}-\hat{j}+\hat{k} \quad$ Find $(\vec{a} \times \vec{b}) \vec{c}$ and $\vec{a}(\vec{b} \times \vec{c})$ Are they equal?
22. Find the vector equation and cartesian equation of the line through the point $(1,2,-2)$ and in parallel to $(3 \hat{i}-4 \hat{j}+5 \hat{k})$.

Watch Video Solution

23. Given the vector equation of a line as
$\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+t(\hat{i}-\hat{j}-\hat{k})$ find the direction cosines of the line. Find also the equation of the line in non parametric form and in cartesian form.

- Watch Video Solution

24. Find vector and cartesian equation of the line passing through ($2,-2$,
$-3)$ and is parallel to $\frac{x-1}{5}=\frac{y+3}{2}=\frac{z-1}{-2}$.
25. Find the vector and cartesian equation of the line through points (2, 1,
$-3)$ and $(-2,3,-2)$ Find also where does the line meets yz plane.

- Watch Video Solution

26. Find the angle between the straight line $\frac{x-1}{2}=\frac{y-3}{2}=z$ with co-ordinates axes.

- Watch Video Solution

27. Find the angle between the straight line
$\vec{r}=3 \hat{i}-\hat{j}+2 \hat{k}+t(2 \hat{i}-\hat{j}-2 \hat{k})$ and the line joining the points (2, $-1,3)(-1,-2,4)$.

- Watch Video Solution

28. Find tha angle between the lines
$\frac{x-20}{1}=\frac{y+15}{2}=\frac{z-3}{-2}$ and
$\frac{x+5}{6}=\frac{y+3}{3}=\frac{z-16}{6}$

- Watch Video Solution

29. Show that the line joining the points $A(2,3,1)$ and $B(4,6,2)$ is perpendicular to the line joining the points $C(6,-2,-9)$ and $D(4,-1,-8)$.

- Watch Video Solution

30.

Show
that
the
lines
$\frac{x-3}{2}=\frac{y-5}{-1}=\frac{z+7}{4}$ and $\frac{x-15}{4}=\frac{y+12}{-2}=\frac{z-8}{8}$
parallel.
31. Find the point of intersection of the lines $\frac{x-1}{3}=\frac{y-1}{-1}=z+2^{\prime}$ and $(x-4) /(2)=\mathrm{y}=(\mathrm{z}+1) /(3)^{\prime}$.

- Watch Video Solution

32. Find the equation of a straight line passing through the point of intersection of the straight line $\vec{r}=(2 \hat{i}+4 \hat{j}-3 \hat{k})+t(\hat{i}+2 \hat{j}+4 \hat{k})$ and $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z+1}{2}$ and perpendicular to both the straight lines.

- Watch Video Solution

33. Show that the lines
$\vec{r}=(3 \hat{i}+5 \hat{j}+7 \hat{k})+t(\hat{i}-2 \hat{j}+\hat{k})$
$\vec{r}=(\hat{i}+\hat{j}+\hat{k})+s(7 \hat{i}+6 \hat{j}+7 \hat{k})$ are skew lines and find the
shortest distance between them.
34. Show that the lines $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \quad$ and $\frac{x-1}{7}=\frac{y-1}{6}=\frac{z-1}{7}$ are skew lines and find the shortest distance between them.

- Watch Video Solution

35. Determine whether the lines
$\vec{r}=(\hat{i}-\hat{j})+t(\hat{i}-\hat{j}+3 \hat{k})$ and
$\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+s(\hat{i}+2 \hat{j}-\hat{k})$ are parallel. Find the shortest distance between them.

- Watch Video Solution

36. Find the shortest distance between the lines

$$
\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1} \text { and } \vec{r}=-9 \hat{i}+2 \hat{k}+t(-3 \hat{i}+2 \hat{j}+4 \hat{k})
$$

37. Find the coordinates of the foot of the perpendicular from the point (5, 2, -8) to the straight line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+t(\hat{i}+3 \hat{j}-\hat{k})$. Find also the shortest distance from the point to this straight line.

- Watch Video Solution

38. Find the vector and cartesian form of the equation of the plane which is at distance of 6 units from the origin and perpendicular to $2 \hat{i}+3 \hat{j}-6 \hat{k}$.

- Watch Video Solution

39. If the cartesian equation of the plane $2 x-y+2 z=3$ find the vector equation of the plane in standard form.

- Watch Video Solution

40. Find the direction cosines and length of the perpendicular from hte origin to the plane $\vec{r} \cdot(12 \hat{i}-4 \hat{j}-3 \hat{k})=7$.

- Watch Video Solution

41. Find the vector and cartesian equation of the plane through the point whose position vector is $2 \hat{i}-3 \hat{j}+\hat{k}$ and normal to the vector $3 \hat{i}-2 \hat{j}-\hat{k}$.

- Watch Video Solution

42. Find the unit normal vectors to the plane $2 x+y-2 z=5$.

- Watch Video Solution

43. Find the non parametric form of vector equation and the cartesian equation of the plane passing through the point $(-1,2,-3)$ and parallel to
the
$\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+t(\hat{i}+\hat{j}-2 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+s(3 \hat{i}-j$

- Watch Video Solution

44. Find the vector parametric, non parametric and Cartesian equation of the plane passing through the points $(2,1,-1)$ and $(1,-1,2)$ and parallel to the line $\frac{x-10}{2}=\frac{y+7}{3}=\frac{z-3}{4}$.

- Watch Video Solution

45. Check whether the line $\frac{x-1}{4}=\frac{y+2}{5}=\frac{z-7}{6}$ lines in the plane $3 x+2 y+z=6$.

- Watch Video Solution

46. Show that the lines
$\vec{r}=(-2 \hat{i}-4 \hat{j}-6 \hat{k})+t(\hat{i}+4 \hat{j}+7 \hat{k})$
$\vec{r}=(\hat{i}+3 \hat{j}+5 \hat{k})+s(3 \hat{i}+5 \hat{j}+7 \hat{k})$ are coplanar. Find the equation of such plane in non parametric form and in cartesian form.

- Watch Video Solution

47. Find the acute angle between the planes
$\vec{r}(2 \hat{i}-3 \hat{j}+5 \hat{k})=1$ and $\vec{r}(\hat{i}-\hat{j}-\hat{k})=7$.

- Watch Video Solution

48. Find the acute angle between the planes
$2 x-3 y+5 z=1$ and $x-y-z=7$.

- Watch Video Solution

49. Find the angle between the line
$\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+t(\hat{i}+\hat{j}-\hat{k})$ and the plane $2 x+y-2 z=5$.
50. Find the perpendicular distance of the point $(2,-3,3)$ from the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}-2 \hat{k})=8$.

- Watch Video Solution

51. Find the distance of the point $(2,3,-2)$ from the point of intersection of the straight line passing through the points $A(3,0,1)$ and $B(6,4,3)$ with the plane $x+y-z=7$.

- Watch Video Solution

52. Find the distance between the parallel planes $x-2 y-2 z=3$ and $2 x-4 y-4 z=7$.

- Watch Video Solution

53. Find the distance between the planes
$\vec{r} \cdot(\hat{i}-2 \hat{j}-2 \hat{k})=7$ and $\vec{r} \cdot(5 \hat{i}-10 \hat{j}-10 \hat{k})=15$.

- Watch Video Solution

54. Find the equation of the plane passing through the line of intersection of the plane $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})+1=0$ and $\vec{r} \cdot(\hat{i}-\hat{j}+3 \hat{k})=3$ and through the point $(1,1,-1)$.

- Watch Video Solution

55. Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+3 \hat{j})=1$ and $3 x-4 y+3 z=8 \quad$ and \quad is perpendicular to the plane $x+2 y-z+6=0$.

- Watch Video Solution

56. Find the equation of the plane through the intersection of the line $2 x+3 y=1$ and $\vec{r} \cdot(3 \hat{i}-4 \hat{j}+3 \hat{k})=8$ and is parallel to the line $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+1}{-1}$.

- Watch Video Solution

57. Find the images of the point $(1,2,3)$ in the plane $x+2 y+4 z=38$.

- Watch Video Solution

58. Find the coordinates of the points where the straight line $\vec{r}=(\hat{i}-2 \hat{j}-2 \hat{k})+t(4 \hat{i}+3 \hat{j}+2 \hat{k})$ intersects the plane $x-2 y+3 z+9=0$.

- Watch Video Solution

1. Prove by vertor metord thtat if a line is drawn frome the centre of a circle of a circle to the midpoint of a chord then the line is perpendicular to the chord

- Watch Video Solution

2. Prove by vector method that median to the base of an isoscels triangle is perpendicular to the base.

- Watch Video Solution

3. Prove by vector method that an angle in a semi-circle is a right angle.

- Watch Video Solution

4. Prove by vector method that the diagonals of a rhombus bisect each other at right angles.
5. Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle.

- Watch Video Solution

6. Prove by vector method that the area of the quadrilateral $A B C D$ having diagonals AC and is $\frac{1}{2}|\overline{A C} \times \overline{B D}|$

- Watch Video Solution

7. Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.

- Watch Video Solution

8. If G is the centroid of a
$\Delta A B C$, Prove that (area of $\Delta G A B)=($ area of $\Delta G B C)=(\operatorname{ar\epsilon }$

Watch Video Solution

9. Using vector method, prove $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$.

- Watch Video Solution

10. Prove by vector method that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

- Watch Video Solution

11. A particle acted on by constant forces $8 \hat{i}+2 \hat{j}-6 \hat{k}$ and $6 \hat{i}+2 \hat{j}-2 \hat{k}$ is displaced from the point $(1,2,3)$ to the point $(5,4,1)$.

Find the total work done by the forces.

Watch Video Solution

12. Forces of magnitude $5 \sqrt{2}$ and $10 \sqrt{2}$ units acting in the directions $3 \hat{i}+4 \hat{j}+5 k$ and $10 \hat{j}+6 \hat{j}-8 \hat{k}$, respectively, act on a particle which is displaced from the point with position vector $4 \hat{i}-3 \hat{j}-2 \hat{k}$ to the with position vector $6 \hat{i}+\hat{j}-3 \hat{k}$. Find the work done by the forces.

- Watch Video Solution

13. Find the magnidude and direction cosines of the torque of a force represented by $3 \hat{i}+4 \hat{j}-5 \hat{k}$ about the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ acting through a point whose position vector is $4 \hat{i}+2 \hat{j}-3 \hat{k}$.

- Watch Video Solution

14. Find the torque of the resultant of the three forces represented by $-3 \hat{i}+6 \hat{j}-3 \hat{k}, 4 \hat{i}-10 \hat{j}+12 \hat{k}$ and $4 \hat{i}+7 \hat{j}$ acting at the point with
position vector $8 \hat{i}-6 \hat{j}-4 \hat{k}$, about the point with position vector $18 \hat{i}+3 \hat{j}-9 \hat{k}$.

- Watch Video Solution

Solution To Exercise 62

1. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$, find $\vec{a} \cdot(\vec{b} \times \vec{c})$.

- Watch Video Solution

2. Find the volume of the parallelepiped whose coterminous edges are represented by the vector $-6 \hat{i}+14 \hat{j}+10 \hat{k}, 14 \hat{i}-10 \hat{j}-6 \hat{k}$, and $2 \hat{i}+4 \hat{j}-2 \hat{k}$.

- Watch Video Solution

3. The volume of the parallelepiped whose coterminus edges are $7 \hat{i}+\lambda \hat{j}-3 \hat{k}, \hat{i}+2 \hat{j}-\hat{k}-3 \hat{i}+7 \hat{j}+5 \hat{k}$ is 90 cubic units. Find the value of λ.

- Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of $(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b}+\vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c}+\vec{a}) \cdot(\vec{a} \times$

- Watch Video Solution

5. Find the altitude of a parallelepiped determined by the vectors $\vec{a}=-2 \hat{i}+5 \hat{j}+3 \hat{k} \quad \vec{b}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+4 \hat{k}$ if the base is taken as the parallelogram determined by \vec{b} and \vec{c}.

- Watch Video Solution

6. Determine whether the three vectors $2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+\hat{j}+3 \hat{k}$ are coplanar.

- Watch Video Solution

7. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. If $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

8.

$$
\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}, \vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}
$$ show that $[\vec{a}, \vec{b}, \vec{c}]$ depends on neither x nor y .

- Watch Video Solution

9. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{j}$ andchat $(\mathrm{i})+\mathrm{chat}(\mathrm{j})+\mathrm{bhat}(\mathrm{k})^{\prime}$ are coplanar, prove that c is the geometric mean of a and b .

(D) Watch Video Solution

10. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{c}. If the angle between \vec{a} and \vec{c} is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^{2}=\frac{1}{4}|\vec{a}|^{2}|\vec{b}|^{2}$.

- Watch Video Solution

Solution To Exercise 63

1. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$, find
$(\vec{a} \times \vec{b}) \times \vec{c}$

- Watch Video Solution

2. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$, find $\vec{a} \times(\vec{b} \times \vec{c})$

Watch Video Solution

3. For any
vector
\vec{a}, prove that $\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

- Watch Video Solution

4. prove that $[\vec{a}-\vec{b}, \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$

(Watch Video Solution

5. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{j}+2 \hat{k}, \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k}$, verify that $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$

- Watch Video Solution

6. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{j}+2 \hat{k}, \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k}$, verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

- Watch Video Solution

7. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{c}=\hat{i}+\hat{j}+\hat{k}$, then find the value of $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$.

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, show that
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$

- Watch Video Solution

9.

If
$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{a} \times(\vec{b} \times \vec{c}$
, find the value of $\mathrm{I}, \mathrm{m}, \mathrm{n}$.

- Watch Video Solution

10. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\widehat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, find the angle between \vec{a} and \vec{c}.

- Watch Video Solution

Solution To Exercise 64

1. Find the non-parametric form of vector equation and Cartesian equations of the straight line passing through the point with position vector $4 \hat{i}+3 \hat{j}-7 \hat{k}$ and parallel to the vector $2 \hat{i}-6 \hat{j}+7 \hat{k}$.

- Watch Video Solution

2. Find the parametric form of vector equation and Cartesian equtions of the straight line passing through the point $(-2,3,4)$ and parallel to the straight line $\frac{x-1}{-4}=\frac{y+3}{5}=\frac{8-z}{-6}$

- Watch Video Solution

3. Find the point where the straight line passes through $(6,7,4)$ and $(8,4,9)$ cut the $x z$ and $y z$ planes.

- Watch Video Solution

4. Find the direction cosines of the straight line passing through the points $(5,6,7)$ and $(7,9,13)$. Also, find the parametric form of vector equation and Cartesian equtions of the straight line passing through two given points.

- Watch Video Solution

5. Find the angle between the following lines.
$\vec{r}=(4 \hat{i}-\hat{j})+t(\hat{i}+2 \hat{j}-2 \hat{k})$
$\vec{r}=(\hat{i}-2 \hat{j}+4 \hat{k})+s(-\hat{i}-2 \hat{j}+2 \hat{k})$

- Watch Video Solution

6. Find the acute angle between the following lines.
$\frac{x+4}{3}=\frac{y-7}{4}=\frac{z+5}{5}, \vec{r}=4 \hat{k}+t(2 \hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

7. Find the acute angle between the following lines.
$2 x=3 y=-z$ and $6 x=-y=-4 z$

- Watch Video Solution

8.

- Watch Video Solution

9. If the straight line joining the points $(2,1,4)$ and $(a-1,4,-1)$ is parallel to the line joining the points $(0,2, b-1)$ and $(5,3,-2)$, find the values of a and b.

- Watch Video Solution

10. If the straight lines

$$
\frac{x-5}{5 m}=\frac{2-y}{5}=\frac{1-z}{-1} \text { and } x=\frac{2 y+1}{4 m}=\frac{1-z}{-3}
$$ perpendicular to each other, find the value of m.

- Watch Video Solution

11. Show that the points $(2,3,4),(-1,4,5)$ and $(8,1,2)$ are collinear.

- Watch Video Solution

1. Find the parametric form of vector equation and Cartesian equations of a straight line passing through $(5,2,8)$ and is perpendicular to the straight lines

D Watch Video Solution

2.

Show
that
the
lines
$\vec{r}=(6 \hat{i}+\hat{j}+2 \hat{k})+s(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{r}=(3 \hat{i}+2 \hat{j}-2 \hat{k})+t(2 \hat{i}$ are skew lines and hence find the shortest distance between them.

- Watch Video Solution

3. If the two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-m}{2}=z$ intersect at a point, find the value of m.

- Watch Video Solution

4.

Show
that
the
lines
$\frac{x-3}{3}=\frac{y-3}{-1}, z-1=0$ and $\frac{x-6}{2}=\frac{z-1}{3}, y-2=0$ intersect.
Also find the point of intersection.'

D Watch Video Solution

5. Show that the straight lines $x+1=2 y=-12 z$ and $x=y+2=6 z-6$ are skew and hence find the shortest distance between them.

(Watch Video Solution

6. Find the parametric form of vector eqution of the straight line passing through $(-1,2,1)$ and paralle to the straight line $\vec{r}=(2 \hat{i}+3 \hat{j}-\hat{k})+t(\hat{i}-2 \hat{j}+\hat{k})$ and lines find the shortest distance between the lines.
7. Find the foot of the perpendicular drawn from the point $(5,4,2)$ to the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$. Also, find the eqution of the perpendicular.

- Watch Video Solution

Solution To Exercise 66

1. Find a parametric form of vector equation of a plane which is at a distance of 7 units from the origin having $3,-4,5$ as direction ratios of a normal to it .

- Watch Video Solution

2. Find the direction cosines of the normal to the plane $12 x+3 y-4 z=65$.

Also, find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin.
3. Find the vector and Cartesian equations of the plane passing through the point with position vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$ and normal to the vector $\hat{i}+3 \hat{j}+5 \hat{k}$.

- Watch Video Solution

4. A plane passes through the point $(1,1,2)$ - and the normal to the plane of magnitude $3 \sqrt{3}$ makes equal acute angles with the coordinate axes. Find the equation of the plane.

- Watch Video Solution

5. Find the intercept cut off by the plane $\vec{r}=(6 \hat{i}+4 \hat{j}-3 \hat{k})=12$ on the coordinate axes.
6. If a plane meets the coordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the eqution of the plane.

- Watch Video Solution

Solution To Exercise 67

1. Find the non-parametric form of vector equation, and Cartesian eqution of the plane passing through the point $(2,3,6)$ and parallel to the straight lines

$$
\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-3}{1} \text { and } \frac{x+3}{2}=\frac{y-3}{-5}=\frac{z+1}{-3} .
$$

- Watch Video Solution

2. Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.
3. Find the parametric form vector eqution and Cartesian equations of the plane passing through the points $(2,2,1),(1,-2,3)$ and parallel to the straight line passing through the points $(2,1,-3)$ and $(-1,5,-8)$.

- Watch Video Solution

4. Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point $(1,-2,4)$ and perpendicular to the plane $x+2 y-3 z=11$ and parallel to the line $\frac{x+7}{3}=\frac{y+3}{-1}=\frac{z}{1}$.

Watch Video Solution

5. Find the parametric form of vector equation, and Cartesian equations of the plane containing the line $\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+t(2 \hat{i}-\hat{j}+4 \hat{k})$
and perpendicular to plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+\hat{k})=8$.

- Watch Video Solution

6. Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the three non-collinear points `(3,6,-2),(-1,-2,6) and(6,4,-2).

- Watch Video Solution

7. Find the non-parametric form of vector equation, and Cartesian equations of the plane

$$
\vec{r}=(6 \hat{i}-\hat{j}+\hat{k})+s(-\hat{i}+2 \hat{j}+\hat{k})+t(-5 \hat{j}-4 \hat{j}-5 \hat{k})
$$

- Watch Video Solution

1. Show that the straight lines $\vec{r}=(5 \hat{i}+7 \hat{j}-3 \hat{k})+s(4 \hat{i}+4 \hat{j}-5 \hat{k})$ and $\vec{r}=(8 \hat{i}+4 \hat{j}+5 \hat{k})+t('$ are coplanar. Find the vector equation of the plane in which they lie.

- Watch Video Solution

$\begin{array}{ccc}\text { 2. } & \text { Show } & \text { that } \\ \frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{3}\end{array}$ and $\frac{x-1}{-3}=\frac{y-4}{2}=\frac{z-5}{1} \quad \begin{aligned} & \text { are }\end{aligned}$ coplanar. Also, find the plane containing these lines.

- Watch Video Solution

3. the straight
lines
$\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{m^{2}}$ and $\frac{x-3}{1}=\frac{y-2}{m^{2}}=\frac{z-1}{2}$
coplanar, find the distinct real values of m.

- Watch Video Solution

$\frac{x-1}{2}=\frac{y+1}{\lambda}=\frac{z}{2}$ and $\frac{x+1}{5}=\frac{y+1}{2}=\frac{z}{\lambda}$ are coplanar, find λ and equations of the planes containing theses two lines.

- Watch Video Solution

Solution To Exercise 69

1. Find the equation of the plane passing through the line of intersection of the
planes
$\vec{r} \cdot(2 \hat{i}-7 \hat{j}+4 \hat{k})=3$ and $3 x-5 y+4 z+11=0$, and the point

- Watch Video Solution

2. Find the equation of the plane passing thruogh the line of intersection of the planes $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=2$ and $\mathrm{x}-\mathrm{y}+\mathrm{z}=3$, and at a distance $\frac{2}{\sqrt{3}}$ from point $(3,1,-1)$.
3. Find the angle between the line
$\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+t(\hat{i}+2 \hat{j}-2 \hat{k}) \quad$ and \quad the plane
$\vec{r} \cdot(6 \hat{i}+3 \hat{j}+2 \hat{k})=8$.

- Watch Video Solution

4. Find the angle between the planes
$\vec{r} \cdot(\hat{i}+\hat{j}-2 \hat{k})=3$ and $2 x-2 y+z=2$

- Watch Video Solution

5. Find the equation of the plane which passes through the point $(3,4,-1)$ and is parallel to the plane $2 x-3 y+5 z+7=0$. Also, find the distance between the two planes.

- Watch Video Solution

6. Find the length of the perpendicular from the point $(1,-2,3)$ to the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$.

- Watch Video Solution

7. Find the point intersection of the line $x-1=\frac{y}{2}=z+1$ with the plane $2 x-y+2 z=2$. Also, find the angle between the line and the plane.

- Watch Video Solution

8. Find the coordinates of the foot of the perpendicular and length of the perpendicular from the point $(4,3,2)$ to the plane $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=2$.

- Watch Video Solution

1. If \vec{a} and \vec{b} are parallel vector, then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ is equal to
A. 2
B. -1
C. 1
D. 0

Answer: D

- Watch Video Solution

2. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then
A. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
B. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
c. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=0$
D. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=2$

- Watch Video Solution

3. If $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is :
A. $|\vec{a}||\vec{b}||\vec{c}|$
B. $\frac{1}{3}|\vec{a}||\vec{b}||\vec{c}|$
C. 1
D. -1

Answer: A

- View Text Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b}, and is parallel to \vec{c} then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
A. \vec{a}
B. \vec{b}
C. \vec{c}
D. $\overrightarrow{0}$

Answer: B

- Watch Video Solution

5. If $[\vec{a}, \vec{b}, \vec{c}]=1$, then the value of

$$
\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}}+\frac{\vec{c} \cdot(\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}} \text { is }
$$

A. 1
B. -1
C. 2
D. 3

D View Text Solution

6. The volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}, \hat{i}+\hat{j}+\pi \hat{k}$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{\pi}{4}$

Answer: C

D Watch Video Solution

7. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]=\frac{1}{4}$, then the angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

8. If $\quad \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\vec{i}$
$(\vec{a} \times \vec{b})) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}$ then the value of $\lambda+\mu$ is.
and
A. 0
B. 1
C. 6
D. 3

Watch Video Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}]=3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^{2}$ is equal to
A. 81
B. 9
C. 27
D. 18

Answer: A

- Watch Video Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{b+c}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{2}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{4}$
D. π

Answer: B

- Watch Video Solution

11. If the volume of the parallelepiped with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}),(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times(\vec{a}$ as coterminous edges is,
A. 8 cubic units
B. 512 cubic units
C. 64 cubic units
D. 24 cubic units

- Watch Video Solution

12. Consider the vectors, $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$ Let P_{1} and P_{2} be the planes determined by the pairs of vectors, \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_{1} and P_{2} is
A. 0°
B. 45°
C. 60°
D. 90°

Answer: A

- Watch Video Solution

13. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b} \vec{c}$ are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are
A. perpendicular
B. parallel
C. inclined at an angle $\frac{\pi}{3}$
D. inclined at an angle $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

14. If $\bar{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \bar{b}=\hat{i}+2 \hat{j}-5 \hat{j}, \bar{c}=3 \hat{i}+5 \hat{j}-\hat{k}$, then a vector perpendicular to \bar{a} and lies in the plane containing \bar{b} and \bar{c} is.

$$
\text { A. }-17 \hat{i}+21 \hat{j}-97 \hat{k}
$$

B. $17 \hat{i}+21 \hat{j}-123 \hat{k}$
C. $-17 \hat{i}-21 \hat{j}+97 \hat{k}$
D. $-17 \hat{i}-21 \hat{j}-97 \hat{k}$

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 15. The } \begin{array}{c}
\text { angle } \\
\frac{x-2}{3}=\frac{y+1}{-2}, z=2 \text { between } \\
\text { and } \frac{x-1}{1}=\frac{2 y+3}{3}, \frac{z+5}{2} \text { is }
\end{array} \text { the lines }
\end{aligned}
$$

A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-a z+\beta=0$ then is
A. $(-5,5)$
B. $(-6,7)$
C. (5, -5)
D. $(6,-7)$

Answer: B

17. The angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-3 \hat{k})+t(2 \hat{i}+\hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j})+4=0$ is :
A. 0°
B. 30°
C. 45°
D. 90°

Answer: C

- Watch Video Solution

18. The coordinates of the point where the line
$\vec{r}=(6 \hat{i}-\hat{j}-3 \hat{k})+t(-\hat{i}+4 \hat{k})$ meets the plane
$\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=3$ are:
A. $(2,1,0)$
B. $(7,-1,-7)$
C. $(1,2,-6)$
D. $(5,-1,1)$

Answer: D
19. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

20. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+$ $7=0$ is
A. $\frac{\sqrt{7}}{2 \sqrt{2}}$
B. $\frac{7}{2}$
C. $\frac{\sqrt{7}}{2}$
D. $\frac{7}{2 \sqrt{2}}$

Answer: A

- Watch Video Solution

21. If direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then.
A. $c= \pm 3$
B. $c= \pm \sqrt{3}$
C. $c>0$
D. $0<c<1$

Answer: B

- Watch Video Solution

22. The vector equation $\vec{r}=(\hat{i}-2 \hat{j}-\hat{k})+t(6 \hat{j}-\hat{k})$ represents a straight line passing through the points
A. $(0,6,-1)$ and ($1,-2,-1$)
B. $(0,6,-1)$ and $(-1,-4,-2)$
C. $(1,-2,-1)$ and $(1,4,-2)$
D. $(1,-2,1)$ and $(0,-6,1)$

Answer: C

- Watch Video Solution

23. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane $x+y+z+k=0$, then the value of k are
A. ± 3
B. ± 6
C. $-3,9$
D. $3,-9$

Answer: D

- Watch Video Solution

24. If the planes $\vec{r} \cdot(2 \hat{i}-\lambda \hat{j}+\hat{k})=3$ and $\vec{r} \cdot(4 \hat{i}+\hat{j}-\mu \hat{k})=5$ are parallel, then the value of λ and μ are:
A. $\frac{1}{2},-2$
B. $-\frac{1}{2}, 2$
C. $-\frac{1}{2},-2$
D. $\frac{1}{2}, 2$

Answer: C

- View Text Solution

25. If the length of the perpendicular from the origin to the plane $2 x+3 y+\lambda z=1, \lambda>0$ is $\frac{1}{5}$ then the value of is λ is
A. $2 \sqrt{3}$
B. $3 \sqrt{2}$
C. 0
D. 1

Answer: A

- Watch Video Solution

Problems For Practice Choose The Correct Answer

1. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$ then the angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

2. If \widehat{a} and \hat{b} are unit vectors inclined at angle θ then $\frac{1}{2}|\widehat{a}+\hat{b}|$ is
A. $\sin \frac{\theta}{2}$
B. $\cos 2 \theta$
C. $\cos \frac{\theta}{2}$
D. $\cos 2 \theta$

Answer: C

3. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors then $|\vec{a}+\vec{b}+\vec{c}|$ is
A. $\frac{1}{3}$
B. $\sqrt{3}$
C. 3
D. $\frac{1}{\sqrt{3}}$

Answer: B

4. If $|\vec{a} \times \vec{b}|=\vec{a}-\vec{b}$ then the angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{6}$

- View Text Solution

5. If $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=8$ then $[\vec{a}, \vec{b}, \vec{c}]$ is
A. 4
B. 2
C. 1
D. 16

Answer: A

- Watch Video Solution

6. If the area of the parallelogram having diagonals $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$ is :
A. $5 \sqrt{3}$ sq. units
B. $15 \sqrt{3}$ sq. units
C. $5 \sqrt{13}$ sq. units
D. 3 sq. units

Answer: A

- Watch Video Solution

7. If $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}, \vec{c}=-\hat{i}+2 \hat{j}-\hat{k}$ then the unit vector perpendicular to both $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ is:
A. \hat{i}
B. \hat{j}
C. \hat{k}
D. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$

Answer: C

8. The force $\vec{F}=2 \hat{i}+2 \hat{j}-2 \hat{k}$ acting at the point $\hat{i}-2 \hat{j}+\hat{k}$ is displaced to a unit distance in z axis direction. The magnitude of workdone is :
A. 4 units
B. 6 units
C. 2 units
D. 10 units

Answer: C

- View Text Solution

9. If $|\vec{a}|=5|\vec{b}|=4$ and $|\vec{a}+\vec{b}|=1$ then $|\vec{a}-\vec{b}|=$?
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

10. The projectionof $\hat{i}-\hat{j}$ on z axis:
A. 1
B. 2
C. 3
D. 0

Answer: D

11. Given $\vec{a} \cdot \vec{c}=4, \vec{a} \cdot \vec{d}=3, \vec{b} \cdot \vec{c}=2, \vec{b} \cdot \vec{d}=3$. Then value of $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is :
A. 4
B. 6
C. 18
D. 2

Answer: B

- Watch Video Solution

12. The vector $\overrightarrow{A B}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\overrightarrow{B C}=-\hat{i}-2 \hat{k}$ are adjacent sides of a parallelogram ABCD the angle between the diagonals is :
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{4}$

Answer: A

- Watch Video Solution

13. If the angle between the lines having direction ratios $(\alpha, 3,5)$ and (2, $-1,2)$ is $\frac{\pi}{4}$ then α is:
A. 4
B. 3
C. 2
D. 1

Answer: A

14. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be distinct non negative numbers. The vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ lie in a plane then c is :
A. AM of a and b
B. GM of a and b
C. HM of a and b
D. None of these

Answer: B

- View Text Solution

15. $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j}(\hat{k} \times \hat{i})+\hat{k}(\hat{i} \times \hat{j})$ is :
A. -3
B. 0
C. 1
D. 3

Answer: D

- View Text Solution

16. If \vec{a} is any vector then the value of $\Sigma(\vec{a} \times \vec{i})^{2}$ is:
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. $4 a^{2}$

Answer: B

- View Text Solution

17. If $(1-p) \hat{i}+2(1+p) \hat{j}+(3+p) \hat{k}$ and $3 \hat{i}+\hat{j}$ are at right angle to each other then value of p is :
A. -5
B. 3
C. 5
D. 3

Answer: C

- View Text Solution

18. $[\vec{a}, \vec{a}+\vec{b}, \vec{a}+\vec{b}+\vec{c}]$ is :
A. $[\vec{a} \vec{b} \vec{c}]$
B. 0
C. $2[\vec{a}, \vec{b}, \vec{c}]$
D. $[\vec{a}, \vec{b}, \vec{c}]^{2}$

Answer: A
19. The sum of the projection of $2 \hat{i}+\hat{j}+2 \hat{k}$ on the coordinate axis is:
A. -5
B. 5
C. 3
D. 4

Answer: B

D Watch Video Solution

20. If $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$ then the value of $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]$ is:
A. 765
B. 675
C. 576
D. 567

Answer: C

- View Text Solution

21. $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$
$\vec{b}=\hat{i}-\hat{j}-m \hat{k}$
$\vec{c}=-\hat{i}+2 \hat{j}+\hat{k}$ and $[\vec{a}, \vec{b}, \vec{c}]=8$ then m is :
A. $\sqrt{29}$
B. -4
C. 1
D. 2

Answer: D

22. The work done by the force $\vec{F}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ in moving a particle from $(3,4,5)$ to $(1,2,3)$ is :
A. $\sqrt{29}$
B. -4
C. 1
D. 2

Answer: D

- View Text Solution

23. The area of the triangle formed by the points where position vector are $3 \hat{i}+\hat{j}, 5 \hat{i}+2 \hat{j}+\hat{k}$ and $\hat{i}-2 \hat{j}+3 \hat{k}$ is :
A. $\sqrt{29}$
B. -4
C. 1
D. 2

Answer: A

- View Text Solution

24. $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\lambda \hat{i}-\hat{j}+\lambda \hat{k}$ are coplanar then λ is :
A. $\sqrt{29}$
B. -4
C. 1
D. 2

Answer: C

25. If the equations $2 x-\lambda y+5 z=7$ and $\lambda x-8 y-10 z+14=0$ represent the same plane then λ is :
A. $\sqrt{29}$
B. -4
C. 1
D. 2

Answer: B

- Watch Video Solution

26. Find the odd one out in the following :
A. $\vec{a}+\vec{b}$
B. $\vec{a} \times \vec{b}$
c. $\vec{a} \times(\vec{b} \times \vec{c})$
D. $[\vec{a}, \vec{b}, \vec{c}]$

Answer: D

D Watch Video Solution

27. Find the correct statement in the following given four points A, B, C, D are coplanar only of the following condition is satisfied.
A. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$
B. $[\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}]=0$
c. $\overrightarrow{A B} \times \overrightarrow{C D}=0$
D. $\overrightarrow{A B} \cdot \overrightarrow{C D}=0$

Answer: B

D View Text Solution

28. If \vec{a} and \vec{b} lie in one plane and \vec{c} and \vec{d} lie on another plane and if the planes are parallel which one of the following is true.
А. A) $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0$
B. $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=0$
c. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$
D. $(\vec{a} \times \vec{c}) \times(\vec{c} \times \vec{d})=0$

Answer: C

- View Text Solution

29. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ and \vec{b} perpendicular to \vec{c} then which is true ?
A. a) \vec{a} and \vec{b} are parallel or $\vec{c}=0$
B. b) \vec{a} and \vec{b} are perpendicular or $\vec{c}=0$
C. c) $\vec{c}=0$
D. d) $\vec{a}=0$

Watch Video Solution

30. Find which one is not correct statement.
A. Two straight lines are said to be skew lines if the lines are neither parallel nor intersecting
B. Vector product is not commutative
C. Scalar triple product is half of the volume of the parallelopiped
D. $[\vec{a}, \vec{b}, \vec{c}]=0$

Answer: C

- View Text Solution

31. Identify correct pair from the following.
(i) $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}$
(ii) Projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
(iii) $[\hat{i}+2 \hat{j}, \hat{j}+2 \hat{k}, \hat{k}+2 \hat{j}]=9$
(iv) If $\vec{r}=\vec{a}+t \vec{b}$ and $\vec{r}=\vec{c}+s \vec{d}$ are two skew lines then
shortest distance between the lines is $\frac{\vec{c}-\vec{a} \quad \vec{b}}{} \vec{d}$
A. (i) and (ii) are correct
B. (iii) and (iv) are correct
C. (i) and (iii) are correct
D. (ii) and (iv) are correct

Answer: B

- View Text Solution

Problems For Practice Answer The Following Questions

1. Prove that the sum of the squares of the squares of tha diagonals of a parallelogram is equal to tha sum of the squares of its sides.
(\#\# CTN_MK_MAT_X_P2_GEO_CO2_E11_001.png" width="80\%">

(Watch Video Solution

2.

Show
that
$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})+(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times$

- Watch Video Solution

3. Find the vector and cartesian equation of the line through the point (3, $-4,-2$) and parallel to the vector $9 \hat{i}+6 \hat{j}+2 \hat{k}$.

- Watch Video Solution

4. Find the vector and cartesian equation of the line joining the points (1, $-2,1$) and ($0,-2,3$).
5. Find the angle between the lines
$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-4}{6}$ and $\vec{r}=(-\hat{i}-2 \hat{j}+4 \hat{k})+t(\hat{j}+2 \hat{k})$.

- Watch Video Solution

6. Find the distance between the parallel lines
$\vec{r}=(\hat{i}-\hat{j})+t(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+s(2 \hat{i}-\hat{j}+\hat{k})$

- Watch Video Solution

7. Show that the lines $\vec{r}=(\hat{i}-\hat{j})+t(2 \hat{i}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j})+s(\hat{i}+\hat{j}-\hat{k})$ are skew lines and find the distance between them .

- Watch Video Solution

8. Find the vector and cartesian equation of a plane which is at a distance of 3 units from the origin and which is normal to the vector $\vec{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

9. Find the vector and cartesian equation of the plane passing through (2,

- Watch Video Solution

10. Find the vector and cartesian equation of the plane passing through
(2, -1, \quad 3) and $\perp r$ to the planes
$3 x+2 y-4 z=1$ and $2 x+3 y+2 z=7$.

- Watch Video Solution

11. Find the Vector and Cartesian equation of the plane containing the line $\frac{x-2}{2}=\frac{y-2}{3}=\frac{z-1}{3}$ and parallel to the line $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z+1}{1}$

- Watch Video Solution

12. Find the vector cartesian equation of the plane passing through the points $(1,-2,3)$ and $(-1,2,-1)$ and is parallel to the line $\vec{r}=(2 \hat{i}-\hat{j}+\hat{k})+t(2 \hat{i}+3 \hat{j}+4 \hat{k})$

- Watch Video Solution

13. Find the vector and certesian equation of the plane through the points $(1,2,3)$ and $(2,3,1)$ and perpendicular to the plane $\vec{r} \cdot(3 \hat{i}-2 \hat{j}+4 \hat{k})=5$.

- Watch Video Solution

14. Find the equation of the plane passing through the points ($3,4,2$), (2, $-2,-1)$ and ($7,0,1$).

Watch Video Solution

15. Find the equation of the plane passingthrough the intersection of the planes

$$
3 x-5 y+4 z+10=0 \text { and } 2 x-8 y+4 z-3=0 \quad \text { and }
$$ perpendicular to the plane $3 x-y-2 z-4=0$.

- View Text Solution

16. Find the distance between the parallel planes
$\vec{r} \cdot(-\hat{i}-\hat{j}+\hat{k})=3, \vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=5$.

- Watch Video Solution

17. Find the coordinates of the point where the line $\vec{r}=(\hat{i}+2 \hat{j}-5 \hat{k})+t(2 \hat{i}-3 \hat{j}+4 \hat{k})$ meets the plane $\vec{r} \cdot(2 \vec{i}+4 \vec{j}-\vec{k})=3$.

- Watch Video Solution

18. The value of $[\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}]$ is equal to :

- Watch Video Solution

19. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ prove that \vec{a} and \vec{b} are perpendicular.

- Watch Video Solution

20. Find the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\vec{r}=(-3 \vec{i}-7 \hat{j}+6 \vec{k})+t(-3 \vec{i}+$

$$
\left.\begin{array}{cc}
\text { 21. } & \text { Show } \\
\vec{r} & \text { that } \\
\vec{r} & \text { the } \\
\text { lines } \\
i
\end{array}+5 \vec{j}+6 \vec{k}\right)+t(2 \vec{i}+3 \vec{j}+4 \vec{k}) \text { and } \vec{r}=(2 \vec{i}+3 \vec{j}
$$ are coplanar. Find the equation of the plane in which they lie.

- Watch Video Solution

