đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - PREMIERS PUBLISHERS

DISCRETE MATHEMATICS

Worked Example

1. Verify the

Closure property
2. Verify the

Commutative property

- Watch Video Solution

3. Verify the

Associative property
4. Verify the

Existence of identity

- Watch Video Solution

5. Verify the

Existence of inverse for the arithmetic operation + on the set of all odd integers Z_{0}.

- Watch Video Solution

6. Let S set of all even number Z_{e} and $b e+$,

Verify the :

Closure property

- Watch Video Solution

7. Let S set of all even number Z_{e} and $b e+$,

Verify the :

Commutative property
8. Let S set of all even number Z_{e} and $b e+$,

Verify the :

Associative property

- Watch Video Solution

9. Let S set of all even number Z_{e} and $b e+$,

Verify the :

Identity property
10. Let S set of all even number Z_{e} and $b e+$,

Verify the :

Inverse element.

D Watch Video Solution

11. Let S set of all even number Z_{e} and $b e+$, Verify the :

Closure property

D Watch Video Solution
12. Verify the

Commutative property

D Watch Video Solution

13. Verify the

Associative property

- Watch Video Solution

14. Verify the

Existence of identity

D Watch Video Solution
15. Verify the

Existence of inverse of C with respect to + .
(Watch Video Solution

16. Verify the

Closure property

- Watch Video Solution

17. Verify the

Commutative property

- Watch Video Solution

18. Verify the

Associative property

D Watch Video Solution
19. Verify the

Existence of identity

D Watch Video Solution

20. Verify the

Existence of inverse for the arithmetic operation + on the set of all odd integers Z_{0}.

D Watch Video Solution

21. Verify the

Closure property

D Watch Video Solution

22. Verify the

Commutative property

D Watch Video Solution

23. Verify the

Associative property
(Watch Video Solution

24. Verify the

Existence of identity

D Watch Video Solution

25. Verify the

Existence of inverse for the set Z with following operation.
$a \cdot b=a+b+2 f$ or alla,$b \in Z$
26. Verify the

Closure property

- Watch Video Solution

27. Verify the

Commutative property
(Watch Video Solution
28. Verify the

Associative property

D Watch Video Solution

29. Verify the

Existence of identity
(Watch Video Solution
30. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ be any
two bollean matrices of the same type find
$A \vee B$ and $A \wedge B$

- Watch Video Solution

31. Verify the

Closure property

- Watch Video Solution

32. Verify the

Commutative property

D Watch Video Solution

33. Verify the

Associative property
(Watch Video Solution

34. Verify the

Existence of identity

D Watch Video Solution

35. Verify the

Existence of inverse for the operation
+4 on Z_{4}.

D Watch Video Solution
36. Let S be [1], [2], [3], [4], [5], [6] =
$Z_{7}-[0] \cdot$ be \times_{7} verifty

Closure property

D Watch Video Solution

37. Let S be [1], [2], [3], [4], [5], [6] =
$Z_{7}-[0] \cdot$ be \times_{7} verifty

Commutative property
38. Let S be [1], [2], [3], [4], [5], [6] =
$Z_{7}-[0] \cdot$ be \times_{7} verifty

Associative property

- Watch Video Solution

39. Let S be [1], [2], [3], [4], [5], [6] =
$Z_{7}-[0] \cdot$ be \times_{7} verifty

Existence property

- Watch Video Solution

40. Identify the valid statement from the following

Mount Everest is the highest mountain in the world.

D Watch Video Solution

41. Identify the valid statement from the following
$4+5=9$
42. Identify the valid statement from the following
$9+6>10$

D Watch Video Solution
43. Identify the valid statement from the

following

$(100-10)=80$
44. Identify the valid statement from the following

How beautiful the moon is !

D Watch Video Solution

45. Identify the valid statement from the following

Bring the book to me

D Watch Video Solution
46. Identify the valid statement from the following

What are you coming home?

D Watch Video Solution

47. What the statement in words
corresponding to $-p, p \vee q, q \vee-p$ where p
is "it is cold" and q is "It is raining".

D Watch Video Solution
48. How many rows are needed for the following statement formulae.
$(p \vee-q) \wedge(p \wedge r)$

- Watch Video Solution

49. How many rows are needed for the following statement formulae.

$$
(p \wedge-t) \vee(p \vee-q) \vee(p \wedge-r)
$$

50. Consider $p \rightarrow q$: If today is Sunday their 3 is a prime number

Her p: Today's Sunday, q:3 is a prime number.

The truth of $p \rightarrow q$ is T because the conculsion of has truth value T. Consequences.

D Watch Video Solution

51. Write the

Conditional statement

52. Write the

Converse statement

- Watch Video Solution

53. Write the

Inverse statement

- Watch Video Solution

54. Write the

Contrapositive statement. For the two
statement p and q given as:
$\mathrm{p}: 3$ is a factor of 18
$\mathrm{q}:$ Madurai is in Karnataka state.

D Watch Video Solution

55. Construct the truth table for
$(p \bar{\cup} q) \wedge(p \bar{\cup}-q)$.

p	q	$\neg q$	$r:(p \bar{\vee} q)$	$s:(p \bar{\vee} \neg q)$	$r \wedge s$
T	T	F	F	T	F
T	F	T	T	F	F
F	T	F	T	F	F
F	F	T	F	T	F

- Watch Video Solution

56. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.

- Watch Video Solution

57. Show that (i) $\sim(p \wedge q) \equiv \sim p \vee \sim q$
(ii) $\sim(p \rightarrow q) \equiv p \wedge \sim q$.

- Watch Video Solution

58.

Shows

$$
p \leftrightarrow q=[-p \vee q] \wedge[(-q) \vee p]
$$

(Watch Video Solution

Solution To Exercise 121

1. Determine whether $*$ is a binary operation on the sets given below.
(i) $a * b=a$. $|b|$ on R .
(ii) $a * b=\min (a, b)$ on $A=\{1,2,3,4,5\}$
(iii) $(a * b)=a \sqrt{b}$ is binary on R .

- Watch Video Solution

2. Determine whether $*$ is a binary operation on the sets given below.
(i) $a * b=a$. $|b|$ on R .
(ii) $a * b=\min (\mathrm{a}, \mathrm{b})$ on $\mathrm{A}=\{1,2,3,4,5\}$
(iii) $(a * b)=a \sqrt{b}$ is binary on R .

3. On Z, define \otimes by
 $(m \otimes n)=m^{n}+n^{m}: \forall m, n \in Z . \quad$ Is

binary on Z ?

- Watch Video Solution

4. Let $*$ be defined on R by
$(a * b)=a+b+a b-7$. Is * binary on R? If
so, find $3 *\left(-\frac{7}{15}\right)$.

D Watch Video Solution

5. Let $A=\{a+\sqrt{5} b: a, b \in Z\}$. Check whether the usual multiplication is a binary operation on A.

- Watch Video Solution

6. Define an operation * on Q as follows:
$a \cdot b=\left(\frac{a+b}{2}\right), a, b \in Q . \quad$ Examine the
closure, communative, and associative
properties satisfied by •on Q.
7. Define an operation * on Q as follows:
$a \cdot b=\left(\frac{a+b}{2}\right), a, b \in Q . \quad$ Examine the existence of identify and existence of inverse for the operation * on Q .

D Watch Video Solution

8. Fill in the following table so that the binary operation $*$ on $A=\{a, b, c\}$ is commutative.

- Watch Video Solution

9. Consider the binary operation * defined on
the set $A=\{a, b, c, d\}$ by the following table.

-	a	b	c	d
a	a	c	h	d
b	d	a	b	c
c	c	d	a	a
d	d	b	a	c

* , inmmutative and associative?

$*$	a	b	c	d
a	a	c	b	d
h	d	a	b	c
c	c	d	a	a
d	d	b	a	c

D Watch Video Solution

10. Let $\quad A=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$,

$$
B=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

$C=\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$
by any three boolean matrices of the same type. Find (i) $A \vee B$,
$A \wedge B,($ iii $)(A \vee A) \wedge C,(i v)(A \wedge B) \vee C$.

- Watch Video Solution

matrices of the same type. Find (i) $A \vee B$, (ii)
$A \wedge B$, (iii) $(A \vee A) \wedge C$, (iv) $(A \wedge B) \vee C$.

D Watch Video Solution

12. Let $A=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$,
$B=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)$
$C=\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$
by any three boolean
matrices of the same type. Find (i) $A \vee B$, (ii)
$A \wedge B$, (iii) $(A \vee A) \wedge C$, (iv) $(A \wedge B) \vee C$.
13. Let $\quad A=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$,
$B=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)$
$C=\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$
by any three boolean matrices of the same type. Find (i) $A \vee B$,
$A \wedge B,($ iii $)(A \vee A) \wedge C$, (iv) $(A \wedge B) \vee C$.
14. Let $M=\left\{\left[\begin{array}{ll}x & x \\ x & x\end{array}\right\}: x \in R-\{0\}\right\}$ and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M.

D Watch Video Solution

15. Let $M=\left\{\left[\begin{array}{ll}x & x \\ x & x\end{array}\right\}: x \in R-\{0\}\right\}$ and
let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the
existence of identify, existence of inverse properties for the operation * on M.

D Watch Video Solution

16. Let A be $Q /\{1\}$. Define * on A by x * $y=x+y-x y$.

Is * binary on A? If so, examine the commutative and association properties satisfied by * on A.
17. Let A be $Q /\{1\}$. Define * on A by x * $y=x+y-x y$. Is

* binary on A? If so, examine the existence of identity \& inverse properties for the operation * on A.

D Watch Video Solution

Solution To Exercise 122

1. Let p : Jupiter is a planet and q : India is an
island be any two simple statements. Give
verbal sentence describing each of the following statements:
(i) $\sim p$
(ii) $p \wedge \sim q$
(iii) $\sim p \vee q$
(iv) $p \rightarrow \sim q$
(v) $p<\Rightarrow q$

D Watch Video Solution

2. Let p : Jupiter is a planet and q : India is an island be any two simple statements. Give
verbal sentence describing each of the following statements:
(i) $\sim p$
(ii) $p \wedge \sim q$
(iii) $\sim p \vee q$
(iv) $p \rightarrow \sim q$
(v) $p<\Rightarrow q$

D Watch Video Solution

3. Let p : Jupiter is a planet and q : India is an
island be any two simple statements. Give
verbal sentence describing each of the following statements:
(i) $\sim p$
(ii) $p \wedge \sim q$
(iii) $\sim p \vee q$
(iv) $p \rightarrow \sim q$
(v) $p<\Rightarrow q$

D Watch Video Solution

4. Let p : Jupiter is a planet and q : India is an
island be any two simple statements. Give
verbal sentence describing each of the following statements:
(i) $\sim p$
(ii) $p \wedge \sim q$
(iii) $\sim p \vee q$
(iv) $p \rightarrow \sim q$
(v) $p<\Rightarrow q$

D Watch Video Solution

5. Let p : Jupiter is a planet and q : India is an
island be any two simple statements. Give
verbal sentence describing each of the following statements:
(i) $\sim p$
(ii) $p \wedge \sim q$
(iii) $\sim p \vee q$
(iv) $p \rightarrow \sim q$
(v) $p<\Rightarrow q$

D Watch Video Solution

6. Write each of the following sentences in
symbolic form using statement variables p and
q.
(i) 19 is not a prime number and all the angles of a triangle are equal.
(ii) 19 is a prime number or all the angles of a triangle are not equal.
(iii) 19 is a prime number and all the angles of a triangle are equal.
(iv) 19 is not a prime number.

D Watch Video Solution

7. Write each of the following sentences in symbolic form using statement variables p and q.
(i) 19 is not a prime number and all the angles of a triangle are equal.
(ii) 19 is a prime number or all the angles of a triangle are not equal.
(iii) 19 is a prime number and all the angles of a triangle are equal.
(iv) 19 is not a prime number.
8. Write each of the following sentences in symbolic form using statement variables p and q.
(i) 19 is not a prime number and all the angles
of a triangle are equal.
(ii) 19 is a prime number or all the angles of a triangle are not equal.
(iii) 19 is a prime number and all the angles of a triangle are equal.
(iv) 19 is not a prime number.
9. Write each of the following sentences in symbolic form using statement variables p and q.
(i) 19 is not a prime number and all the angles of a triangle are equal.
(ii) 19 is a prime number or all the angles of a triangle are not equal.
(iii) 19 is a prime number and all the angles of a triangle are equal.
(iv) 19 is not a prime number.
10. Determine the truth value of each of the following statements.
(i) If $6+2=5$, then the milk is white.
(ii) China is an Europe or $\sqrt{3}$ is an integer.
(iii) It is not true that $5+5=9$ or Earth is a planet.
(iv) 11 is a prime number and all the sides of a rectangle are equal.

D Watch Video Solution

11. Determine the truth value of each of the following statements.
(i) If $6+2=5$, then the milk is white.
(ii) China is an Europe or $\sqrt{3}$ is an integer.
(iii) It is not true that $5+5=9$ or Earth is a planet.
(iv) 11 is a prime number and all the sides of a rectangle are equal.

D Watch Video Solution

12. Determine the truth value of each of the following statements.
(i) If $6+2=5$, then the milk is white.
(ii) China is an Europe or $\sqrt{3}$ is an integer.
(iii) It is not true that $5+5=9$ or Earth is a planet.
(iv) 11 is a prime number and all the sides of a rectangle are equal.

- Watch Video Solution

13. Determine the truth value of each of the following statements.
(i) If $6+2=5$, then the milk is white.
(ii) China is an Europe or $\sqrt{3}$ is an integer.
(iii) It is not true that $5+5=9$ or Earth is a planet.
(iv) 11 is a prime number and all the sides of a rectangle are equal.

- Watch Video Solution

14. Which one of the following sentences is a proposition?
(i) $4+7=12$
(ii) What are you doing?
(iii) $3^{n} \leq 81, n \in N$
(iv) Peacock is our national bird
(v) How tall this mountain is?

D Watch Video Solution
15. Which one of the following sentences is a proposition?
(i) $4+7=12$
(ii) What are you doing?
(iii) $3^{n} \leq 81, n \in N$
(iv) Peacock is our national bird
(v) How tall this mountain is?

D Watch Video Solution
16. Which one of the following sentences is a proposition?
(i) $4+7=12$
(ii) What are you doing?
(iii) $3^{n} \leq 81, n \in N$
(iv) Peacock is our national bird
(v) How tall this mountain is?

D Watch Video Solution
17. Which one of the following sentences is a proposition?
(i) $4+7=12$
(ii) What are you doing?
(iii) $3^{n} \leq 81, n \in N$
(iv) Peacock is our national bird
(v) How tall this mountain is?

- Watch Video Solution

18. Which one of the following sentences is a proposition?
(i) $4+7=12$
(ii) What are you doing?
(iii) $3^{n} \leq 81, n \in N$
(iv) Peacock is our national bird
(v) How tall this mountain is?

D Watch Video Solution
19. Write the converse, inverse, and contrapositive of each of the following implication.
(i) If x and y are numbers such that $x=y$, then $x^{2}=y^{2}$.
(ii) If a quadrilateral is a square then it is a rectangle.

D Watch Video Solution

20. Write the converse, inverse, and contrapositive of each of the following implication.
(i) If x and y are numbers such that $x=y$, then $x^{2}=y^{2}$.
(ii) If a quadrilateral is a square then it is a rectangle.
21. Construct the truth table for the following
statements.
$-q \vee-q$

- Watch Video Solution

22. Construct the truth table for the following
statements.
$-(p \wedge-q)$

- Watch Video Solution

23. Construct the truth table for the following
statements.
$(p \vee q) \vee-q$

- Watch Video Solution

24. Construct the truth table for the following
statements.
$(-p \rightarrow r) \vee(p \leftrightarrow q)$
(D) Watch Video Solution
25. Verify whether the following compound propositions are tautologies or contradictions or contingency
$(p \wedge q) \wedge-(p \vee q)$

- Watch Video Solution

26. Verify whether the following compound propositions are tautologies or contradictions or contingency
$((p \vee q) \wedge-p) \rightarrow q$
27. Verify whether the following compound propositions are tautologies or contradictions or contingency
$(p \rightarrow q) \leftrightarrow(-p \rightarrow q)$

- Watch Video Solution

28. Verify whether the following compound propositions are tautologies or contradictions or contingency
$((p \rightarrow q) \vee(q \rightarrow r)) \rightarrow(p \rightarrow r)$

- Watch Video Solution

29. Show that (i) $\sim(p \wedge q) \equiv \sim p \vee \sim q$
(ii) $\sim(p \rightarrow q) \equiv p \wedge \sim q$.

- Watch Video Solution

30. Show that (i) $\sim(p \wedge q) \equiv \sim p \vee \sim q$
(ii) $\sim(p \rightarrow q) \equiv p \wedge \sim q$.
(Watch Video Solution
31. Prove that
$Q \rightarrow P \equiv P \rightarrow-Q$

- Watch Video Solution

32. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.
(D) Watch Video Solution
33. Show that $-(p \leftrightarrow q) \equiv p \leftrightarrow-q$.

Watch Video Solution

34. Check whether the statement
$p \rightarrow(q \rightarrow p)$ is a tautology or a contradiction without using the truth table.

D Watch Video Solution

35. Using truth table check whether the statements $\sim(p \vee q) \vee(\sim p \wedge q)$ and $\sim p$ are logically equivalent.

$$
\text { 36. } \quad \text { Prove } \quad p \rightarrow(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
$$

without using truth table.

D Watch Video Solution

37. Prove that $p \rightarrow(\sim q \vee r) \equiv \sim p \vee(\sim q \vee r)$
using truth table.

- Watch Video Solution

Solution To Exercise 123

1. A binary operation on a set S is a function
from
A. $S \rightarrow S$
B. $(S \times S) \rightarrow S$
C. $S \rightarrow(S \times S)$
D. $(S \times S) \rightarrow(S \times S)$

Answer: B

D Watch Video Solution
2. Subtraction is not binary operation in
A. R
B. Z
C. N
D. Q

Answer: C

- Watch Video Solution

3. Which one of the following is a binary operation on N ?
A. Subtraction

B. Multiplication

C. Division
D. All of the above

Answer: B
4. In the set R of real number $*$ is defined as
follows. Which one of the following is not a binary operation on R ?

> A. $a \cdot b=\min (a . b)$
> B. $a \cdot b=\max (a, b)$
> C. $a \cdot b=a$
> D. $a \cdot b=a^{b}$

Answer: D

D Watch Video Solution
5. The operation $*$ defined by $a * b=\frac{a b}{7}$ is not a binary operation on
A. Q^{+}
B. Z
C. R
D. C

Answer: B

D Watch Video Solution
6. In the set Q define $a \odot b=a+b+a b$. For what value of $y, 3 \odot(y \odot 5)=7 ?$

$$
\begin{aligned}
& \text { A. } y=\frac{2}{3} \\
& \text { В. } y=\frac{-2}{3} \\
& \text { C. } y=\frac{-3}{2}
\end{aligned}
$$

D. $y=4$

Answer: B

- Watch Video Solution

7. If $a * b=\sqrt{a^{2}+b^{2}}$ on the real numbers
then $*$ is
A. commutative but not associative
B. associative but not commutative
C. both commutative and associative
D. neither commutative nor associative

Answer: C

- Watch Video Solution

8. Which one of the following statements has the truth value T ?
A. $\sin x$ is an even function
B. Every square matrix is non-singular
C. The product of complex number and its
conjugate is purely imaginary
D. $\sqrt{5}$ is an irrational numbers

Answer: D

D Watch Video Solution
9. Which one of the following statements has truth value F ?
A. Chennai is in India or $\sqrt{2}$ is in integer
B. Chennai is in India or $\sqrt{2}$ is irrational number
C. Chennai is in India or China $\sqrt{2}$ is in integer
D. Chennai is in China or $\sqrt{2}$ is in irrational
number

Answer: C

D Watch Video Solution

10. If a compound statement involves 3 simple
statements, then the number of rows in the
truth table is
A. 9
B. 8
C. 6
D. 3

D Watch Video Solution

11. Which one is the inverse of the statement

$$
(p \vee q) \rightarrow(p \wedge q) ?
$$

A. $(p \wedge q) \rightarrow(p \vee q)$
B. $-(p \vee q) \rightarrow(p \wedge q)$
C. $(-p \vee-q) \rightarrow(-p \wedge-q)$
D. $(-p \vee-q) \rightarrow(-p \vee-q)$

Answer: D

D Watch Video Solution

12. Which one is the contrapositive of the statement $(p \vee q) \rightarrow r$?
A. $-r \rightarrow(-p \wedge-q)$
B. $-r t p(p \vee q)$
C. $r \rightarrow(p \wedge q)$
D. $p \rightarrow(q \vee r)$

Answer: A

- Watch Video Solution

13. The truth table for $(p \wedge q) \vee-q$ is given below:

Which of the following is true?

$\begin{array}{llll}a & b & c & d\end{array}$

A.

$$
\begin{array}{lllll}
a & T & T & T & T
\end{array}
$$

B.
$a \quad b \quad c \quad d$

$$
\begin{array}{lllll}
b & T & F & T & T
\end{array}
$$

C.

$$
\begin{array}{ccccc}
c & T & T & F & T
\end{array}
$$

$\begin{array}{llll}a & b & c & d\end{array}$
D.

$$
\begin{array}{lllll}
d & T & F & F & F
\end{array}
$$

Answer: C

D Watch Video Solution

14. In the last column of the truth table for $\sim(p \vee \sim q)$ the number of final outcomes of the truth value 'F' are
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution
15. Which one of the following is incorrect? For any two propostitions p and q, we have

$$
\begin{aligned}
& \text { A. }-(p \vee q) \equiv-p \vee-q \\
& \text { B. }-(p \wedge q) \equiv-p \vee-q \\
& \text { C. }-(p \vee q) \equiv p \vee-q \\
& \text { D. }-(-p) \equiv p
\end{aligned}
$$

Answer: C

- Watch Video Solution

Which one of the following is correct for the truth value of $(p \wedge q) \rightarrow-p$?
A. $\quad a \quad b \quad c \quad d$
$\begin{array}{lllll}a & T & T & T & T\end{array}$
$\begin{array}{llll}a & b & c & d\end{array}$
B.
$\begin{array}{llll}b & F & T & T\end{array}$
$\begin{array}{llll}a & b & c & d\end{array}$
C.
$\begin{array}{cllll}c & F & F & T & T\end{array}$
$\begin{array}{llll}a & b & c & d\end{array}$
D.
${ }^{d} T T T F$

Answer:

- Watch Video Solution

17. The dual of $\sim(p \vee q) \vee[p \vee(p \wedge \sim r)]$ is
A. $-(p \vee q) \wedge[p \vee(p \wedge-r)]$
B. $(p \wedge q) \wedge[p \wedge(p \vee-r)]$
C. $-(p \wedge p) \wedge[p \wedge(p \wedge r)]$
D. $-(p \wedge q) \wedge[p \wedge(\vee-r)]$

Answer: D

18. The proposition $p \wedge(\sim p \vee q)$ is
A. a tautology

B. a contradiction

C. logically equivalent to $p \wedge q$
D. logically equivalent to $p \vee q$.

Answer: C

19. Determine the truth value of each of the following statements:
(a) $4+2=5$ and $6+3=9$
(b) $3+2=5$ and $6+1=7$
(c) $4+5=9$ and $1+2=4$
(d) $3+2=5$ and $4+7=11$
A. $4+2=5$ and $6+3=9$
B. $3+2=5$ and $6+1=7$
C. $4+5=9$ and $1+2=4$
D. $3+2=5$ and $4+7=11$

D Watch Video Solution

20. Which one of the following is not true?
A. Negation of a negation of a statement is
the statement itself.
B. If the last column of the truth table
contains only T then it is a tautology.
C. If the last column of its truth table contains only F then it is a contradiction.
D. If p and q are any two statements then

$$
p \leftrightarrow q \text { is a taulogy. }
$$

Answer: D

D Watch Video Solution

Problems For Practice

1. Which of the following is a contradiction?
A. $p \vee q$
B. $p \vee q$
C. $p \wedge(-p)$
D. $p \vee(-p)$

Answer: D
(Watch Video Solution

2. + is not a binary operation on

A. N
B. Z
C. C
D. $Q /(0)$

Answer: D

3. The value of $\left({ }_{11}[3]+{ }_{11}[5]\right)+{ }_{11}[6]$ is:

A. [0]
B. [1]
C. [2]
D. [3]

Answer: D

D Watch Video Solution
4. \div is a binary operation on:
A. N
B. R
C. Z
D. $Q /(0)$

Answer: D

D Watch Video Solution
5. Which condictional statement $p \rightarrow q$ is equivalent to :
A. $p \vee q$
B. $p \vee(-q)$
C. $-p \vee q$
D. $p \wedge q$

Answer: C

D Watch Video Solution
6. The number of rows of the truth table of $-(p \wedge(-q)) \wedge q$ is:
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

7. If * defined as a * $\mathrm{b}=a^{2}+b^{2}-a b$ then 3 * $(4 * 2)$ is

- Watch Video Solution

8. If p is true and q is false, then which of the following is not true?
A. $p \rightarrow q$ is false
B. $p \vee q$ is true
C. $p \wedge q$ is false

D. $p \leftrightarrow$ is true

Answer: D

D Watch Video Solution

9. $p \leftrightarrow q$ is equivalent to:

A. $p \rightarrow q$
B. $q \rightarrow p$
C. $(p \rightarrow q) \vee(q \rightarrow q)$
D. $(p \rightarrow q) \vee(q \rightarrow p)$

Answer: D

- Watch Video Solution

10. In the set of integers under the operation * defined by $a \cdot b=a+b-5$ then identity is:

D Watch Video Solution
11. Let p be 'Anand is going to school' q be there are twenty five students in the class'.

Then Anand is not going to school or there are twenty students in the class stands for:

$$
\begin{aligned}
& \text { A. } p \vee q \\
& \text { B. } p \wedge q \\
& \text { C. }-p \\
& \text { D. }-p \vee q
\end{aligned}
$$

Answer: D

D Watch Video Solution

12. Which of the following is a tautology?
A. $p \vee q$
B. $p \wedge q$
C. $p \vee-q$
D. $p \wedge-q$

Answer: C
13. In a set of real numbers an operations * defined by $a \cdot b=\sqrt{a^{2}+b^{2}}$. Then the value of $(3 * 5) * 4$ is:

- Watch Video Solution

14. Which of the following is not a binary operation on R ?

$$
\text { A. } a \cdot b=a b
$$

$$
\text { B. } a \cdot b=a-b
$$

$$
\text { C. } a \cdot b=\sqrt{a b}
$$

$$
\text { D. } a \cdot b=a+b
$$

Answer: C

D Watch Video Solution

15. Which of the following is/are not statement?
(i) Three plus four is ten (ii) The floor is smooth
(iii) Switch of the light (iv) Are you coming today
A. (i) * (ii)
B. (ii) * (iii)
C. (iii) * (iv)
D. (iv) only

Answer: C
(Watch Video Solution
16. In a compound statement which is made of

4 single statement then the number rows in
the truth table is
A. 2
B. 4
C. 8
D. 16

Answer: D

D Watch Video Solution
17. Which of the following are statement?
(i) $7+2<10$ (ii) Set of rational numbers is
finite
(iii) How beautiful you are (iv) wish you all the best
A. (iii) \& (iv)
B. (i) \& (ii)
C. (ii) \& (iii)
D. (i) * (iv)

Answer: B

18.
 In
 congruence
 modulo

$5,\{x \in Z / x=5 k+2\}$ represents.
A. [0]
B. [5]
C. [7]
D. [2]

Answer: D
19. $\ln (S, *)$, is defined by $x * y=x$ where x , $y \in S$, then
A. only associative
B. only commutative
C. associative and commutative
D. neither associative nor commutative

Answer: A

- Watch Video Solution

20. Which one of the following is not a statement?
A. May God bles you
B. Rose is a flower
C. Milk is white
D. 27 is a prime number

Answer: A

21. If truth value of p is T and q is F then which

 of the following are having the truth value T.(i)$$
p \vee q(\text { ii }) \sim p \vee q(i i i) p \vee(\sim q) \text { (iv) } p \wedge(\sim q)
$$

- Watch Video Solution

22. Show that $p \vee(\sim p)$ is a tautology.
A. tautology
B. contradiction
C. contingency

D. none of these

Answer: A

- Watch Video Solution

23. If the binary operation * is defined
$a \cdot b=a^{2}-b^{2}+a b+4$ then $(2 * 3) * 4$ is :

D Watch Video Solution
24. In a binary operation * defined as a * $b=3 a-b$
then the value of $(2 * 3) * 4$ is

- Watch Video Solution

25. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ be any
two bollean matrices of the same type find
$A \vee B$ and $A \wedge B$

$$
\begin{aligned}
& \text { A. }\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \\
& \text { B. }\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

> C. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
> D. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

Answer: B

D Watch Video Solution
26. - on Z is:
A. commutative
B. associative
C. both commutative and associative

D. neither commutative nor associative

Answer: D

D Watch Video Solution

27. Which of the following is not a binary operation on R ?

$$
\begin{aligned}
& \text { A. } a \cdot b=a|b| \text { on } R \\
& \text { B. } a \cdot b=\min (a, b) \text { on } A=[1,2,3,4,5] \\
& \text { C. } a \cdot b=a \sqrt{b} \text { on } R
\end{aligned}
$$

D. $a \cdot b=m: n \quad$ on $\quad \mathrm{R}, \quad$ is usual

multiplication

Answer: C

- Watch Video Solution

28.

Define
. on Q as $a \cdot b=\left(\frac{2 a+b}{2}\right), a, b \in Q$.
Then the identify element is :
A. 0
B. $\frac{1}{2}$
C. 1
D. does not exist

Answer: A

- Watch Video Solution

29. Truth table for $p \cup q$ is given below

Which of the following is true?
$i \quad i i \quad i i i \quad i v$
A.
$\begin{array}{lllll}a & F & T & T & F\end{array}$
i ii iii $i v$
B.
$\begin{array}{lllll}b & F & F & T & T\end{array}$
$i \quad i i \quad i i i \quad i v$
C.

$$
\begin{array}{ccccc}
c & T & F & T & F
\end{array}
$$

$i \quad i i \quad i i i \quad i v$
D.
$\begin{array}{ccccc}d & F & F & F & F\end{array}$

Answer: A

D Watch Video Solution

30. In the following which is true:
A. $(p \vee q) \vee(-r) \equiv p \vee(q \vee r)$
B. $p \vee(q \vee r) \equiv(p \vee q) \wedge(p \vee r)$
C. $p \leftrightarrow q \equiv(p \rightarrow-q)$
D. $p \vee-q$ is a tautology

Answer: B

D View Text Solution

