

MATHS

BOOKS - PREMIERS PUBLISHERS

DISCRETE MATHEMATICS

Worked Example

1. Verify the

Closure property

Commutative property

Watch Video Solution

3. Verify the

Associative property

Existence of identity

Watch Video Solution

5. Verify the

Existence of inverse for the arithmetic

operation + on the set of all odd integers Z_0 .

6. Let S set of all even number $Z_e \,\, {
m and} \,\, be+$,

Verify the :

Closure property

7. Let S set of all even number $Z_e \,\, { m and} \,\, be+$,

Verify the :

Commutative property

8. Let S set of all even number Z_e and be+,

Verify the :

Associative property

Watch Video Solution

9. Let S set of all even number Z_e and be +,

Verify the :

Identity property

10. Let S set of all even number $Z_e \; ext{ and } \; be+$,

Verify the :

Inverse element.

Watch Video Solution

11. Let S set of all even number $Z_e \,\, {
m and} \,\, be+$,

Verify the :

Closure property

Commutative property

Watch Video Solution

13. Verify the

Associative property

Existence of identity

Watch Video Solution

15. Verify the

Existence of inverse of C with respect to +.

Closure property

Watch Video Solution

17. Verify the

Commutative property

Associative property

Watch Video Solution

19. Verify the

Existence of identity

Existence of inverse for the arithmetic

operation + on the set of all odd integers Z_0 .

21. Verify the

Closure property

Commutative property

Watch Video Solution

23. Verify the

Associative property

Existence of identity

Watch Video Solution

25. Verify the

Existence of inverse for the set Z with following operation.

 $a \cdot b = a + b + 2f \, ext{ or } \, alla, b \in Z$

Closure property

Watch Video Solution

27. Verify the

Commutative property

Associative property

Watch Video Solution

29. Verify the

Existence of identity

30. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two bollean matrices of the same type find $A \lor B$ and $A \land B$

31. Verify the

Closure property

Commutative property

Watch Video Solution

33. Verify the

Associative property

Existence of identity

Watch Video Solution

35. Verify the

Existence of inverse for the operation

 $+_4$ on Z_4 .

36. Let S be [1], [2], [3], [4], [5], [6] =

 $Z_7 - [0] \cdot ext{ be } imes_7$ verifty

Closure property

Watch Video Solution

37. Let S be [1], [2], [3], [4], [5], [6] =

 $Z_7 - [0] \cdot ext{ be } imes_7$ verifty

Commutative property

38. Let S be [1], [2], [3], [4], [5], [6] =

 $Z_7 - [0] \cdot ext{ be } imes_7$ verifty

Associative property

Watch Video Solution

39. Let S be [1], [2], [3], [4], [5], [6] =

$Z_7 - [0] \cdot ext{ be } imes_7$ verifty

Existence property

40. Identify the valid statement from the following

Mount Everest is the highest mountain in the

world.

41. Identify the valid statement from the following

4+5=9

42. Identify the valid statement from the following 9+6 > 10

Watch Video Solution

43. Identify the valid statement from the following

(100 - 10) = 80

44. Identify the valid statement from the

following

How beautiful the moon is !

Watch Video Solution

45. Identify the valid statement from the following

Bring the book to me

46. Identify the valid statement from the following

What are you coming home?

Watch Video Solution

47. What the statement in words corresponding to $-p, p \lor q, q \lor -p$ where p

is "it is cold" and q is "It is raining".

48. How many rows are needed for the

following statement formulae.

$$(p \lor \ -q) \land (p \land r)$$

Watch Video Solution

49. How many rows are needed for the following statement formulae.

$$(p \wedge \ -t) \lor (p \lor \ -q) \lor (p \wedge \ -r)$$

50. Consider $p \rightarrow q$: If today is Sunday their 3 is a prime number Her p: Today's Sunday, q:3 is a prime number. The truth of $p \rightarrow q$ is T because the conculsion of has truth value T. Consequences.

51. Write the

Conditional statement

52. Write the

Converse statement

Watch Video Solution

53. Write the

Inverse statement

54. Write the

Contrapositive statement. For the two

statement p and q given as:

p:3 is a factor of 18

q: Madurai is in Karnataka state.

р	q	$\neg q$	$r{:} (p \ \overline{\vee} \ q)$	$s: (p \nabla \neg q)$	$r \wedge s$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	F.

Watch Video Solution

56. Show that p
ightarrow q and q
ightarrow p are not equivalent.

Watch Video Solution

57. Show that (i) ~ $(p \wedge q) \equiv$ ~ $p \vee$ ~q

(ii) $au(p o q) \equiv p \wedge au q.$

1. Determine whether * is a binary operation on the sets given below.

(i) a * b = a. |b| on R.

(ii) *a* * *b*= min (a,b) on A={1,2,3,4,5}

(iii) $(a * b) = a\sqrt{b}$ is binary on R.

Watch Video Solution

2. Determine whether * is a binary operationon the sets given below.

(i) a * b = a. |b| on R.

(ii) *a* * *b*= min (a,b) on A={1,2,3,4,5}

(iii) $(a * b) = a\sqrt{b}$ is binary on R.

4. Let
$$*$$
 be defined on R by
 $(a * b) = a + b + ab - 7$. Is $*$ binary on R? If
so, find $3 * \left(-\frac{7}{15}\right)$.

5. Let $A = \{a + \sqrt{5}b : a, b \in Z\}$. Check whether the usual multiplication is a binary operation on A.

7. Define an operation * on Q as follows: $a \cdot b = \left(\frac{a+b}{2} \right), a, b \in Q.$ Examine the

existence of identify and existence of inverse

for the operation * on Q.

8. Fill in the following table so that the binary

operation * on A={a,b,c} is commutative.

*	a	Ь	C
a	b		
Ь	C	Ь	a
С	a		С

Watch Video Solution

9. Consider the binary operation * defined on

the set A= {a,b,c,d} by the following table.

	u	b	C	d
a	a	c	h	d
b	d	a	b	e
c	c	d	a	a
d	d	b	a	с

commutative and associative?

*	а	b	с	d
а	a	· C	b	d
h	d	а	b	с
Ċ	с	d	a	а
d	d	b	a	C

$$C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 by any three boolean

matrices of the same type. Find (i) $A \lor B$, (ii)

 $A \wedge B$, (iii) $(A \lor A) \wedge C$, (iv) $(A \land B) \lor C$.

matrices of the same type. Find (i) $A \lor B$, (ii) $A \land B$, (iii) $(A \land B) \land C$, (iv) $(A \land B) \lor C$.

matrices of the same type. Find (i) $A \lor B$, (ii)

 $A \wedge B$, (iii) $(A \vee A) \wedge C$, (iv) $(A \wedge B) \vee C$.

Watch Video Solution

matrices of the same type. Find (i) $A \lor B$, (ii)

 $A \wedge B$, (iii) $(A \lor A) \wedge C$, (iv) $(A \land B) \lor C$.

14. Let $M = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M.

15. Let
$$M = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix} : x \in R - \{0\} \right\}$$
 and
let * be the matrix multiplication. Determine
whether M is closed under *. If so, examine the

existence of identify, existence of inverse properties for the operation * on M.

Watch Video Solution

16. Let A be $Q/{1}$. Define * on A by x * y=x+y-xy.

Is * binary on A? If so, examine the commutative and association properties satisfied by * on A.

17. Let A be Q/{1}. Define * on A by x * y=x+y-xy. Is
* binary on A? If so, examine the existence of
identity & inverse properties for the operation

* on A.

Watch Video Solution

Solution To Exercise 12 2

following statements:

(i) ~*p*

(ii) $p \wedge {\scriptstyle \sim} q$

(iii) ~ $p \lor q$

(iv) p
ightarrow ~q

(v) $p < \ \Rightarrow q$

> Watch Video Solution

following statements:

(i) ~*p*

(ii) $p \wedge {\scriptstyle \sim} q$

(iii) ~ $p \lor q$

(iv) p
ightarrow ~q

(v) $p < \ \Rightarrow q$

Watch Video Solution

following statements:

(i) ~*p*

(ii) $p \wedge {\scriptstyle \sim} q$

(iii) ~ $p \lor q$

(iv) p
ightarrow ~q

(v) $p < \ \Rightarrow q$

> Watch Video Solution

following statements:

(i) ~*p*

(ii) $p \wedge {\scriptstyle \sim} q$

(iii) ~ $p \lor q$

(iv) p
ightarrow ~q

(v) $p < \ \Rightarrow q$

Watch Video Solution

following statements:

(i) ~*p*

(ii) $p \wedge {\scriptstyle \sim} q$

(iii) ~ $p \lor q$

(iv) p
ightarrow ~q

(v) $p < \ \Rightarrow q$

> Watch Video Solution

6. Write each of the following sentences in symbolic form using statement variables p and

q.

(i) 19 is not a prime number and all the angles

of a triangle are equal.

(ii) 19 is a prime number or all the angles of a

triangle are not equal.

(iii) 19 is a prime number and all the angles of

a triangle are equal.

(iv) 19 is not a prime number.

7. Write each of the following sentences in symbolic form using statement variables p and q.

(i) 19 is not a prime number and all the angles of a triangle are equal.

(ii) 19 is a prime number or all the angles of a

triangle are not equal.

(iii) 19 is a prime number and all the angles of

a triangle are equal.

(iv) 19 is not a prime number.

8. Write each of the following sentences in symbolic form using statement variables p and q.

(i) 19 is not a prime number and all the angles of a triangle are equal.

(ii) 19 is a prime number or all the angles of a

triangle are not equal.

(iii) 19 is a prime number and all the angles of

a triangle are equal.

(iv) 19 is not a prime number.

9. Write each of the following sentences in symbolic form using statement variables p and q.

(i) 19 is not a prime number and all the angles of a triangle are equal.

(ii) 19 is a prime number or all the angles of a

triangle are not equal.

(iii) 19 is a prime number and all the angles of

a triangle are equal.

(iv) 19 is not a prime number.

(i) If 6+2=5, then the milk is white.

(ii) China is an Europe or $\sqrt{3}$ is an integer.

(iii) It is not true that 5+5=9 or Earth is a planet.

(i) If 6+2=5, then the milk is white.

(ii) China is an Europe or $\sqrt{3}$ is an integer.

(iii) It is not true that 5+5=9 or Earth is a planet.

(i) If 6+2=5, then the milk is white.

(ii) China is an Europe or $\sqrt{3}$ is an integer.

(iii) It is not true that 5+5=9 or Earth is a planet.

(i) If 6+2=5, then the milk is white.

(ii) China is an Europe or $\sqrt{3}$ is an integer.

(iii) It is not true that 5+5=9 or Earth is a planet.

proposition?

(i) 4+7=12

(ii) What are you doing?

(iii) $3^n \leq 81, n \in N$

(iv) Peacock is our national bird

(v) How tall this mountain is?

proposition?

(i) 4+7=12

(ii) What are you doing?

(iii) $3^n \leq 81, n \in N$

(iv) Peacock is our national bird

(v) How tall this mountain is?

proposition?

(i) 4+7=12

(ii) What are you doing?

(iii) $3^n \leq 81, n \in N$

(iv) Peacock is our national bird

(v) How tall this mountain is?

proposition?

(i) 4+7=12

(ii) What are you doing?

(iii) $3^n \leq 81, n \in N$

(iv) Peacock is our national bird

(v) How tall this mountain is?

proposition?

(i) 4+7=12

(ii) What are you doing?

(iii) $3^n \leq 81, n \in N$

(iv) Peacock is our national bird

(v) How tall this mountain is?

19. Write the converse, inverse, and contrapositive of each of the following implication.

(i) If x and y are numbers such that x=y, then $x^2 = y^2$.

(ii) If a quadrilateral is a square then it is a rectangle.

20. Write the converse, inverse, and contrapositive of each of the following implication.

(i) If x and y are numbers such that x=y, then $x^2 = y^2.$

(ii) If a quadrilateral is a square then it is a rectangle.

21. Construct the truth table for the following

statements.

 $- \, q \lor \ - \, q$

22. Construct the truth table for the following

statements.

$$-(p \wedge -q)$$

23. Construct the truth table for the following

statements.

$$(p \lor q) \lor \ -q$$

Watch Video Solution

24. Construct the truth table for the following

statements.

$$(\,-p
ightarrow r)ee(p
ightarrow q)$$

25. Verify whether the following compound propositions are tautologies or contradictions or contingency $(p \land q) \land - (p \lor q)$

 $(p \land q) \land (p \lor q)$

Watch Video Solution

26. Verify whether the following compound propositions are tautologies or contradictions or contingency

$$((p \lor q) \land \ -p)
ightarrow q$$

27. Verify whether the following compound propositions are tautologies or contradictions or contingency

$$(p
ightarrow q) \leftrightarrow (\, -p
ightarrow q)$$

Watch Video Solution

28. Verify whether the following compound propositions are tautologies or contradictions or contingency $((p \rightarrow q) \lor (q \rightarrow r)) \rightarrow (p \rightarrow r)$

30. Show that (i) $au(p \wedge q) \equiv extsf{-}p \lor extsf{-}q$

(ii)
$$extsf{-}(p o q) \equiv p \wedge extsf{-}q.$$

32. Show that p
ightarrow q and q
ightarrow p are not

equivalent.

Watch Video Solution

33. Show that $-(p \leftrightarrow q) \equiv p \leftrightarrow -q$.

35. Using truth table check whether the statements $\neg(p \lor q) \lor (\neg p \land q)$ and $\neg p$ are logically equivalent.

37. Prove that $p
ightarrow (\ensuremath{\,^{\sim}} q \lor r) \equiv \ensuremath{\,^{\sim}} p \lor (\ensuremath{\,^{\sim}} q \lor r)$

using truth table.

1. A binary operation on a set S is a function from

A.
$$S o S$$

B. $(S imes S) o S$

 $\mathsf{C}.\,S \to (S \times S)$

 $\mathsf{D}.\,(S\times S)\to(S\times S)$

Answer: B

2. Subtraction is not binary operation in

A. R

B.Z

C. N

D. Q

Answer: C
3. Which one of the following is a binary

operation on N?

A. Subtraction

B. Multiplication

C. Division

D. All of the above

Answer: B

4. In the set R of real number * is defined as follows. Which one of the following is not a binary operation on R?

A.
$$a \cdot b = \min(a, b)$$

$$\texttt{B}.\, a \cdot b = \max(a,b)$$

$$\mathsf{C}.\,a\cdot b=a$$

D.
$$a \cdot b = a^b$$

Answer: D

5. The operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on A. Q^+ B. Z

C. R

D. C

Answer: B

6. In the set Q define $a \odot b = a + b + ab$. For

what value of $y, 3 \odot (y \odot 5) = 7$?

A.
$$y=rac{2}{3}$$

B. $y=rac{-2}{3}$
C. $y=rac{-3}{2}$

7. If $a * b = \sqrt{a^2 + b^2}$ on the real numbers then * is

A. commutative but not associative

B. associative but not commutative

C. both commutative and associative

D. neither commutative nor associative

Answer: C

8. Which one of the following statements has

the truth value T?

A. sin x is an even function

B. Every square matrix is non-singular

C. The product of complex number and its

conjugate is purely imaginary

D. $\sqrt{5}$ is an irrational numbers

Answer: D

9. Which one of the following statements has truth value F?

A. Chennai is in India or √2 is in integer
B. Chennai is in India or √2 is irrational number
C. Chennai is in India or China √2 is in integer

D. Chennai is in China or $\sqrt{2}$ is in irrational number

10. If a compound statement involves 3 simple statements, then the number of rows in the truth table is

A. 9

B. 8

C. 6

Answer: B

11. Which one is the inverse of the statement $(p \lor q)
ightarrow (p \land q)$? A. $(p \land q) \rightarrow (p \lor q)$ $\mathsf{B}.-(p\lor q)\to(p\land q)$ $\mathsf{C.} \ (\ -p \lor \ -q) \to (\ -p \land \ -q)$ $\mathsf{D.} \ (\ -p \lor \ -q) \rightarrow (\ -p \lor \ -q)$

Answer: D

12. Which one is the contrapositive of the statement $(p \lor q) o r?$

A.
$$-r
ightarrow (\,-p \wedge \,-q)$$

 $\mathsf{B}.-rtp(p\lor q)$

 $\mathsf{C}.\, r \to (p \wedge q)$

D. p
ightarrow (q ee r)

Answer: A

13. The truth table for $(p \wedge q) \lor -q$ is given

below:

Which of the following is true?

Answer: C

Watch Video Solution

14. In the last column of the truth table for $\sim (p \lor \sim q)$ the number of final outcomes of the truth value 'F' are

A. 1

B. 2

C. 3

D. 4

Answer: C

15. Which one of the following is incorrect? For

any two propostitions p and q, we have

A.
$$-(p \lor q) \equiv \ -p \lor \ -q$$

$${\tt B.}-(p\wedge q)\equiv \ -p\lor \ -q$$

$$\mathsf{C}.-(pee q)\equiv pee \ -q$$

$$\mathsf{D}.-(-p)\equiv p$$

Answer: C

Which one of the following is correct for the truth value of $(p \wedge q) o - p$?

Answer:

17. The dual of ~
$$(p \lor q) \lor [p \lor (p \land ~r)]$$
 is

A.
$$-(p \lor q) \land [p \lor (p \land -r)]$$

B.
$$(p \wedge q) \wedge [p \wedge (p \vee \ -r)]$$

$$\mathsf{C.} - (p \wedge p) \wedge [p \wedge (p \wedge r)]$$

$$\mathsf{D}.-(p\wedge q)\wedge [p\wedge (\ \lor\ -r)]$$

Answer: D

- **18.** The proposition $p \land (\ensuremath{\,^{\sim}} p \lor q)$ is
 - A. a tautology
 - B. a contradiction
 - C. logically equivalent to $p \wedge q$
 - D. logically equivalent to $p \lor q$.

Answer: C

19. Determine the truth value of each of the following statements: (a) 4+2=5 and 6+3=9 (b) 3+2=5 and 6+1=7 (c) 4+5 =9 and 1+2=4 (d) 3+2=5 and 4+7=11 A. 4+2=5 and 6+3=9 B. 3+2=5 and 6+1=7

C. 4+5=9 and 1+2=4

D. 3+2=5 and 4+7=11

20. Which one of the following is not true?

A. Negation of a negation of a statement is

the statement itself.

B. If the last column of the truth table

contains only T then it is a tautology.

C. If the last column of its truth table

contains only F then it is a contradiction.

D. If p and q are any two statements then

 $p \leftrightarrow q$ is a taulogy.

Answer: D

Watch Video Solution

Problems For Practice

- **1.** Which of the following is a contradiction?
 - A. $p \lor q$
 - $\mathsf{B}.\, p \lor q$
 - C. $p \wedge (\,-p)$
 - D. $p \lor (-p)$

Answer: D

2. + is not a binary operation on

A. N

B.Z

C. C

D. Q/(0)

Answer: D

3. The value of $({}_{11}[3] + {}_{11}[5]) + {}_{11}[6]$ is:

A. [0]

- B. [1]
- C. [2]
- D. [3]

Answer: D

4. \div is a binary operation on:

A. N

B. R

C. Z

D. Q/(0)

Answer: D

5. Which condictional statement p o q is equivalent to :

A. $p \lor q$ B. $p \lor (-q)$ C. $-p \lor q$

D.
$$p \wedge q$$

Answer: C

6. The number of rows of the truth table of $-(p \wedge (-q)) \wedge q$ is: A. 2 B.4 C. 6 D. 8 **Answer: B** Watch Video Solution

7. If * defined as a * b $= a^2 + b^2 - ab$ then 3 * (4 * 2) is Watch Video Solution

8. If p is true and q is false, then which of the following is not true?

A. p
ightarrow q is false

B. $p \lor q$ is true

C. $p \wedge q$ is false

 $\mathsf{D}.\, p \leftrightarrow \; \text{ is true}$

Answer: D

Watch Video Solution

9. $p \leftrightarrow q$ is equivalent to:

A.
$$p
ightarrow q$$

$$\mathsf{B.}\,q \to p$$

$$\mathsf{C}.\,(p \to q) \lor (q \to q)$$

D. $(p
ightarrow q) \lor (q
ightarrow p)$

Answer: D

11. Let p be 'Anand is going to school' q be there are twenty five students in the class'.

Then Anand is not going to school or there are twenty students in the class stands for:

A. $p \lor q$

 $\mathsf{B.}\,p\wedge q$

C. - p

D.
$$-p \lor q$$

Answer: D

12. Which of the following is a tautology?

A. $p \lor q$

 $\mathsf{B.}\,p\wedge q$

 $\mathsf{C}.\, p \lor \ -q$

D. $p \wedge \ -q$

Answer: C

13. In a set of real numbers an operations * defined by $a \cdot b = \sqrt{a^2 + b^2}$. Then the value of (3 * 5) * 4 is:

14. Which of the following is not a binary operation on R?

A.
$$a \cdot b = ab$$

$$\mathsf{B}.\,a\cdot b=a-b$$

C.
$$a \cdot b = \sqrt{ab}$$

D.
$$a \cdot b = a + b$$

Answer: C

15. Which of the following is/are not statement?

(i) Three plus four is ten (ii) The floor is smooth

(iii) Switch of the light (iv) Are you coming

today

A. (i) * (ii)

B. (ii) * (iii)

C. (iii) * (iv)

D. (iv) only

Answer: C

16. In a compound statement which is made of4 single statement then the number rows inthe truth table is

A. 2

B.4

C. 8

D. 16

Answer: D

17. Which of the following are statement? (i) 7+2 < 10 (ii) Set of rational numbers is finite

(iii) How beautiful you are (iv) wish you all the best

A. (iii) & (iv)

B. (i) & (ii)

C. (ii) & (iii)

D. (i) * (iv)

Answer: B

Answer: D

- 19. In $(S, \ st$), is defined by x st y = x where x, $y \in S$, then
 - A. only associative
 - B. only commutative
 - C. associative and commutative
 - D. neither associative nor commutative

Answer: A

20. Which one of the following is not a statement?

A. May God bles you

B. Rose is a flower

C. Milk is white

D. 27 is a prime number

Answer: A

21. If truth value of p is T and q is F then which of the following are having the truth value T.(i) $p \vee q$ (ii) $\sim p \vee q$ (iii) $p \vee (\sim q)$ (iv) $p \wedge (\sim q)$

22. Show that $p \lor (\ensuremath{\sc v})$ is a tautology.

A. tautology

B. contradiction

C. contingency

D. none of these

Answer: A

Watch Video Solution

24. In a binary operation * defined as a * b=3a-b

then the value of (2 * 3) * 4 is

25. Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two bollean matrices of the same type find $A \lor B$ and $A \land B$

$$\begin{array}{c|c} \mathbf{A} & \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \\ \mathbf{B} & \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Answer: B

A. commutative

B. associative

C. both commutative and associative

D. neither commutative nor associative

Answer: D

Watch Video Solution

27. Which of the following is not a binary operation on R?

A.
$$a \cdot b = a|b|onR$$
.

B. $a \cdot b = \min \ (a, b) on A = [1, 2, 3, 4, 5]$

$$\mathsf{C}.\, a\cdot b = a\sqrt{b} \;\; \mathrm{on} \;\; R$$

multiplication

Answer: C

Watch Video Solution

28.

Define

$$ext{ on Q as } a \cdot b = igg(rac{2a+b}{2}igg), a,b \in Q.$$

Then the identify element is :

 $\mathsf{B}.\,\frac{1}{2}$

C. 1

D. does not exist

Answer: A

29. Truth table for $p \stackrel{-}{\cup} q$ is given below

Which of the following is true?

A.		i	ii	iii	iv
	a	F	T	T	F
Β.		i	ii	iii	iv
	b	F	F	T	T
C.		i	ii	iii	iv
	С	T	F	T	F

D. $egin{array}{cccccc} i & ii & iii & iv \\ d & F & F & F & F \end{array}$

Answer: A

Watch Video Solution

30. In the following which is true:

A.
$$(p \lor q) \lor (-r) \equiv p \lor (q \lor r)$$

B.
$$p \lor (q \lor r) \equiv (p \lor q) \land (p \lor r)$$

 $\mathsf{C}.\, p \leftrightarrow q \equiv (p \rightarrow \ -q)$

D. $p \lor -q$ is a tautology

